
3/1/16 CS161 Spring 2016 1

VM: The Final Frontier

• Topics

• Clock

• Thrashing

• Working sets

• Learning Objectives:

• Demonstrate how a clock algorithm works.

• Define thrashing and explain how it can happen in a system

(both with respect to paging and TLBs).

• Explain working sets and how they help you manage

memory.

• Tackle Assignment 3.

1

Clock

3/1/16 CS161 Spring 2016

1

2

3

4

5

6
7

8

11

10

9

Use bit = 0

Use bit = 1

55

77

1 3 1 1 6 55 4 5 77Page reference stream

2

Styles of Replacement

• Global replacement
• All pages from all processes are grouped into a single

replacement pool

• Processes compete with each other for page frames.

• Per-process replacement
• Each process has a separate pool of frames.

• A page fault in one process can only evict one of its own
frames.

• No interference between processes.

• Per job replacement
• Put all users’ pages in a single pool.

• Probably need a mechanism to move pages from one pool to
another in this model (i.e., another user logs in).

• Global replacement provides most flexibility, but no pig
protection.

3/1/16 CS161 Spring 2016 3

Thrashing Returns

• Thrashing is when performance degrades, because two (or more) entities
(in this case processes) are fighting over resources (e.g., memory).

• Suppose that there are many users, and that between them, their
processes are making frequent references to 50 pages, but there are only
40 pages of memory.
• Each time a page is brought in, another is evicted.

• Assume that every memory reference takes 100 nanoseconds (.1 microseconds) and
that a disk access takes 10 ms (10,000 microseconds).

• What is the average memory access time (assuming 80% hit rate)?

• What is the average memory access time (assuming all pages are misses, but you
have 1000 accesses per page)?

• The system will spend all its time reading and writing pages and will
get very little useful work done.

• We get the bad illusion: memory is as small as physical memory
and as slow as disk!

• Thrashing was a severe problem in early demand paging systems.

3/1/16 CS161 Spring 2016 4

Thrashing Returns

• Just like we could get TLB thrashing, we can get memory thrashing (only
this is worse!)

• Suppose that there are many users, and that between them, their
processes are making frequent references to 50 pages, but there are only
40 pages of memory.
• Each time a page is brought in, another is evicted.

• Assume that every memory reference takes 100 nanoseconds (.1 microseconds) and
that a disk access takes 10 ms (10,000 microseconds).

• What is the average memory access time (assuming 80% hit rate)?
• 4 * .1 + 1 * 10000 = 10000.4 / 5 = 2000 microseconds.

• That is 20,000 times slower than memory!

• What is the average memory access time (assuming all pages are misses, but you
have 1000 accesses per page)?

• 999 * 0.1 + 1 * 10000 = 10099.9 microseconds for 1000 accesses = ~10.1 microseconds/access.

• The system will spend all its time reading and writing pages and will get
very little useful work done.

• We get the bad illusion: memory is as small as physical memory and as
slow as disk!

• Thrashing was a severe problem in early demand paging systems.

3/1/16 CS161 Spring 2016 5

What Causes Thrashing?

• Two fundamentally different causes:

1.

2.

3/1/16 CS161 Spring 2016 6

What Causes Thrashing?

• Two fundamentally different causes:

1. A single process is too big.

2. The sum of all processes it too big.

• What can you do?

• One big process

• Out of luck

• That process is just going to thrash (buy more memory).

• Combination of processes is too much

• Figure out how much memory each process needs.

• Change scheduling priorities to run processes in groups whose

memory demands can be satisfied.

• Diminish load on the OS (load shedding).

3/1/16 CS161 Spring 2016 7

Working Sets

• Proposed by Peter Denning in 1960’s when Multics
exhibited thrashing.

• Informal definition: the collection of pages that a process
is working with and that must therefore be resident if the
process is to avoid thrashing.

• The idea is to use the recent memory needs of a process
to predict its future needs.

• More formally:
• Let (tau) be the working set parameter.

• Let the working set of be all pages referenced by a process in
its last seconds of execution.

• A process will never be executed unless its working set is
resident in main memory.

• Pages outside the working set may be discarded at any time.

• Working sets are not quite enough to solve the problem…

3/1/16 CS161 Spring 2016 8

Balance Sets

• If the sum of the working sets of all runnable processes is
greater than the size of memory, refuse to run some processes
(for awhile).

• Divide the runnable processes into two groups: active, inactive.

• When a process is made active, its working set is loaded.

• When it is made inactive, its working set is allowed to migrate to
disk.

• The collection of active processes is called a balance set.

• Now, all you need is an algorithm for moving processes into and
out of the balance set.

• What happens if the balance set changes too frequently?

• As working sets change, balance set changes too.
• This has a problem that you need to constantly update the working set

3/1/16 CS161 Spring 2016 9

Balance Sets

• If the sum of the working sets of all runnable processes is
greater than the size of memory, refuse to run some processes
(for awhile).

• Divide the runnable processes into two groups: active, inactive.

• When a process is made active, its working set is loaded.

• When it is made inactive, its working set is allowed to migrate to
disk.

• The collection of active processes is called a balance set.

• Now, all you need is an algorithm for moving processes into and
out of the balance set.

• What happens if the balance set changes too frequently?
• You still get thrashing!

• As working sets change, balance set changes too.
• This has a problem that you need to constantly update the working set

3/1/16 CS161 Spring 2016 10

Working Set Theory

• The idea was that you stored some sort of capacitor

with each memory page.

• When the page was referenced, the capacitor was

charged.

• Then it would discharge slowly.

• would be determined by the size of the capacitor.

• In practice, you want separate working sets for each

process, so capacitor should only discharge while

process is running.

• Not clear what you do if a page is shared!

3/1/16 CS161 Spring 2016 11

Working Sets in Reality

• Use use bits.

• OS maintains an idle time value for each page.

• This is the amount of CPU time received by the
process since the last access to the page.

• Periodically, scan all the pages of a process.

• For each use bit that is set, set page’s idle time to 0.

• If the use bit is clear, add the process’ CPU time
(since the last scan) to the idle time.

• Turn all bits off during scan.

• Scans happen on order of every few seconds (in
UNIX, is on the order of a minute or more).

3/1/16 CS161 Spring 2016 12

Parting Thoughts

• What should be?

• What happens if is too large?

• What happens if is too small?

• What algorithms should be used to determine which processes
are in the balance set?

• How do we compute working sets if pages are shared?

• How much memory is needed in order to keep the CPU busy?

• In the working set model, the CPU may occasionally be idle
even though there are runnable processes.

• Technology changes problems!
• In a PC or even a VM, thrashing may be a less critical issue than in

timesharing systems.

• If one user has too many processes, she can just kill some!

• With multiple users, the OS must somehow arbitrate fairly.

3/1/16 CS161 Spring 2016 13

