
File Systems: Naming

• Learning Objective

• Explain how to implement a hierarchical name space.

• Identify the key SFS data structures.

• Map system call level operations to manipulations of SFS

data structures.

• Topics:

• Naming exercise

• In-depth study of directory implementation

• SFS data structures

• SFS operations

3/24/16 CS161 Spring 2016 1

Exercise 3: Naming

• Let’s think about how to implement a hierarchical

name space (i.e., directories & files).

• How will you represent a directory?

• How will you find the root directory (“/”)?

• How will you support traversing up a directory tree (cd ..)?

• Be as specific as you can.

3/24/16 CS161 Spring 2016 2

Hierarchical Naming

• Generalized tree structure
• Directories are regular files with

a special format.

• A bit in the file meta-data
indicates that a file is of type
directory.

• A directory entry is simply a
mapping between names and a
file index (a collection of
name/value pairs).

• User programs can read directories
just like they read files.

• Only the operating system can write
directories (wouldn’t want a user to
corrupt the directory structure)

3/24/16 CS161 Spring 2016 3

/

bin

catls …

mach_kernel
usr

etcbin lib…

• Pros:

• Cons:

Hierarchical Naming

• Generalized tree structure
• Directories are regular files with

a special format.

• A bit in the file meta-data
indicates that a file is of type
directory.

• A directory entry is simply a
mapping between names and a
file index (a collection of
name/value pairs).

• User programs can read directories
just like they read files.

• Only the operating system can write
directories (wouldn’t want a user to
corrupt the directory structure)

3/24/16 CS161 Spring 2016 4

/

bin

catls …

mach_kernel
usr

etcbin lib…

• Pros:
• Reuses file

implementation

• Mimics how people used
to organize files in file
cabinets.

• Cons:
• Doesn’t natively provide

the kind of searching that
is commonplace today in
data organization.

Traditional Directory Implementation

• Directories are represented like files.

• Contents of directories are structured (dirents).

• Name

• Inode number

• Type

• Directories grow in chunks of dirents that fit on a

single disk block.

• Root directory has a designated inode.

3/24/16 CS161 Spring 2016 5

The Root Directory

• This is the contents of the “/” directory on my machine.

3/24/16 CS161 Spring 2016 6

Name inumber Name inumber Name inumber

Applications 113 Desktop Folder 844727 Developer 844731

Documents 937803 Library 213 Marketocracy 937813

Network 84416 System 37 Updaters 937816

Users 38892 Volumes 26447 bin 24377

cdrom 937840 cores 84418 dev 296

etc 25116 home 5 mach_kernel 552433

net 3 opt 937844 private 214

sbin 4512 sw 1024168 tmp 25155

usr 40 var 25156 . 2

.. 2

Walking a Directory Path

• For historical reasons (because original versions of
UNIX did this) we call:
• File index structures: inodes

• References to file index structures: inumbers

• Given a path /C1/C2/C3 …
• Start at the root directory (a designated directory with a

designated inumber).
1. Let inum = root directory inumber; current component = C1

2. Read the directory data for inum

3. Find the entry with the name equal to the current component

4. Fine the associated inumber

5. Read the inode for that inumber
– If it’s not a directory, this is a bad pathname

– If it is a directory, set inum to the inumber; set current component to next part of path
and iterate back to step 2.

3/24/16 CS161 Spring 2016 7

Directory Example

3/24/16 CS161 Spring 2016 8

Assume:

• Inode 2 is in disk

block 100

• Inodes fit 8 to the

block

• Block 100

contains inodes

0-7, 101 contains

8-15, etc.

• There are 100

blocks of inodes

Exercise:

List all the blocks, in

order that you need to

read to open

/usr/lib/libc.a

The number in

these inodes is

what is found in

daddr[0]

Disk

block

number

Contents

In
o
d
e
s

100 200

101 202 203

102 204 205

…

D
a
ta

 B
lo

c
k
s

200 ., 2 .., 2 bin, 8

usr, 16 boot, 35 kadb, 27

201 ., 11 .., 2 Some text

is in this file

202 ., 8 .., 2 ls, 91

csh, 105

203 ., 9 .., 16 libc.a, 55

font, 77

204 ., 16 .., 2 lib, 9

share, 52 ucb, 15 old, 66

Directory Example

3/24/16 CS161 Spring 2016 9

Assume:

• Inode 2 is in disk

block 100

• Inodes fit 8 to the

block

• Block 100

contains inodes

0-7, 101 contains

8-15, etc.

• There are 100

blocks of inodes

Exercise:

List all the blocks, in

order that you need to

read to open

/usr/lib/libc.a

The number in

these inodes is

what is found in

daddr[0]

Disk

block

number

Contents

In
o
d
e
s

100 200

101 202 203

102 204 205

…

D
a
ta

 B
lo

c
k
s

200 ., 2 .., 2 bin, 8

usr, 16 boot, 35 kadb, 27

201 ., 11 .., 2 Some text

is in this file

202 ., 8 .., 2 ls, 91

csh, 105

203 ., 9 .., 16 libc.a, 55

font, 77

204 ., 16 .., 2 lib, 9

share, 52 ucb, 15 old, 66

More Directory Fun

3/24/16 CS161 Spring 2016 10

• In POSIX, every directory has two special entries “.” and “..”.
• The “.” directory refers to the directory itself.

• The “..” directory refers to the parent directory.

• This is how the file system implements paths such as ../asst2.

• It is possible for more than one directory entry to refer to a single
file.
• Hard link: the same inumber appears in two different directories. The

reference count for the inumber is incremented.
• Could you create a hard link between two directories in different file systems?

• When you remove (unlink) a file, you decrement its reference count and remove a
name from a directory. When the reference count goes to zero, the file’s blocks
are actually freed.

• Soft link (symbolic link): file that contains the name of another file.
• Files of this sort are identified by a bit in their file descriptor.

• When the OS encounters a symbolic link, it continues pathname resolution using
the pathname that appears in the file.

• Can you create a soft link between two directories?

• What is the minimum link count for a directory?

Working Directory

• It is cumbersome (and inefficient for the OS) to use full

pathnames every time you reference a file.

• POSIX maintains a single “current working directory”

(cwd) for each process. The inumber of the cwd is stored

in the user structure.

• When the OS wants to translate a name to an inumber, it

looks at the first character in the path. If that character is

“/”, the OS begins looking at the root. If it is not a path, the

OS begins looking in the current directory.

• Some systems allow you to have more than one current

working directory. The list of directories that are in the

“current working directory set” are called a search path.

3/24/16 CS161 Spring 2016 11

The VFS/Vnode Layer

• Context:
• The year is 1985 (do not remind me that you weren’t even

born or your parents weren’t even married yet).

• Personal computers are fairly new toys.

• Single-user workstations (powerful personal computers) are
a new thing.

• Workstation users need to store files reliably.

• Workstations have local disks, but they aren’t terribly
reliable, and if a workstation crashes, its disks (and data) are
unavailable.

• It’s difficult to access one workstation’s files from another
workstation.

• So, what do you do?

3/24/16 CS161 Spring 2016 12

The VFS/Vnode Layer

• Context:

• The year is 1985 (do not remind me that you weren’t even born
or your parents weren’t even married yet).

• Personal computers are fairly new toys.

• Single-user workstations (powerful personal computers) are a
new thing.

• Workstation users need to store files reliably.

• Workstations have local disks, but they aren’t terribly reliable,
and if a workstation crashes, its disks (and data) are
unavailable.

• It’s difficult to access one workstation’s files from another
workstation.

• So, what do you do?

• You build a network file system! (NFS)

3/24/16 CS161 Spring 2016 13

The Engineering Challenge

• Traditionally a system had only a single file system.

• Now you want to add a second one.

• How do you do it?

• Hand code everything?

• Think about a generic interface to the file system code and

rewrite the existing system to use it.

3/24/16 CS161 Spring 2016 14

The Engineering Challenge

• Traditionally a system had only a single file system.

• Now you want to add a second one.

• How do you do it?

• Hand code everything?

• Think about a generic interface to the file system code and

rewrite the existing system to use it.

• Enter VFS: Virtual File System: one VFS/file system

• Operations performed on entire file systems, e.g., :

• unmount

• root – returns the root of the file system

• statfs – returns file system statistics

• sync – write all dirty data to disk

3/24/16 CS161 Spring 2016 15

Vnodes

3/24/16 CS161 Spring 2016 16

• open

• close

• rdwr

• ioctl

• select

• getattr

• mkdir

• rmdir

• readdir

• symlink

• readlink

• fsync

• setattr

• lookup

• create

• remove

• link

• rename

• inactive

• bmap

• strategy

• bread

• brelse

• One vnode per file

• Abstract representation of a file

• To get real work done, you have to pass the

operation to the underlying implementation.

• Vnode operations:

And Speaking of SFS…

• How does SFS represent a file?

• kern/include/kern/sfs.h
struct sfs_inode {

uint32_t sfi_size; /* File size in bytes */

uint16_t sfi_type; /* File or directory */

uint16_t sfi_linkcount; /* #hard links */

uint32_t sfi_direct[15]; /* Direct blocks */

uint32_t sfi_indirect; /* Indirect block */

uint32_t sfi_dindirect; /* Double indirect */

uint32_t sfi_tindirect; /* Triple indirect */

uint32_t sfi_waste[108]; /* Pad to 512 bytes */

}

3/24/16 CS161 Spring 2016 17

SFS Free Space Management

• See kern/include/sfs.h

• A struct sfs_fs is the in-memory representation

of an SFS file system.

• That structure has the following fields:

struct bitmap *sfs_freemap;

bool sfs_freemapdirty;

struct lock *sfs_freemaplock;

• The file kern/include/kern/sfs.h defines the

following constants:

#define SFS_FREEMAP_START 2

3/24/16 CS161 Spring 2016 18

SFS Directories

• See kern/include/kern/sfs.h
struct sfs_direntry {

uint32_t sfd_ino; /* Inode number */

char sfd_name[60]; /* Filename */

};

• So, how large is each entry?

• And how many entries do you fit in a block?

• Can you think of two different ways we might keep

track of how many valid entries are in a directory?

3/24/16 CS161 Spring 2016 19

3/24/16 CS161 Spring 2016 20

SFS Idiosyncracy

• Where do inodes live?

• Anywhere they want!

• Since an inode consumes an entire block, we

allocate an inode by asking the allocator for a free

block.

• The block number is the inode number.

• The root directory has a designated inode (#1).

3/24/16 CS161 Spring 2016 21

Implementing File System Operations

• Given the data structures used to implement SFS,

you should now be able to construct most file system

operations.

• Let’s walk through creating a file.

• Assume that you have a vnode for a parent directory and

you are asked to create file “newfile”

• What do you have to do?

3/24/16 CS161 Spring 2016 22

Other Operations

1. How would you modify the previous operation to

create a directory instead of a file?

2. What do you have to do to delete a file?

3/24/16 CS161 Spring 2016 23

