VM: The Final Frontier

 Topics
« Clock
« Thrashing
« Working sets

« Learning Objectives:

3/1/16

Demonstrate how a clock algorithm works.

Define thrashing and explain how it can happen in a system
(both with respect to paging and TLBs).

Explain working sets and how they help you manage
memory.

Tackle Assignment 3.

CS161 Spring 2016

Use bit=0

Use bit =1

Clock

11

10

Page reference stream

3/1/16

95

1

77

3 1 1 6 55 4 5 77

CS161 Spring 2016

Styles of Replacement

Global replacement

« All pages from all processes are grouped into a single
replacement pool

« Processes compete with each other for page frames.
Per-process replacement

« Each process has a separate pool of frames.

« A page fault in one process can only evict one of its own
frames.

* No interference between processes.
Per job replacement

« Put all users’ pages in a single pool.

« Probably need a mechanism to move pages from one pool to
another in this model (i.e., another user logs in).

Global replacement provides most flexibility, but no pig
protection.

3/1/16 CS161 Spring 2016

Thrashing Returns

« Thrashing is when performance degrades, because two (or more) entities
(in this case processes) are fighting over resources (e.g., memory).

» Suppose that there are many users, and that between them, their
processes are making frequent references to 50 pages, but there are only
40 pages of memory.
« Each time a page is brought in, another is evicted.

« Assume that every memory reference takes 100 nanoseconds (.1 microseconds) and
that a disk access takes 10 ms (10,000 microseconds).

« What is the average memory access time (assuming 80% hit rate)?

« What is the average memory access time (assuming all pages are misses, but you
have 1000 accesses per page)?

« The system will spend all its time reading and writing pages and will
get very little useful work done.

We get the bad illusion: memory is as small as physical memory
and as slow as disk!

« Thrashing was a severe problem in early demand paging systems.

3/1/16 CS161 Spring 2016 4

Thrashing Returns

Just like we could get TLB thrashing, we can get memory thrashing (only
this is worse!)

Suppose that there are many users, and that between them, their
processes are making frequent references to 50 pages, but there are only
40 pages of memory.

« Each time a page is brought in, another is evicted.

« Assume that every memory reference takes 100 nanoseconds (.1 microseconds) and
that a disk access takes 10 ms (10,000 microseconds).

+ What is the average memory access time (assuming 80% hit rate)?
4*.1+1*10000 = 10000.4 / 5 = 2000 microseconds.
That is 20,000 times slower than memory!

« What is the average memory access time (assuming all pages are misses, but you
have 1000 accesses per page)?
999 * 0.1 + 1 * 10000 = 10099.9 microseconds for 1000 accesses = ~10.1 microseconds/access.

The system will spend all its time reading and writing pages and will get
very little useful work done.

We get the bad illusion: memory is as small as physical memory and as
slow as disk!

Thrashing was a severe problem in early demand paging systems.

3/1/16 CS161 Spring 2016

®

What Causes Thrashing?

« Two fundamentally different causes:
1.
2.

3/1/16 CS161 Spring 2016 6

What Causes Thrashing?

« Two fundamentally different causes:
1. A single process is too big.
2. The sum of all processes it too big.

« What can you do?

* One big process
* Out of luck
« That process is just going to thrash (buy more memory).

« Combination of processes is too much

« Figure out how much memory each process needs.

« Change scheduling priorities to run processes in groups whose
memory demands can be satisfied.

« Diminish load on the OS (load shedding).

3/1/16 CS161 Spring 2016 7

_
Working Sets

* Proposed by Peter Denning in 1960’s when Multics
exhibited thrashing.

« Informal definition: the collection of pages that a process
Is working with and that must therefore be resident if the
process is to avoid thrashing.

 The idea is to use the recent memory needs of a process
to predict its future needs.

* More formally:
« Let T(tau) be the working set parameter.

« Let the working set of T be all pages referenced by a process in
its last T seconds of execution.

A process will never be executed unless its working set is
resident in main memory.

» Pages outside the working set may be discarded at any time.
Working sets are not quite enough to solve the problem...

3/1/16 CS161 Spring 2016 8

o
Balance Sets

If the sum of the working sets of all runnable processes is
greater than the size of memory, refuse to run some processes
(for awhile).

Divide the runnable processes into two groups: active, inactive.
When a process is made active, its working set is loaded.

When it is made inactive, its working set is allowed to migrate to
disk.

The collection of active processes is called a balance set.

Now, all you need is an algorithm for moving processes into and
out of the balance set.

What happens if the balance set changes too frequently?

As working sets change, balance set changes too.
This has a problem that you need to constantly update the working set

3/1/16 CS161 Spring 2016 9

fon
Balance Sets

If the sum of the working sets of all runnable processes is
greater than the size of memory, refuse to run some processes
(for awhile).

Divide the runnable processes into two groups: active, inactive.
When a process is made active, its working set is loaded.

When it is made inactive, its working set is allowed to migrate to
disk.

The collection of active processes is called a balance set.

Now, all you need is an algorithm for moving processes into and
out of the balance set.

What happens if the balance set changes too frequently?
You still get thrashing!

As working sets change, balance set changes too.
This has a problem that you need to constantly update the working set

3/1/16 CS161 Spring 2016 10

Working Set Theory

« The idea was that you stored some sort of capacitor
with each memory page.

* When the page was referenced, the capacitor was
charged.

* Then it would discharge slowly.
« T would be determined by the size of the capacitor.

 In practice, you want separate working sets for each
process, so capacitor should only discharge while
process is running.

* Not clear what you do if a page is shared!

3/1/16 CS161 Spring 2016 11

Working Sets in Reality

« Use use bits.
« OS maintains an idle time value for each page.

* This is the amount of CPU time received by the
process since the last access to the page.

« Periodically, scan all the pages of a process.
* For each use bit that is set, set page’s idle time to 0.

» |f the use bit is clear, add the process’ CPU time
(since the last scan) to the idle time.

* Turn all bits off during scan.

« Scans happen on order of every few seconds (in
UNIX, T is on the order of a minute or more).

3/1/16 CS161 Spring 2016 12

—
Parting Thoughts

 What should Tbe?
« What happens if T is too large?
« What happens if T is too small?

« What algorithms should be used to determine which processes
are in the balance set?

 How do we compute working sets if pages are shared?
 How much memory is needed in order to keep the CPU busy?

* In the working set model, the CPU may occasionally be idle
even though there are runnable processes.
 Technology changes problems!

« InaPC oreven a VM, thrashing may be a less critical issue than in
timesharing systems.

« If one user has too many processes, she can just kill some!
With multiple users, the OS must somehow arbitrate fairly.

3/1/16 CS161 Spring 2016 13

