
File Systems: Introduction

• Learning Objective
• Describe the layers of software between the file system system

call API and the disk.

• Decompose those layers in a collection of independent
problems.

• Derive solutions to the key problems of:
• File representation

• Naming & Name Spaces

• Disk Allocation

• Recovery

• Topics:
• From “open/close/read/write” to spinning media.

• File representation

• Naming

• Allocation

3/22/16 CS161 Spring 2016 1

From Syscall API to Disk

3/22/16 CS161 Spring 2016 2

closeopen read/write

Map name to

internal ID

filename

File system ID

Old API: move disk arm to Track T;

read/write sector S from Platter P API: read/write block B

From Syscall API to Disk

3/22/16 CS161 Spring 2016 3

closeopen read/write

Map name to

internal ID

filename

File system ID

File table

File descriptor

API: read/write block B

From Syscall API to Disk

3/22/16 CS161 Spring 2016 4

closeopen read/write

Map name to

internal ID

filename

File system ID

File table

File descriptor
File descriptor

API: read/write block B

Map

from file

to disk

blocks

vnode

Read/write

data

Success/failure

From Syscall API to Disk

3/22/16 CS161 Spring 2016 5

closeopen read/write

Map name to

internal ID

filename

File system ID

File table

File descriptor
File descriptor

API: read/write block B

Map

from file

to disk

blocks

vnode

Buffer cache
Read/Write

Components of a File System

• Directory: maps names to internal IDs

• File table: keeps track of file state

• File index: maps from a file to a collection of disk

blocks (in UNIX systems, this is an inode)

• Buffer cache: keeps copies of recently used blocks in

memory.

• What kinds of design parameters are likely to be

important?

• Transfer sizes: how much do you move to/from disk?

• Allocation size: in what unit to you allocate disk blocks?

• Placement: Where do you place files on disk?

3/22/16 CS161 Spring 2016 6

Exercise 1: File Representation

• How might you represent a file (i.e., design a file

index/inode structure)?

• Must support sequential and random access to a file.

• Must be reasonably efficient.

• Address the following two questions:

1. In what size pieces will you allocate disk space to files?

2. What metadata (data that describes the data) do you need?

• Questions to think about:

• Where will you store metadata?

• What is the ratio of metadata to data for your representation?

• What kind of internal fragmentation can your representation support?

• What are the advantages/disadvantages of the approach you picked?

3/22/16 CS161 Spring 2016 7

Allocation Units

• Allocation units

• Fixed sized block

• A small number of fixed size blocks

• Variable sizes blocks (called extents)

• Tradeoffs:

3/22/16 CS161 Spring 2016 8

• Fixed size make allocation much easier!

• Extents can represent files very efficiently

• A few sizes sounds like a potential compromise

File Representation

• Single extent: Metadata is a single address (and

perhaps a length)

• A small (fixed) number of extents: Metadata is a few

disk addresses (perhaps with length)

• File is a large number of blocks

• Put blocks together in a linked list: metadata is an address

• Build a large flat index: Metadata is a large array of one

address per block/extent

• Build a multi-level index (like a multi level page table)

3/22/16 CS161 Spring 2016 9

File Representation: Single Extent

• Pros:

• Dead simple

• Good for both sequential and

random access

• Very efficient

• Cons:

• Inflexible – what happens if a file

changes size?

• Have to pre allocate space at create

time?

• Dynamic memory management –

lots of external fragmentation

3/22/16 CS161 Spring 2016 10

Index File

data

File Representation: A Few Extents

3/22/16 CS161 Spring 2016 11

• Pros:
• If extents are large you get good disk

bandwidth

• Both sequential and random are good
(you have to do some work for random)

• Meta data is small

• Cons:
• Lots of design decisions

• How big are extents?

• How do you decide?

• How do you grow files?

• External fragmentation

• Depending on answers to design, might
have internal fragmentation

• Could end up with a file too big to
represent

File

data

Index

…

File

data

…

File Representation: Linked Blocks

3/22/16 CS161 Spring 2016 12

• Pros:

• Files can be extended easily.

• Don’t have to worry about

fragmentation.

• Sequential access is easy.

• Cons:

• Random access is virtually

impossible.

• Even sequential access requires

lots of seeks.

• Can’t do read-ahead.

Index

File Representation: Flat Index

3/22/16 CS161 Spring 2016 13

• Pros:

• Still no external fragmentation

• Sequential and random access are

easy.

• Cons:

• How big do we make the index?

• Do we pre-allocate the entire index?

• Have we made our metadata (i.e.,

the inode) variable-sized?

• We still may have a lot of seeks

between blocks.

Index

File Representation: Multi-level Index

3/22/16 CS161 Spring 2016 14

• Pros:
• Simple

• Easy to represent really big files.

• The changing-depth design is
space-efficient for both small and
large files.

• Cons:
• The constant-depth solution is

inefficient for small files.

• Accessing large files will require
multiple block accesses.

• May require seeks between reads of
adjacent blocks.

Index

Design alternatives:

• Have a constant depth

index.

• Start with pointers in

index referencing data

(direct pointers). When

that fills, add first level

of indirection and copy

pointers, repeat.

File Representation: Hybrid Index

3/22/16 CS161 Spring 2016 15

• Pros:

• Simple

• No wasted space for unallocated

blocks.

• Efficient for small files.

• Although there is a maximum file

size, it’s really big

• Cons:

• Multiple block reads on large files.

• May require seeks between reads of

adjacent blocks.

Index

…

…
…

Fixing the existing problems

• The buffer cache essentially solves the “multiple

blocks to read for big files” problem.

• Intelligent placement and delayed allocation solve the

“seek between blocks” problem.

3/22/16 CS161 Spring 2016 16

File Structure Summary

3/22/16 CS161 Spring 2016 17

Index

Index

Index

…

Index

…

…

…

Extent-based
Hybrid Index

Linked

Indexed

Exercise 2: Free Space Management

• Assume you allocate in fixed size blocks:

• How do you keep track of free space?

• How do you select which blocks to allocate to a particular

file?

• Assume that you allocate variable size extents:

• How do you select the extent size?

• How do you manage free space?

• Where do you allocate extents?

3/22/16 CS161 Spring 2016 18

Free Space Management (1)

• There is often a tradeoff between the amount of
(allocation) meta data you keep and the quality of
allocation.

• Fixed size blocks:

• Free list: link all the free pages together in a list (placing the
pointer on the actual page).

• Metadata: One pointer (excellent).

• Ease of allocation: Pull first block off the list (excellent).

• Ability to produce good (e.g., contiguous) allocations? Poor.

• Bitmaps
• Metadata: One bit per block (good)

• Ease of allocation: Find a free bit (good)

• Ability to produce good allocations? (good)

• How do these apply to a small number of block sizes?

3/22/16 CS161 Spring 2016 19

Buddy Allocation

• One way to support multiple block sizes is to make all

the sizes be a power-of-two multiple of a basic block

size.

• Rather than assign disk blocks to different sized file

system blocks haphazardly, create blocks of size 2N

by splitting a block of size 2N+1

3/22/16 CS161 Spring 2016 20

1. Disk is collection of maximum size blocks

Buddy Allocation

• One way to support multiple block sizes is to make all

the sizes be a power-of-two multiple of a basic block

size.

• Rather than assign disk blocks to different sized file

system blocks haphazardly, create blocks of size 2N

by splitting a block of size 2N+1

3/22/16 CS161 Spring 2016 21

2. Allocate a large block.

Buddy Allocation

• One way to support multiple block sizes is to make all

the sizes be a power-of-two multiple of a basic block

size.

• Rather than assign disk blocks to different sized file

system blocks haphazardly, create blocks of size 2N

by splitting a block of size 2N+1

3/22/16 CS161 Spring 2016 22

3. Allocate minimum-sized block.

Free Space Management (2)

• Extents

• On-disk malloc (free list approach)

• Keep free extents in lists, tagged with size

• Or, like a slab allocator, have multiple lists with different-sized blocks

• Metadata: one or a few pointers (excellent)

• Ease of allocation: pretty good

• Problems? Fragmentation (both internal and external)

• Bitmap based: probably need to track in some primitive unit

size

• Metadata: one bit per primitive unit (good)

• Ease of allocation: not great – need to search for contiguous chunks.

3/22/16 CS161 Spring 2016 23

