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1 Administrivia

• Tuesday in-class : Peer design review. Please bring in a printed copy of
your rough draft.

• Thursday 9:OOPM : Design documents due.

• Friday, March 7th, 5:OOPM : ASST2 due. Do not leave this until the last
minute; it is more work than ASST1.

2 Process Basics

Process states:

• S RUN

• S READY

• S SLEEP

• S ZOMB

What do you think a zombie is? Where are these constants defined in OS/161?

Where does the switching happen? Look in thread switch and switchframe switch.
Here we have the machine-independent and the machine-dependent switch func-
tions.
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How to use processes:

if (fork() == 0) {

/* We’re in the child */

} else {

/* We’re the parent */

}

Let’s now get into the details of assignment 2.

3 File Descriptors and System Calls

You are tasked with implementing system calls that allow access to the file
system. It should be noted that these file system calls are not implementation
dependent – they should work with any file system, due to the higher-level VFS
layer. The file system related calls you need to write are: open(), read(),
write(), lseek(), close(), dup2(), chdir(), and getcwd().
The first thing that needs to be designed is the per-process file table. The

file descriptor that you hand back to an application is just the index into the
process’s file table. You need to decide what goes into this file table. A famil-
iarity with the VFS layer is a must before designing this. There are a number
of things to note here:

• How are open files represented in user space? File descriptors.

• There are three standard file descriptors, STDIN, STDOUT, and STDERR. To
what device should these be initially attached?

• File descriptors are indexes into the file handles. How do you want to
assign new file descriptors, and should there be a limit to the number of
file descriptors? How do you assign file descriptors?

• Each file descriptor has an associated file offset. What happens with the
offset if you open the same file twice?

• How should you convert between file descriptors and more meaningful
information? How are open files represented in the kernel? vnode. Keep
track of this correspondence using the file table.

• The file table helps associate open file descriptors with the corresponding
vnodes, keeps track of the current file offset.

• What happens to a file table when you fork a process, or when the process
exits? Each process has one file table, thus it is copied the a process forks.
What happens to the seek position when you:

– dup2()?

– fork()?
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– open the same file twice?

• When a process exits, its a good idea to close all its open files (be careful
here. What if the process has forked?).

The system calls you need to implement are:

• open(const char *filename, int oflag, mode t mode) - should be sim-
ple thanks to the vfs layer, plus some bookkeeping.

• dup2(int oldfd, int newfd) - if newfd is already opened, close it. Upon
successful completion, both file descriptors refer to the same file table ob-
ject and share all properties of the object.

• close(int fd) - might be a little bit more interesting. Why? Refcounting
(see dup2).

• lseek(int fd, off t pos, int whence) - can we always perform an
lseek? What if you lseek() beyond the end of the file? Is that legal? Use
VOP TRYSEEK. We’ve also added 64-bit values this year for offset and
the value returned by lseek(). Be sure to think about the code-reading
question and make sure you’re confident in your answer, before coding
lseek().

• read(int fd, void *buf, size t nbytes) - you will want to use struct
uios, so make sure you understand them. You may want to check out
VOP READ.

• write(int fd, const void *buf, size t nbytes) - involves I/O to user-
land. Again, struct uios will be helpful, as will VOP WRITE.

• getcwd(char *buf, size t size) - this should be very straightforward.

• chdir(const char *pathname) - again, a lot of the work has been done
for you already.

4 Process Management System Calls

The process management system calls are probably the harder part of this as-
signment, so we’ll just delve right in.

• What is a process and how does it relate to an os161 thread?

• fork() -

– As you’ve learned, this system call creates an exact copy of the pro-
cess that calls it. What does that entail?

– How would you copy the file table? What happens to open descrip-
tors?
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– You need to duplicate the address space. Look through the dumbvm
code for a function that might be quite useful.

– Is there anything else you will need to replicate/copy? Current work-
ing directory.

– The new process should get a PID. Here fork() needs to abide by
the semantics of your PID dispensing mechanism.

– The trickiest part is making the child return 0 and behave exactly
like the parent. It will be useful to understand the machine dependent
system call mechanism for return values and errors in kern/arch/mips/mips/syscall.c.
You will probably want to do something similar in md forkentry().
This is very subtle – think about this and be sure to address it in
your design document.

– Trapframe handling – this can be tricky so be sure to discuss it in
your design. When a process makes a system call, where how does it
know where to return? - It saves a return address on the trapframe.
Therefore, the trapframe also needs to be copied. (Otherwise, child
process would not know where to return.)

– Return 0 to the child, process id of the child to the parent. How
to return a different value to the child process? Look at how other
system calls return and fiddle with the trapframe appropriately. This
is machine-dependent code. Place it into an appropriate directory.
Look at md forkentry. The skeleton is conveniently provided.

• getpid() - Very easy to implement and it doesn’t even fail.

• waitpid(pid t wpid, int *status, int options) and exit()

– These system calls are very closely tied to your PID management
system. It’s a synchronization problem.

– How are you going to assign PIDs? You shouldn’t just run out. PID
recycling?

– Be very specific when you define the semantics of your waitpid()

and exit() interactions. The man pages give the minimum require-
ments. Note that when a process exits() its PID may not be given
to a new process right away since the parent might be interested in
finding the exit code. What if the parent has already exited itself?

– What does interested mean? Unix defines it strictly in terms of
parent/child. The parent can get the child’s exit status.

– You may wish to implement WNOHANG for waitpid(), which allows
waitpid() to be non-blocking.

– What PID related data structures are you going to keep in the parent
and in the child? Do you need to synchronize the access to those
structures and if yes then how?
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– How can you make a parent wait for a child? What happens if a
child tries to wait for its parent?

– How can you deadlock? (You shouldn’t, of course.) - Two processes
waiting for each other.

– exit() releases all resources used by the process. What are these?
Do we always free all resources? What about the exit code? What
happens if a child exits before its parent or before any other process
that has “expressed interest” in the exit status?

– Don’t forget kill curthread()

• exec(const char *path, const *char argv[]) –

– The idea is that we want to load a new executable in the address
space of a process.

– execv() is quite similar to runprogram() in kern/userprog/runprogram.c.

– Load the executable. Let’s see what runprogram does.

∗ It opens the file.

∗ Creates an address space into which the image would be loaded
and activates it. (Don’t worry too much about what this does
until assignment 3, but remember to do it).

∗ Loads the executable into that address space.

∗ load elf returns entrypoint. What is this?

∗ Define user stack.

∗ Return to user mode.

You can just follow all these steps but before 6, you need to copyout

arguments to the user stack. Anything else? What about the old
address space?

– Coping with the argument vector is the hard part.

– Where do we get the arguments from the old program? They are
user-level pointer that are passed as arguments to the system call.
How can you get hold of them? copyin for pointers, copyinstr

for strings. You need to copyin both the pointers and the strings.
Where in the process’s address space should we put the argument
vector? On the stack. Where do we get the arguments from the old
program? They are a user-level pointer that are passed as arguments
to the system call.

– What is the stack? It’s just a region of memory in the address space.
The stack is used for temporary data during function calls. Why do
we need it? To make efficient use of memory. Now getting the argu-
ments into place is basically the opposite of getting them from user
space. You will again need copyin/copyout. Place things wherever
you want, but above the stackpointer. The stackpointer is where the
process will start scratching on the stack.
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– Note that the argument vector comes from user space. The functions
in kern/lib/copyinout.c will be very useful in copying everything
to/from the kernel address space. Why is this always important?
Consider this example. User Linus has a secret file. He’s been using
it, so it’s buffered in memory. Malicious user Mal wants to get to it,
and he has a pretty good guess where it’s buffered. Malicious Mal can
pass a kernel address to open with O CREAT. Whoops, the filename
appears with the contents of the file. This is bad, which is why we
can’t trust any thing coming from userland. Thus, copyin/copyout.

– Each of the elements of the argument vector (argv[i]) is a string
residing in userland and needs to be copied with care.

– What happens to argv[i] in the new address space?

– Make sure you null-terminate argv (i.e. argv[argc] = NULL).

– Make sure that all of your pointers are word-aligned.

– Don’t forget to set up stdin, stdout and stderr (also in runprogram).

• Remember to handle all the corner cases. Can you think of some good
ones for these system calls?

Since handling arguments in execv is tricky, lets do an example. We need to
place ls foo on the user stack. This is what it should look like.

800
799 ∅
798 o
797 o
796 f
795 [padding]
794 ∅
793 s
792 l
791 ∅
790 ∅
789 ∅
788 ∅ [null-terminate]
787 argv[1]
786 argv[1]
785 argv[1]
784 argv[1] = 796
783 argv[0]
782 argv[0]
781 argv[0]
780 argv[0] = 792 = stackptr
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Why is there nothing in location 795? Because pointers have to be word-
aligned (word = 4 bytes). Why? CPUs are designed this way. So make sure all
your pointers are aligned on a 4-byte boundary. Otherwise your user program
will crash, and you won’t know why.
Why are 4 locations occupied by argv[0] and argv[1]? Because pointers are

4 bytes long.
Hopefully this has made things a little clearer.

−→ “/usr/bin/cp∅”
−→ “.inbox∅”
−→ “/dev/null∅”

∅

Figure 1: An illustration of an example char **argv, where ∅ represents the
traditional C NULL value.

5 Scheduler

You must implement a scheduler to complement the one we have provided for
you. You may choose whatever scheduling algorithm you’d like. Choices include
a round robin with priority, multi-level feedback queue scheduler, fair-share,
a lottery scheduler, a priority scheduler, and a random scheduler. Keep the
original round-robin scheduler, it can come in handy for testing etc.
You should provide a mechanism for switching between the schedulers. You

can have them chosen at compile time with some #define directives. You can
use the config system to set these #defines. Switching schedulers at runtime
is neat but impractical and usually not worth the trouble.

Key Metrics:

CPU Utilization % of time that the CPU is running threads

CPU Throughput # jobs per second

Turnaround time {End Time} - {Start Time}

Response time total time jobs spend on ready queue

Waiting time total time jobs spend on wait/sleep queue

The main goals:

Efficiency Efficieny of resource utilization - Adjust CPU throughput
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Latency Minimize response time.

Fairness Distribute resources equitably

Scheduling algorithms: FCFS, RR, STCFSJF, Fair Share, Priority, Lot-
tery, MLFQ, Shortest Remaining Time First SRTF
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