
1/26/16 CS161 Spring 2016 1 1

Implementing Synchronization

•  Topics
•  Hardware support for synchronization
•  A walk-through of the OS161 spinlock code

•  Learning Objectives:
•  Build synchronization primitives out of HW instructions.

Assumed Knowledge
•  We are assuming that you have some experience with

synchronization
•  You should know the meaning of:

•  Critical section
•  Mutual exclusion
•  Race condition
•  Deadlock

•  You should know how to use:
•  Semaphores (both binary and counting)
•  Locks
•  Condition Variables

•  If you are not familiar with these terms and/or primitives, we
strongly encourage you to review these materials:
•  Overview: https://mix.office.com/watch/1f1z48ng5pl4z
•  Primitives: https://mix.office.com/watch/yffr5uz9opng

1/26/16 CS161 Spring 2016 2

1/26/16 3

1/26/16 4

1/26/16 5

1/26/16 6

Providing Synchronization Primitives

•  Deep deep in the heart of any synchronization
primitive, we find ourselves wanting to do two things
atomically:
1.  Check some condition
2.  Take some action depending on that condition

•  For example, gaining exclusive access to a
resource consists of:
1.  Checking that no one is using the resource
2.  Granting access to the resource

•  If it is possible for another thread or process to run
between steps 1 and 2, you have a problem.

1/26/16 CS161 Spring 2016 7

Problematic example
Thread 1

if (resource available)

 take resource

1/26/16 CS161 Spring 2016 8

Thread 2

If (resource available)

 take resource

Hardware to the Rescue
•  Brute force: turn off interrupts

•  We said that you had a problem only if it was possible for the
thread to be interrupted at any time…

•  Do you see a problem with this approach?

1/26/16 CS161 Spring 2016 9

Hardware to the Rescue
•  Brute force: turn off interrupts

•  We said that you had a problem only if it was possible for the
thread to be interrupted at any time…

•  Do you see a problem with this approach?
•  What if you have multiple processors?

1/26/16 CS161 Spring 2016 10

1/26/16 11

Hardware to the Rescue
Part 2

•  Special hardware instructions
•  The hardware will provide you at least one instruction that

lets you combine checking a condition and doing something
(simple).

•  From that single instruction, it is possible to implement
whatever synchronization primitives you want!

1/26/16 CS161 Spring 2016 12

Spinlocks

•  A spinlock is a memory location that can be in one of
two states:
•  Zero when unlocked (no one holds the spinlock)
•  Non-zero when locked (someone holds the spinlock)

•  Proposed (incorrect) implementation to acquire the
spinlock:
1. while (lock_var != 0);
2. lock_var = 1;

1/26/16 CS161 Spring 2016 13

1/26/16 14

Spinlocks: Race Condition!

•  Proposed implementation:
1. while (lock_var != 0);
2. lock_var = 1;

1/26/16 CS161 Spring 2016 15

Thread 1 Thread 2

Hardware Primitive: TAS
•  Test-and-set (TAS)

•  An atomic instruction, RET = TAS(VAR) equivalent to:
1.  RET = VAR;
2.  VAR = 1;

•  Usage
•  VAR is a spinlock.
•  If VAR = 0, the spinlock is available (unlocked)
•  If VAR != 0, then someone owns the spinlock

•  To acquire the spinlock:
•  RET = TAS(VAR)
•  If (RET == 0) I have the spinlock!

1/26/16 CS161 Spring 2016 16

1/26/16 17

Hardware Primitive: CAS
•  Compare and Swap (CAS)

•  Compares the contents of a memory location with a value
and if they are the same, then modifies the memory location
to a new value.

•  CAS on Intel:
cmpxchg loc, val

•  Compare value stored at memory location loc to
contents of the Compare Value Application Register.
•  If they are the same, then set loc to val.
•  After, ZF flag is set if the compare was true, else ZF is 0

1/26/16 CS161 Spring 2016 18

Using CAS
•  Acquire a lock (loc is the spinlock).

•  Set Compare Value Application Register to 0
cmpxchg loc, 1

•  Check ZF flag:
•  If ZF is 1, then the compare was true, loc now contains 1,

and you have the lock
•  If ZF is 0, then the spinlock is already held so your attempt to

acquire it failed and should retry.

1/26/16 CS161 Spring 2016 19

Hardware Primitive: LL/SC
•  Load Link/Store Conditional (LL/SC)

•  LL: load link (sticky load) returns value from memory
•  SC: store conditional: stores a value to the memory location

ONLY if that location hasn’t changed since the last load-link.

•  If update has occurred, store-conditional will fail.
•  Usage: Let’s look at the actual spinlock

implementation in OS161.

1/26/16 CS161 Spring 2016 20

1/26/16 21

1/26/16 22

Fancier Hardware Support:
Transactional memory

•  Introduced by Herlihy and Moss in 1993.
•  Finally starting to get some traction in the past few years.
•  Idea:

•  Implement an entire critical section exploiting hardware to make it atomic.
•  Code up the set of operations you want and then "try" to apply them all at once

atomically -- that will either succeed or fail.
•  Specify a set of "transactional operations”

•  load-transactional (LT): read memory into a register
•  load-transactional-exclusive (LTX): read memory into a register and hint that you’ll be

updating it (optimization)
•  store-transactional (ST): write value into a memory location

•  Specify a set of transaction control instructions
•  begin: start a sequence of atomic instructions
•  commit: try to apply all the updates from the transaction. If possible, apply them and

the transaction succeeds. If not possible, apply none and transaction fails.
•  abort: throw away all the current transactional changes.
•  validate: check if this transaction has aborted.

1/26/16 CS161 Spring 2016 23

Implementing Transactional Memory

•  Maintain a read-set: set of all memory locations read
during a transaction (all locations accessed by LT).

•  Maintain a write-set: set of all memory locations written
during a transaction (all locations accessed by LTX and
ST).

•  Data-set is the union of read-set and write-set.
•  Commit check that:

•  no other transaction has modified any item in this transaction’s
data set.

•  no other transaction has read anything in this transaction’s write
set.

•  If commit check fails, restore everything to its initial state.

1/26/16 CS161 Spring 2016 24

