
2/2/16 CS161 Spring 2016 1 1

OS Structure
•  Topics

•  Hardware protection & privilege levels
•  Control transfer to and from the operating system

•  Learning Objectives:
•  Explain what hardware protection boundaries are.
•  Explain how applications interact with the operating system

and how control flows between them.

What makes the kernel different?

2/2/16 CS161 Spring 2016 2

Operating System

device drivers
file system

virtual memory

networking

processes

Applications

Hardware

Protection Boundary

HW/SW Interface

Protection Boundaries
•  Processor hardware typically provides (at least) two

different privilege levels:
•  User mode: how all “regular programs” run.
•  Kernel mode or supervisor mode: how the OS runs.
•  Most processors have only two modes; x86 has four; some older

machines had 8!

•  The mode in which a piece of software is running
determines:
•  What instructions may be executed.
•  How addresses are translated.
•  What memory locations may be accessed (enforced through

translation).

2/2/16 CS161 Spring 2016 3

Example: Intel
•  Four protection levels

•  Ring 0: Most privileged: OS runs here
•  Rings 1 & 2:Ignored in many environments, although, can run

less privileged code (e.g., third party device drivers; possibly
some parts of virtual machine monitors)

•  Ring 3: Application code
•  Memory is described in chunks called segments

•  Each segment also has a privilege level (0 through 3)
•  Processor maintains a “current protection level” (CPL) - usually

the protection level of the segment containing the currently
executing instruction.

•  Program can read/write data in segments of less privilege than
CPL

•  Program cannot directly call code in segments with more
privilege.

2/2/16 CS161 Spring 2016 4

Example: MIPS
•  Standard two mode processor

•  User mode: access to CPU/FPU registers and flat, uniform
virtual memory address space.

•  Kernel mode: can access memory mapping hardware and
special registers.

2/2/16 CS161 Spring 2016 6

Changing Protection Levels
•  Must answer two fundamental questions:

•  How do we transfer control between applications and the
kernel?

•  When do we transfer control between applications and the
kernel?

•  How: Fundamental mechanism that transfers control
from less privileged to more privileged is called a
trap.

•  There are different kinds of traps; this gets us to the
when …

2/2/16 CS161 Spring 2016 7

When does the OS get to run?
•  Sleeping Beauty Approach

•  Hope that something happens to wake you up.
•  What might happen?

•  System calls: An application might want the operating system to do
something on its behalf.

•  Exceptions: An application unintentionally does something that requires
OS assistance (e.g., divide by 0, read a page not in memory).

•  Interrupts: An asynchronous event (e.g., I/O completion).

•  Alarm Clock Approach
•  The OS can set a timer, which will generate an interrupt,

which guarantees that the OS gets to run at a specific time in
the future.

2/2/16 CS161 Spring 2016 8

Transferring Control
•  Regardless of why and when control must transfer to the

operating system, the mechanism is the same.
•  First, we’ll talk about what must happen in the abstract

(i.e., not in the context of any particular processor).
•  Then, we’ll step through two different hardware platforms

and examine how they transfer control.
•  Key points:

•  We can invoke the operating system explicitly via a system call.
•  The operating system can be invoked implicitly via an exception

(sometimes called a software interrupt), such as a divide by
zero or a bad memory reference.

•  The operating system can be invoked asynchronously via
(hardware) interrupts, such as a timer, an I/O device, etc.

2/2/16 CS161 Spring 2016 11

Trap Handling
•  Each type of trap is assigned a number. For example:

•  1 = system call
•  2 = timer interrupt
•  3 = disk interrupt
•  4 = interprocessor interrupt

•  The operating system sets up a table, indexed by trap number, that
contains the address of the code to be executed whenever that kind of trap
happens.

•  These pieces of code are called “trap handlers.”

2/2/16 CS161 Spring 2016 12

Trap handler table
Trap handler

for trap 1

I’m
done!

WAKEUP!
(interrupt) Trap handler

for trap 3

MIPS (sys161) Trap Handling (1)

•  MIPS has only 5 distinct traps and those addresses
are hardwired (no software dispatch)
•  One each for:

1.  Reset,
2.  NMI (non-maskable interrupt)
3.  Fast-TLB loading
4.  Debug
5.  One for everything else (software must then do further dispatch).

•  Note: Sys/161 does not support NMI or debug

•  Trap handling varies according to the type of trap.

2/2/16 CS161 Spring 2016 13

MIPS (sys161) Trap Handling (2)

•  The MIPS processor has special registers that get set with
vital information at trap time. For example:
•  The EPC (exception program counter) tells you the address that

caused the exception.
•  The cause register is set to a value indicating the source of the

trap -- interrupt, exception, system call, and which kind of
interrupt/exception/system it was.

•  The status register indicates:
•  Mode the processor was in when the interrupt happened.
•  The state of which kinds of interrupts/exceptions are enabled

•  In early versions of the MIPS, you return from trap
handlers using a combination of a JMP instruction and an
RFE (return from exception).

•  Later versions have ERET (exception return).

2/2/16 CS161 Spring 2016 14

x86 Trap Handling
•  Hardware register, traditionally called PIC (Programmable Interrupt Controller),

then APIC (advanced PIC) and most recently LAPIC (local advanced PIC, one
per CPU in the system)
•  Maps different events to particular locations in IDT (interrupt descriptor table).
•  PIC sends the appropriate value for the interrupt handler dispatch to the processor.

•  Recall:
•  x86 has multiple protection levels
•  Cannot directly call code in a different level.
•  So, we need a special mechanism to facilitate the transfer.

•  IDT: contains special objects called gates.
•  Gates provide access from lower privileged segments to higher privileged segments.

•  When a low-privilege segment invokes a gate, it automatically raises the CPL to
the higher level.

•  When returning from a gate, the CPL drops to its original level.
•  First 32 gates reserved for hardware defined traps.
•  Remaining entries are available to software using the INT (interrupt) instruction.

2/2/16 CS161 Spring 2016 15

x86 System Calls
•  There are multiple ways to handle system calls and

different operating systems use different ways:
•  Linux uses a single designated INT instruction (triggers a

software interrupt) and then dispatches again within a single
handler (like MIPS).

•  Solaris uses the LCALL instruction (goes through a gate).
•  Some new Linux systems use the newer SYSENTER/

SYSEXIT calls.

•  The IRET instruction returns from the trap

2/2/16 CS161 Spring 2016 16

Recap
•  The operating system is just a bunch of code that sits around

waiting for something to do (e.g., help out a user process,
respond to a hardware device, process a timer interrupt, etc).

•  The operating system runs in privileged mode.
•  Hardware provides some sort of mechanism to transfer control

from one privilege level to another.
•  We use the term trap to refer to any mechanism that transfers

control into the operating system.
•  There are different kinds of traps:

•  Interrupts (caused by hardware; asynchronous)
•  Exceptions (software interrupts; synchronous with respect to programs)
•  System calls: intentional requests of the operating system on behalf of

a program; synchronous with respect to the program)

2/2/16 CS161 Spring 2016 17

2/2/16 CS161 Spring 2016 19

