
4/5/16 CS161 Spring 2016 1 1

Journaling File Systems

•  Learning Objectives
•  Explain log journaling/logging can make a file system

recoverable.
•  Discuss tradeoffs inherent in journaling.
•  Identify shortcomings in journaling file systems

•  Topics
•  Notes we leave to help us recovery a file system: a log
•  Different approaches to logging
•  Checkpointing

Log Records

•  Log records are “notes” that the running file system
leaves for the recovery process.

4/5/16 CS161 Spring 2016 2

Here is my inode data

Here is a directory
entry that goes in
block B

Set bit #11 in the map
to 1

Inode 8

Inode 9

Inode 10

Inode 11

Inode 12

Inode 13

Inode 14

Inode 15

Inode Block Create file bar
•  Find and allocate an inode
•  Initialize the inode
•  Write a directory entry

., #52

.., #75

Directory Block

foo, #10

bar, #11

1 1 1 1 0 0 0 1 1 1 0 0 1 1 0 …
Inode Bitmap

What do we do after a crash?

•  Read the notes:
•  Use the notes to figure out what you need to do to make the

file system consistent after the crash.
•  Might need to undo some operations; why/when?
•  Might need to redo some other operations; why/when?

•  Using database parlance, we call these “notes” a log.
•  The act of reading the log and deciding what to do is called

recovery.
•  Backing out an operation is called undoing it.
•  Re-applying the operation is called redoing it.

4/5/16 CS161 Spring 2016 3

Is this a good idea?

•  Why is this logging and recovery better than simply
writing the data synchronously?
•  Synchronous writes can appear anywhere on disk.
•  The log is typically a contiguous region of disk, so writing to

it is usually quite efficient.
•  You can buffer data in memory longer.

4/5/16 CS161 Spring 2016 4

Journaling File Systems: A Rich History

•  The Database Cache (1984)
•  Write data to a sequential log.
•  Lazily transfer data from the sequential log to actual file system.

•  The Cedar File System (1987)
•  Log meta-data updates.
•  Log everything twice to recover from any single block failure.
•  Data is not logged.

•  IBM’s JFS (1990)
•  Log meta-data to a 32 MB log.
•  Also uses B+ tree for directories and extent descriptors.

•  Veritas VxFS (1990 or 1991)
•  Maintain and intent log of all file system data structure changes.
•  Data is not logged.

•  Many journaling file systems today; some log meta-data only; some log data too;
some make data logging optional
•  Ext3
•  Reiser
•  NTFS
•  ZFS
•  BTRFS
•  …

4/5/16 CS161 Spring 2016 5

Journaling/Logging
•  Motivation

•  Sequential writes are fast; random writes are slow.
•  Meta-data operations typically require multiple writes to different data

structures (e.g., inodes and directories).
•  Logging/Journaling converts random I/Os to sequential ones.

•  How a journaling file system works
•  Before writing data structure changes to disk, write a log record that

describes the change.
•  Log records typically contain either or both:

•  REDO Information: describes how to apply the update in case the data does not
make it to disk.

•  UNDO: Information: describes how to back out the update in case the data gets to
disk but shouldn’t (because some other update never made it to the disk or the
log).

•  Make sure that log records get to disk before the data that the log
record describes (write-ahead logging or WAL).

•  After a system crash, replay the log and redo/undo operations as
appropriate to restore file system to a consistent state.

4/5/16 CS161 Spring 2016 6

Journaling Example (1)

4/5/16 CS161 Spring 2016 7

Create file A

Log
Allocate and
initialize inode 10

Add dir entry A,10

Buffer Cache Blk
containing
inode 10

Inode
alloc
bitmap

directory
block FS Bitmaps

Inodes

Directory Blocks

Data Blocks

Journaling Example (2)

4/5/16 CS161 Spring 2016 8

Create file A

Log
Allocate and
initialize inode 10

Add dir entry A,10

Alloc block 1234
to inode 10; lbn 0

Alloc block 1235
to inode 10; lbn 1

Alloc block 1236
to inode 10; lbn 2

Buffer Cache Blk
containing
inode 10

Inode
alloc
bitmap

directory
block

Write blocks 0-2 to file A

Block
alloc
bitmap

Block
1234

Block
1235

Block
1236

FS Bitmaps

Inodes

Directory Blocks

Data Blocks

directory
block

Clear inode 10

Free block 1234

Remove directory
entry A,10

Block
alloc
bitmap

Block
1235

Journaling Example (3)

4/5/16 CS161 Spring 2016 9

Create file a

Log

Write blocks 0-2 to file A
Delete file A

Deallocate inode
10

Free block 1235

Free block 1236
Buffer Cache Blk

containing
inode 10

Inode
alloc
bitmap

Block
1234

Block
1236

FS Bitmaps

Inodes

Directory Blocks

Data Blocks

Clear inode 10

Free block 1234

Remove directory
entry A,10

directory
block

Block
alloc
bitmap

Block
1235

Journaling Example (4)

4/5/16 CS161 Spring 2016 10

Create file a

Log

Write blocks 0-2 to file A
Delete file A

Deallocate inode
10

Free block 1235

Free block 1236
Buffer Cache Blk

containing
inode 10

Inode
alloc
bitmap

Block
1234

Block
1236

FS Bitmaps

Inodes

Directory Blocks

Data Blocks

Operations versus Transactions

•  Notice that a single file system API call consists of
multiple operations:
•  API call: create file A
•  Operations:

•  Allocate inode
•  Initialize inode
•  Create directory entry

•  There are a number of different ways that one could
record this information in a log record…

4/5/16 CS161 Spring 2016 11

Approaches to Logging: Granularity
•  Logical logging

•  Write a single high level record that describes an entire API call:
allocate inode 10, initialize it, and create a new directory entry in
directory D that names inode 10 “a”

•  Physical logging
•  Write a log record per physical block modified:

•  (inode allocation) Here is the old version of page 100; here is the new version
(they differ by one bit)

•  (initialize inode) Here is the old version of a block of inodes; here is the new
version.

•  (directory entry) Here is a the old version of a block of a directory; here is the new
version.

•  Operation logging
•  Write a log describing a modification to a data structure:

•  “Allocate inode 10” or “change bit 10 on page P from 0 to 1”
•  “Write the following values into inode 10” or “change bytes 0-31 from these old

values to these new values”
•  Add the directory entry <a, 10> into directory D or “change bytes N-M from these

old values to these new values”

4/5/16 CS161 Spring 2016 12

“Big Records” vs “Small Records”

•  The fundamental difference between high level logical
logging and low level operation logging is whether each
API call translates into one or more records.

•  One record:
•  You can consider the operation done once you have

successfully logged that record.
•  Multiple records:

•  You may generate records, but not get all the way to the end of
the sequence of records and then experience a failure: in that
case, even though you have some log records, you can’t finish
the complete whatever you were doing, because you don’t have
all the information.

•  A partial sequence must be treated as a failure during recovery.

4/5/16 CS161 Spring 2016 13

Transactions
•  We call the sequence of operations comprising a single

logical operation (API call) a transaction.
•  Transactions come from the database world where you

want to apply multiple transformations to a data collection,
but have all the operations appear atomically (either all
appear or non appear).

•  In the database world, we use the ACID acronym to
describe transactions:
•  A: Atomic: either all the operations appear or none do
•  C: Consistent: each transaction takes the data from one

consistent state to another.
•  I: Isolation: each transactions behaves as if it’s the only one

running on the system.
•  D: Durable: once the system responds to a commit request, the

transaction is complete and must be complete regardless of any
failures that might happen.

4/5/16 CS161 Spring 2016 14

File System Transactions

•  File systems typically abide by the ACI properties, but
may not guarantee durability.
•  Example: we might want the write system call to follow the

ACI properties, but we may not require a disk write and
might tolerate some writes not being persistent after a
failure.

•  Transactions:
•  Are an elegant way to deal with error handling (just abort the

transaction).
•  Let you recover after a failure: roll forward committed

transactions; roll back uncommitted ones.

4/5/16 CS161 Spring 2016 15

Transaction APIs

•  Begin transaction
•  Commit transaction: make all the changes appear
•  Abort transaction: make all the changes disappear

(as if the transaction never happened).
•  Prepare (used for distributed transactions, but we

don’t need it here).

•  For recovery purposes, any transaction that does not
commit is aborted.

4/5/16 CS161 Spring 2016 16

What to log: Undo/Redo

•  Undo information lets you back out things during
recovery.
•  Under what conditions might you want to back out things?

•  Assuming that we only use the log to recover after a failure,
under what conditions would you never need UNDO
records?

•  Redo information lets you roll a transaction forward.
•  Under what conditions might you need to do this?

•  Under what conditions would you never need REDO
records?

4/5/16 CS161 Spring 2016 17

What to log: Undo/Redo

•  Undo information lets you back out things during
recovery.
•  Under what conditions might you want to back out things?

•  An API call did not finish, but has started modifying some data.
•  Assuming that we only use the log to recover after a failure,

under what conditions would you never need UNDO
records?

•  If any data in an active transactions is never allowed to go to disk.

•  Redo information lets you roll a transaction forward.
•  Under what conditions might you need to do this?

•  A transaction completed, but not all the data got written to disk.
•  Under what conditions would you never need REDO

records?
•  Part of the commit required writing all the changes to disk.

4/5/16 CS161 Spring 2016 18

Managing Log Space

•  Typically we allocate a fixed amount of space to the
log; what happens when we’ve consumed all the
space?
•  Allocate more?

•  Reuse space?

4/5/16 CS161 Spring 2016 19

Managing Log Space

•  Typically we allocate a fixed amount of space to the
log; what happens when we’ve consumed all the
space?
•  Allocate more?

•  That probably only works for a short period of time.

•  Reuse space?
•  How?

4/5/16 CS161 Spring 2016 20

Managing Log Space

•  Typically we allocate a fixed amount of space to the
log; what happens when we’ve consumed all the
space?
•  Allocate more?

•  That probably only works for a short period of time.

•  Reuse space?
•  How? Circular buffer
•  What conditions must we enforce?

4/5/16 CS161 Spring 2016 21

Managing Log Space

•  Typically we allocate a fixed amount of space to the
log; what happens when we’ve consumed all the
space?
•  Allocate more?

•  That probably only works for a short period of time.

•  Reuse space?
•  How? Circular buffer
•  What conditions must we enforce?

–  The log records we’re overwriting must not be necessary any more.
–  Log records become unnecessary when the data they describe is safely on

the disk.

•  Desirable properties:
–  It would be nice if we never actually ran out of disk space and had to block

until we forced a bunch of data to disk.

4/5/16 CS161 Spring 2016 22

Checkpointing

•  The process of delineating parts of the log that are
still required for recovery and parts that are no longer
required.

•  Checkpointing services two purposes:
•  Lets you reclaim disk space
•  Bounds recovery time

•  A checkpoint typically marks a specific place in the
log, indicating that updates described before the
checkpoint have been safely written to disk, so log
space can be reclaimed.

•  It also marks the point from which recovery starts.

4/5/16 CS161 Spring 2016 23

Types of Checkpoints (1)

•  Stop-the-world
•  Stop accepting new operations.
•  Flush all dirty buffers.
•  After dirty buffers are all written, write a checkpoint record to

the log.
•  Challenges:

•  What about partially completed transactions?
•  Doesn’t this cause a big performance hit?

4/5/16 CS161 Spring 2016 24

Types of Checkpoints (2)

•  Fuzzy checkpointing
•  Identify a point in the log before which there are no active

transactions. (Call that point, C.)
•  Start writing all dirty buffers to disk. *
•  When all the writes complete, write a log record that

indicates that a checkpoint for point C is complete.
* Technically, you need only flush buffers with updates
described in log records prior to C; sometimes it’s difficult to
identify those.

4/5/16 CS161 Spring 2016 25

Types of Checkpoints (3)

•  Static Checkpointing
•  Divide the log into some number of chunks (probably >= 3).
•  We’re going to take checkpoints on a chunk basis.
•  When you fill up a chunk, begin writing all the dirty blocks

associated with that chunk.
•  When those writes complete, the chunk can be reused. *
•  Challenges:

•  What if an operation spans multiple chunks?
•  What if a single operation requires more space than can fit in a chunk?
•  Speaking of that – what if a single operation consumes more space

than the entire log?
•  Which operation do you think might consume the greatest amount of

log space?
•  And how will you handle it?

4/5/16 CS161 Spring 2016 26

A4 Implementation Details

•  We provide:
•  A log container into which you can write records and from

which you can read and iterate over records during recovery.
You will want to become familiar with the APIs to this code.

•  We require:
•  Operation logging
•  Log only metadata: your goal is to make sure that the meta

data of the file system is consistent after recovery; you need
not guarantee that all the data is intact.

•  We recommend:
•  UNDO/REDO logging
•  Thinking carefully about when you can force the log to disk

and when you must force the log to disk.

4/5/16 CS161 Spring 2016 27

