
Processes: A Fundamental OS Abstraction

2/2/2015 CS161 Spring 2016 1

• A process is a bundle of resources

• Address space

• One or more threads of execution

• Code (i.e., machine instructions)

• Registers (stack pointer, instruction pointer, general-purpose

registers)

• Other bookkeeping stuff like . . .

• Open file descriptors (e.g., pipes, network sockets, on-disk files)

• Process id (pid)

• Process state (running, blocked, etc.)

• A single “application” contains one or more processes

What’s an Address Space?

• The set of virtual memory

addresses that a process can

access

• A large array of bytes starting at

0 and going up to some large

number (e.g., 4 GB)

• Different parts of virtual

memory hold different parts of

the program

V
irtu

a
l a

d
d
re

s
s
e
s

0x00000000

0xffffffff

Code

Static data

push %ebp
mov %esp,%ebp
sub $0x18,%esp

//At top of .c file
int foo = 42;

Code + static data

What’s an Address Space?

• The set of virtual memory

addresses that a process can

access

• A large array of bytes starting at

0 and going up to some large

number (e.g., 4 GB)

• Different parts of virtual

memory hold different parts of

the program

Heap

V
irtu

a
l a

d
d
re

s
s
e
s

0x00000000

0xffffffff

Code

Static data

Heap

char *ptr = malloc(4096);
printf("%p\n", (void *)&ptr);

//“0x7ffd90590168”

ptr

What’s an Address Space?

• The set of virtual memory

addresses that a process can

access

• A large array of bytes starting at

0 and going up to some large

number (e.g., 4 GB)

• Different parts of virtual

memory hold different parts of

the program

Stack

V
irtu

a
l a

d
d
re

s
s
e
s

0x00000000

0xffffffff

Code

Static data

Heap

Stack

int qux(){return 42;}
int baz(){return qux();}
int bar(){return baz();}
int foo(){return bar();}

foo();

foo s.f.

bar s.f.

baz s.f.

qux s.f.

%eip

%esp

• The set of virtual memory

addresses that a process can

access

• A large array of bytes starting at

0 and going up to some large

number (e.g., 4 GB)

• Different parts of virtual

memory hold different parts of

the program

• Multiple threads --> multiple

stacks!

What’s an Address Space?

V
irtu

a
l a

d
d
re

s
s
e
s

0x00000000

0xffffffff

Code

Static data

Heap

Stackt0

Stackt1

%eip for t1

%eip for t0

2/2/2015 CS161 Spring 2016 6

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 2015 ? 00:00:02 init [3]
root 2 1 0 2015 ? 00:00:00 [migration/0]
root 3 1 0 2015 ? 00:00:00 [ksoftirqd/0]

cs161 21085 20995 0 23:43 pts/1 00:00:00 ps -ef
cs161 21086 20995 0 23:43 pts/1 00:00:00 less

What Processes Are Running Right Now?

On Linux, try “ps -ef | less”:

2/2/2015 CS161 Spring 2016 7

.

.

.

//Many other processes!

We created these

processes!

What Processes Are Running Right Now?
• On Windows, run the Process Explorer (Ctrl-Shift-Esc)

1/26/2015 CS161 Spring 2016 8

What’s up with Chrome?
• Chrome uses a multi-process architecture

• One process per window

• An additional process per tab

• Per-tab process renders HTML for that tab, sends bitmap to

the main process for displaying . . .

• . . . but has severely restricted system call privileges!

• Per-tab process can’t send network traffic, draw to

screen, grab user input, or access persistent storage

• To do so, must send IPC message (via a pipe) to main

process

• Process isolation helps both security *and* robustness!

• Gory details: https://www.chromium.org/developers/design-

documents/multi-process-architecture

2/2/2015 CS161 Spring 2016 9

https://www.chromium.org/developers/design-documents/multi-process-architecture

