
4/7/16 CS161 Spring 2016 11

Logging File Systems

• Learning Objectives

• Explain the difference between journaling file systems and

log-structured file systems.

• Give examples of workloads for which each type of system

will excel/fail miserably.

• Compare and contrast the recovery and durability properties

of systems such as soft-updates, journaling, and log-

structured file systems.

• Explain the technological motivation for log-structured

systems.

• Topics

• Log-structured file systems

Journaling Pros/Cons

• Advantages
• Write log records sequentially

• Data (random) writes can be buffered much longer.
Implications:

• You may get multiple writes into the buffer cache before you have to
write to disk.

• You can accumulate a large number of blocks to write to disk and then
schedule them cleverly, so they are faster than the same number of
random writes..

• Facilitate fast recovery: just reply the log (no costly FSCK).

• Disadvantages
• You write everything twice.

• If you log only metadata, then you can end up with intact file
system structures, but incorrect or missing data.

4/7/16 CS161 Spring 2016 2

Looking Forward

• Annoying tidbits

• You end up writing all your meta-data twice: once to the log

and once to the file system.

• If you want the data recoverable, then you have to log that

too and that means you’re writing the data twice.

Isn’t there a better way???

• Log-structured file systems

• Is there a way to make the log records themselves be the

actual data, so you don’t have to write everything twice

(once to the log and once to the file system data).

4/7/16 CS161 Spring 2016 3

Log-Structured File Systems

• Let’s take a look at current technology trends and workload patterns and
design a file system that addresses those challenges.

• 1984: A Trace-Based Analysis of the 4.2 BSD File System (Ousterhout et
al).
• Most files are small.

• Most bytes belongs to large files.

• Most files are read and written sequentially.

• 1988: The Case for Redundant Arrays of Indexpensive Disks (Patterson et
al.)
• Increase I/O bandwidth by putting multiple disks together.

• Add extra disks for reliability (parity or ECC).

• “Good” arrangements make big, sequential I/O fast, but small, random I/O slow.

• Other trends:
• I/O gap widening

• Machines have large caches that reduce read traffic.

• Writes however, must go to disk.

• Writing sequentially is significantly better than writing randomly.

• No significant improvements in disk access (seek or rotation) times.

• We need to get rid of small, random access and synchronous I/O.

4/7/16 CS161 Spring 2016 4

Overview

• Cache data in memory, even dirty data.

• Coalesce lots of dirty data together (inodes, directories, data
blocks, indirect blocks, etc) into a large chunk of data.

• Write that data to disk sequentially as a log, but make the log
the only persistent representation of the file system.

4/7/16 CS161 Spring 2016 5

Data Blocks

Inode Block

Directory Blocks

Indirect Blocks

Segment Summary

Segment (typically ½ to 1 MB)

LFS Example (1)

4/7/16 CS161 Spring 2016 6

Create A; write blocks 1-3

Create B; write blocks 1-5

Create C; write block 1

Create D; write block 1

Create E; write blocks 1-2

Directory containing: A, B, C, D, E

Inodes for A, B, C, D, E, and dir

A

1

A

2

A

3

B

1

B

2

B

3

B

4

B

5

C

1

D

1

E

1

E

2

Segment Summary

LFS Example (2)

4/7/16 CS161 Spring 2016 7

Create A; write blocks 1-3

Create B; write blocks 1-5

Create C; write block 1

Create D; write block 1

Create E; write blocks 1-2

Update file C; block 1

Update file D; block 1

Update file A; block 1

Create file F; blocks 1-6

Update file B; blocks 1-3

Delete E

A

1

A

2

A

3

B

1

B

2

B

3

B

4

B

5

C

1

D

1

E

1

E

2

C

1

D

1

A

1

F

1

F

2

F

3

F

4

F

5

F

6

B

1

B

2

B

3

Directory containing: A, B, C, D, E

Inodes for A, B, C, D, E and dir

Directory containing: F, E

Inodes for A, B, C, D, E, F and dir

Segment Summary

Segment Summary

LFS File System Operations

• Most operations behave identically to typical FS

(FFS).

• Directories map names to inode numbers.

• Inode numbers map to inodes.

• Inodes map to data blocks.

4/7/16 CS161 Spring 2016 8

LFS: Finding Inodes

• Maintain an inode map

• A large array with one entry for each inode.

• The array contains the disk address of the inode.

• Since you can place many inodes in a single block, make

sure that you can figure out which inode is which in the inode

block (store the inode number in the inode).

• Where do you place the inode map?

• Option 1: Fixed location on disk

• Option 2: In a ‘special’ file (the ifile)

• Write the special file in segments just like we write regular files.

• But then, how do we find the inode for the ifile?

• Store the ifile inode address in a special place (i.e, superblock).

4/7/16 CS161 Spring 2016 9

LFS: Free Space Management (1)

• Option 1: Threading

• Leave live data in place.

• Write new data to available places.

• NetApp’s WAFL uses this technique.

4/7/16 CS161 Spring 2016 10

A

1

A

2

A

3

B

1

B

2

B

3

B

4

B

5

C

1

D

1

E

1

E

2

Directory containing: A, B, C, D, E

Inodes for A, B, C, D, E and dir

Use these free blocks

• Problem

• Writes are no

longer contiguous

LFS: Free Space Management (2)

• Option 2: Cleaning

• Copy and coalesce data into a new segment.

• Old segment available for reclamation

4/7/16 CS161 Spring 2016 11

A

1

A

2

A

3

B

1

B

2

B

3

B

4

B

5

C

1

D

1

E

1

E

2

Directory containing: A, B, C, D, E

Inodes for A, B, C, D, E and dir • Problem

• Long-lived data

gets copied a lot!Copy these blocks to end of log

LFS: Free Space Management (3)

• Option 3: Hybrid

• Use threaded segments.

• Clean on a per segment basis.

• Thread segments together.

4/7/16 CS161 Spring 2016 12

A

1

A

2

A

3

B

1

B

2

B

3

B

4

B

5

C

1

D

1

E

1

E

2

C

1

D

1

A

1

F

1

F

2

F

3

F

4

F

5

F

6

B

1

B

2

B

3

Delete F

Reclaim space by cleaning

Replace two segments with one

A

2

A

3

B

1

B

2

B

3

B

4

B

5

A

1

C

1

D

1First two segments are now clean

And available for reallocation.

Cleaning Algorithm and Structures

• Three-step algorithm
• Read N dirty segments.

• Identify which blocks are live.

• Write live data back to log.

• Identify each block
• Must know which block of which file is being cleaned.

• Segment summaries provide a description of all the blocks in
the segment:

• Identify data blocks and to which inode/blkno they belong.

• Identify inodes stored in inode blocks

• Must write a segment summary whenever you write “a batch” of blocks
to disk.

• These batches are called partial segments (unless they fill an entire
segment).

4/7/16 CS161 Spring 2016 13

Cleaning Policies

• When should the cleaner run?

• How many segments should be cleaned at once?

• Which segments should be cleaned?

• How should cleaned blocks be grouped?

• The original paper addressed the last two; turns out that
the first two are also very important.
• Clean a few 10s of segments — requires a few tens of

megabytes of kernel main memory.

• Wait until clean segments are scarce; then begins cleaning
(implication is that cleaning is always triggered when there is
regular user activity; not a good idea).

• Must maintain a segment usage table that tracks how full/empty
each segment is.

• Getting these calculations right is tricky.

• Where do you put it? Right in the ifile with the inode map!

4/7/16 CS161 Spring 2016 14

LFS Recovery (1)

• What do we do after a crash?

• Good news: we know that writes always happen at the end

of the log, so all we need to do is fine that end.

• Bad news: how do you find the end?

• Recovery structures:

• Segment summaries let you parse each segment.

• When you write a segment, you know the one that came

before it, but not necessarily the one that comes after it.

• You can either link segments backwards or preallocate the

next segment.

• If you preallocate, you need to know if that “next” segment is

valid; use timestamps to order segments properly.

4/7/16 CS161 Spring 2016 15

LFS Recovery (2)

• Periodically we take checkpoints:

• Flush all data to disk.

• Record last segment written in the superblock.

• Write superblock.

• Overall recovery algorithm:

• Find most recent superblock.

• Find last-written-segment from superblock.

• While more segments follow

• Parse segment summary and update inodes, ifile, and segment

summaries to reflect file system state represented by the segment.

• Take a checkpoint

4/7/16 CS161 Spring 2016 16

LFS Summary

• LFS did two things:

• Used log to make multiple random I/Os into one large
sequential I/O, using the disk more efficiently.

• Got rid of any other representation of the data other than the
log.

• Implications of this second action:

• No-overwrite storage system.

• Nice recovery properties, but must garbage collect data.

• The database community backed off no-overwrite
strategies versus journaling strategies in the 1970’s and
early 1980’s.

• The journaling guys won in the DB community (for a long time)!

• How about in the file system community?

4/7/16 CS161 Spring 2016 17

