
3/31/16 CS161 Spring 2016 11

File Systems: Recovery

• Learning Objectives

• Identify ways that a file system can be corrupt after a crash.

• Articulate approaches a file system can take to limit the 

kinds of failures that can occur.

• Describe different approaches to recovering a file system 

after a crash.

• Evaluate the tradeoffs between the different approaches.

• Topics

• Identify ways a file system can be corrupt.

• Figure out some approaches to avoiding corruption.

• Things you can do in the system while it’s running.

• Things you do after a crash.



Exercise 1: File System Corruption

• List all the things that you could imagine going wrong in 
FFS when the system crashes.
• Consider the following data structures: bitmaps, inodes, indirect 

blocks, directories

• Identify individual data structures that could be corrupted as 
well as ways in which different data structures could be 
inconsistent.

• It is sometimes useful to think in terms of pointers: directories 
contain pointers to inodes; inodes contain pointers to data 
blocks, etc

• For each problem you find, determine whether it:
• Is a security problem

• Could cause your system to crash

• Could result in lost data

• Of those failure modes, which are most/least severe?

3/31/16 CS161 Spring 2016 2



What kinds of bad things could happen?

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Data blocks not attached to any file

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 3



What kinds of bad things could happen?

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 4



Remedies (1)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 5

Avoid writing it.

Keep multiple 

copies of it.



Remedies (2)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 6

Rebuild them from 

inodes after a 

crash.



Remedies (3)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 7

Never let 

invalid inode

get to disk.



Remedies (4)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 8

Reconstruct

the directory.



Remedies (5)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 9

Write directory 

entry AFTER 

you create the 

file.



Remedies (6)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 10

Read all the inodes;

traverse directory tree; 

find all disconnected 

files.



Remedies (7)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 11

Write new disk blocks 

before letting updated 

inodes get to disk.



Remedies (8)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 12

Maybe this is OK: we 

allow some recent 

writes to be lost?



Remedies (9)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 13

You’ll find these 

when you rebuild 

the bitmaps after a 

crash.



Remedies (10)

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• A directory could become corrupted

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 14

You’ll find these 

when you rebuild 

the bitmaps after a 

crash.



Recovery Principles

3/31/16 CS161 Spring 2016 15

• Do what is necessary on the live file system to 

ensure that after a failure, you can fix any 

inconsistencies that could happen.

• Have a recovery process that can fix up any 

remaining problems in the file system upon startup.

• Two key things we do:

• Enforce ordering on when we write things to disk.

• Use what we know about those orderings to fix/rebuild things 

at startup.



Which are ordering constraints?

• Individual data structures could be corrupted:

• The superblock or cylinder group headers

• Bitmaps could get trashed

• Individual inodes could be in an invalid state

• Inconsistencies between data structures:

• Directory entries that don’t point to valid files

• Files without directory entries

• Files containing disk blocks to which they have not written data.

• Files not containing disk blocks to which they have written data.

• Data blocks not attached to any file

• Disk blocks allocated but still in free list

• Disk blocks unallocated but NOT in free list

3/31/16 CS161 Spring 2016 16

Ordering

constraint



Exercise 2

• One way of ensuring that writes happen in the correct 

order is to make each write synchronous. Sadly, this 

makes your system pigdog slow. Can you think of 

two other ways you might accomplish this ordering?

• Hint 1: Can you think of a way to enforce ordering 

using asynchronous writes?

• Hint 2: Think outside the box – is there a way to 

perform the writes in whatever order you want, but 

after a crash do something to make it look like you 

did the writes in the correct order?

3/31/16 CS161 Spring 2016 17



Two Alternatives to Synchronous 

Writes for Write-ordering

• Maintain dependencies in-memory and when it’s 

necessary to write things, make sure they get written 

in order (called soft updates).

• Keep a log (or journal) of all the things you do so that 

after a crash you can read through the log and figure 

out precisely what you have to do.

3/31/16 CS161 Spring 2016 18



Approach 0: Synchronous Writes

• Goal is to ensure that you never write a pointer to 
something that has not been properly written/initialized:

• Entries in directories reference valid inodes.

• A block cannot belong to multiple files

• Inodes are valid

3/31/16 CS161 Spring 2016 19



Approach 0: Synchronous Writes

• Goal is to ensure that you never write a pointer to 
something that has not been properly written/initialized:
• Entries in directories reference valid inodes.

• A block cannot belong to multiple files

• Inodes are valid

• Entries in directories reference valid inodes:
• On create: synchronously write inode to disk before updating 

directory entry.

• On delete: synchronously write the directory with the name 
removed before deallocating the inode.

• A block cannot belong to multiple files:
• On unlink/truncate: synchronously write the deallocated (or 

truncated) inode to disk before its blocks are freed.

• Inodes are valid:
• Fill in all inode fields before synchronous write (above).

3/31/16 CS161 Spring 2016 20



Directories, Files, and Inodes (oh my)

3/31/16 CS161 Spring 2016 21

Inode block
Directory contents

Delete Foo

Create Bar

Allocate block to Bar

Foo, 10

b
itm

a
p

1

0

0

0

0

1

1

1

1

Bar, 11



Now, what happens after a crash?

• The behavior of the file system ensures that it’s 

possible to get to a consistent state after a crash, but 

it does not ensure that you are always in a consistent 

state.

• So, how do we make sure that the file system is in a 

consistent state after a crash?

• Well, first we have to define what consistent means…

3/31/16 CS161 Spring 2016 22



FFS Consistency

• What does consistent mean in FFS?

3/31/16 CS161 Spring 2016 23



FFS Consistency

• What does consistent mean in FFS?

• Superblocks and cylinder groups have accurate counts.

• Every directory entry references a valid inode.

• Every valid inode appears in a number of directory entries 

equal to its link count.

• Blocks allocated to valid inodes are marked inuse in bitmaps.

• A block belongs to only one file/directory.

• The first two entries in every directory are . and ..

• What makes an inode valid?

• Its length and number of blocks are consistent with the blocks allocated to 

it.

• All block pointers are valid in the given file system.

• If an inode references a directory, its size is a multiple of DIRBLKSIZ.

• Its inode number is correct.

3/31/16 CS161 Spring 2016 24



FSCK: The File System Checker

• The FFS fsck program fixes the following errors:

• Unreferenced inodes

• Improper link counts

• Missing blocks in free map

• Incorrect superblock counts

• First two entries in a directory are not . and ..

• For your amusement, the next two slides outline all 

the checks that FSCK makes. (You need not 

memorize them; it would be good to check that you 

understand what each one means.)

3/31/16 CS161 Spring 2016 25



FSCK Detail (1)

• FSCK analyzes the file system, reports 
inconsistencies and optionally fixes them:
• Read superblock (indicates number of cylinder groups, file 

system block size, etc).

1. Read cylinder group summary and every inode.
a. Verify type (directory, file, etc).

b. Verify size (does not exceed maximum file/directory size).

c. Verify that blocks in file are set correctly in bit maps.

d. Verify link count non zero.

e. Verify size and block count.

f. Verify fragment summary in cylinder.

2. Verify directory hierarchy (BFS entire directory tree)
a. Verify directory link counts.

b. Verify directories contain . and .. and have valid references.

c. Verify directory is appropriately sized.

3/31/16 CS161 Spring 2016 26



FSCK Detail (2)

3. Iterate over all inodes (checking for proper connectivity)

a. Verify that every directory we ever found has a valid parent.

4. Check block allocations & reference counts

a. Verify proper block and fragment accounting and consistency with 

bitmaps.

b. Verify that all the link counts are correct.

5. Check cylinder group meta-data

6. Check quotas

3/31/16 CS161 Spring 2016 27



Ordering Writes (1)

• Given how slow synchronous writes are, ordering 

writes is an appealing idea.

• Unfortunately, it’s more complicated than we might 

like.

• Consider the example from before:

• Delete foo with inode 10 (from directory D)

• Create bar with inode 11 (also in directory D)

• Given the directory block Bd and the inode block Id, 

which one should be written first?

3/31/16 CS161 Spring 2016 28



Ordering Writes (2)

• Creating a file requires that we write inodes before 
directory blocks.

• Deleting a file requires that we write directory blocks 
before inodes.

• If the directory block and inode block are the same, no 
single ordering works.

• Approaches people have tried:

• As soon as an update would create a circular dependency, 
write a block to break up the cycle.

• Maintain information about changes at a finer granularity (e.g., 
particular directory entries and inodes) and then back out a 
change to break the cycle before writing an item to disk.

• Read: https://lwn.net/Articles/339337/ for a lovely 
discussion.

3/31/16 CS161 Spring 2016 29


