
2/4/16 CS161 Spring 2016 11

Switching and Crossing

• Topics
• Terminology.

• What hardware support is necessary to support
multiprogramming?

• How does all this work on the MIPS?

• Learning Objectives:
• Be prepared to tackle Assignment 2!

Terminology

• Thread switch: Changes from one thread of execution to another.
• Does not require a change of protection domain.
• Continue running in the same address space.
• Can change threads in user mode or in supervisor mode.

• Domain crossing: Changes the privilege at which the processor is
executing.
• Can change from user to supervisor.
• Can change from supervisor to user.
• Requires a trap or return from trap.
• Requires an address space change (either user to kernel or kernel to user)

• Process switch: Changes from execution in one (user) process to
execution in another (user) process.
• Requires two domain crossings + a thread switch in the kernel.

• Context switch: usage varies
• Sometimes used for either thread or process switch.
• Sometimes used to mean only process switch.
• Every once in a while used to mean domain crossing.

2/4/16 CS161 Spring 2016 2

User-Level Thread Switch

2/4/16 CS161 Spring 2016 3

Kernel Address Space

User address space

Domain Crossing

2/4/16 CS161 Spring 2016 4

Kernel Address Space

User address space

What Causes a Trap?

• The thread requests a trap: System Call

• Every system call requires a domain crossing.

• The thread does something bad: Exception

• E.g., Accessing invalid memory.

• An external event happens: Interrupt

• E.g., Timer goes off, disk operation completes, network packet
arrives, one processor pokes another.

• Regardless of the cause, the kernel handles all traps.

• A user process that causes a trap causes a domain crossing.

• A trap that happens while the kernel is already running, does
not cause a domain crossing.

2/4/16 CS161 Spring 2016 5

2/4/16 CS161 Spring 2016 6

2/4/16 CS161 Spring 2016 7

2/4/16 CS161 Spring 2016 8

What Does the Kernel do on a Trap?

• The kernel has to find a stack on which to run.
• If you were already in the kernel, the stack you use is the same as the one

on which you were running.

• If you were running in user mode, then you have to find a kernel stack on
which to run.

• Implication: every real* user level thread has a corresponding kernel stack.

• Before doing anything else, the kernel has to save state
• We’ll go through this in detail in a few slides.

• Figure out what caused the trap.

• Note: Whenever the kernel runs, it has the option of changing to
another thread.

* You can have purely user-level thread implementations; for now, those aren’t “real”

2/4/16 CS161 Spring 2016 9

Process Switch

2/4/16 CS161 Spring 2016 10

ReadyRunning

Summarize Process Switch

1. Change protection domain (user to supervisor[kernel]).

2. Change stacks: switch from using the user-level stack to
using a kernel stack.

3. Save execution state (on kernel’s stack).

4. Do kernel stuff

5. Kernel thread switch

6. Restore user-level execution state

7. Change protection domain (from supervisor[kernel] to user)

2/4/16 CS161 Spring 2016 11

2/4/16 CS161 Spring 2016 12

2/4/16 CS161 Spring 2016 13

Intel Domain Crossing

• Hardware does it all
• Saves and restores all the state using a special data

segment called the Task State Segment.

• Software assist alternative (used by most modern
systems)
• A cross-protection ring function call saves the EIP

(instruction pointer), the EFLAGS (contains user/kernel bit),
and code segment (CS) on the stack and saves old value of
stack pointer and stack segment.

• Software does the rest.

2/4/16 CS161 Spring 2016 14

MIPS Domain Crossing

• The PC is saved into a special supervisor register.

• The status and cause registers (two other special
purpose registers) are set to reflect the details of the
trap being processed.

• The processor switches into kernel mode with
interrupts disabled.

• The rest is done in software.

2/4/16 CS161 Spring 2016 15

MIPS R3000 Hardware

• Update status register (CP0 $12) with bits that:
• turn off interrupts

• put processor in supervisor mode

• indicate prior state (interrupts on/off; user/supervisor mode)

• Sets cause register (CP0 $13) with
• what trap happened

• bit indicating if you are in a branch delay slot

• Sets the exception PC (CP0 $14) (address where
execution is to resume after we handle the trap)

• Sets the PC to the address of the appropriate
handler.

2/4/16 CS161 Spring 2016 16

MIPS R3000 Software

• Save whatever other state that must be saved!
• Since you need to be able to save the user registers and

you need to manipulate various entries, there are two
registers that the kernel is allowed to use in whatever way
is necessary (without this, you couldn’t do anything).

• In assembly (kern/arch/mips/locore/exception-mips1.S)
• Save the previous stack pointer
• Get the status register
• If we were in user mode:

• Find the appropriate kernel stack

• Get the cause of the current trap
• Create a trap frame (on the kernel stack) that will contain

• General registers
• Special registers (status, cause)

• Now, call the trap handling code (in C).

2/4/16 CS161 Spring 2016 17

MIPS R3000 Trap Handling

• First we go to a generic trap handler:
• kern/arch/mips/locore/trap.c:

• Does a bunch of error handling

• If this was an interrupt, handle it.

• If this was a system call, call the system call dispatch.

• Otherwise, handle other exception cases.

• Then, if this is a system call (215), we go to the
system call handler:
• kern/arch/mips/syscall/syscall.c

• Figure out which system call is needed and dispatch to it.

• Both of these functions assume that all the important
information has been stashed away in a trapframe.

2/4/16 CS161 Spring 2016 19

K1

Normal Execution (1)

2/4/16 CS161 Spring 2016 22

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

CP0-12

K0

PC and SP
reference
addresses in
user space.

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

K1

2/4/16 CS161 Spring 2016 23

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

kern/arch/mips/locore/exception-mips1.S(2)
line 105-107

SW:
Save status
register to k0
Check mode

K1

2/4/16 CS161 Spring 2016 24

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

status

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

kern/arch/mips/locore/exception-mips1.S(3)
line 111 (assume we came from user mode)

SW:
Save context
register into K1

K1

2/4/16 CS161 Spring 2016 25

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

status

context

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

kern/arch/mips/locore/exception-mips1.S(4)
line 112-115 (find kernel stack)

SW:
Extract proc # K1
Convert to index
Set K0 to base of
Kernel stacks

K1

kern/arch/mips/locore/exception-mips1.S(5)
line 116 (save user SP)

2/4/16 CS161 Spring 2016 26

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

SW:
Save old SP in K1

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

K1

kern/arch/mips/locore/exception-mips1.S(6)
line 137, 170-233 (create a stack frame)

2/4/16 CS161 Spring 2016 27

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

SW:
Allocate trap stack
frame (bump SP)
Save registers

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

K1

kern/arch/mips/locore/trap.c(7)
line 125: We called into mips_trap

2/4/16 CS161 Spring 2016 28

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

SW:
Trapframe on the
stack is the
argument to
mips_trap. Call it.

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

K1

kern/arch/mips/locore/trap.c(8)
line 431-433: Call routine for this exception

2/4/16 CS161 Spring 2016 29

Stack

U
s
e
r

P
ro

c
e
s
s
 A

d
d
re

s
s
 S

p
a
c
e

Processor

PC

SP

R0

RN

Spec Reg

CP0-13

Except PC

Trap!

CP0-12

K0

status

context

SW:
Extract exception
type from the
trap frame.

K
e
rn

e
l A

d
d
re

s
s
 S

p
a
c
e

Array of
stack

pointers

Interrupt
handlers

Stack

Stack

Stack

Stack

Syscall Details

• Upon entry into our syscall handler, we:
• Are in supervisor mode

• Have saved away the process’s state

• System call details
• Where did we leave the arguments?

• How do we know which system call to execute?

• Where do we return an error?

• Do we need to do anything special with the
arguments?
• Where does data referenced by an argument live?

• How do we get to it?

2/4/16 CS161 Spring 2016 32

Copyin/Copyout

• Processes that issue system calls with pointer arguments
pose two problems:
• The items referenced reside in the process address space.

• Those pointers could be bad addresses.

• Most kernels have some pair of routines that perform both
of these functions.

• In OS/161 they are called: copyin, copyout
• Copyin: verifies that the pointer is valid and then copies data

from a user process address space into the kernel’s address
space.

• Copyout: verifies that the address provided by the user process
is valid and then copies data from the kernel back into a user
process.

2/4/16 CS161 Spring 2016 33

Creating User Processes

• Once we have one user process, creating new ones
is easy using fork. But how do we create an initial
user process? And what might that process be?

• On UnixTM systems, the first process is called init.

• The kernel hand crafts this process during startup.
• If you took CS61, think about the process_setup function

in Weensy OS (you might even find reviewing it useful).

• In os161, you will find it useful to read and understand
kern/proc/proc.c.

• All other processes are descendants of init.

2/4/16 CS161 Spring 2016 34

Implementing Fork

• Things to think about when implementing fork:
• The forking process must not be running at user-level

• That is, in a multi-threaded process, no other threads may be active.
(Why?)

• Before copying a process, you need to save its state!

• Copying a process requires copies of the code and the data
(including the stack).

• The processor state for the copy must be identical to that of
the parent (with one exception). Where do you find the
parent’s processor state?

• What is the one difference between the original (parent) and
new (child) process?

• Finally, make sure that your dispatcher/scheduler knows
about this new process.

2/4/16 CS161 Spring 2016 35

Fork’s Friends

• Exec:
• Replace the current process with a new one.

• This involves changing the contents of the address space and
then starting execution at the “right” place. Where is that
place?

• Wait:
• Parent must be able to wait on one child or any child.

• Child state must stick around until it has been reaped (i.e., until
someone has waited on it).

• Parent must get child’s exit status.

• Pipes and file descriptors:
• On a fork, which parts of the file descriptor table (and the things

it references) are shared and which are copied?

• What happens on exec?

2/4/16 CS161 Spring 2016 36

