
2/25/16 CS161 Spring 2016 1 1

VM: The Saga Continues

•  Topics
•  Where are we?
•  When memory needs exceed capacity: paging
•  Paging: who to evict
•  Working sets

•  Learning Objectives:
•  Identify strategies for efficiently sharing physical memory.
•  Define a page fault and explain how they occur and are

handled.
•  Explain the MIN, LRU, Clock, and Working set paging

algorithms.
•  Tackle Assignment 3.

Where are we?

•  Virtual Memory so far:

•  What problem haven’t we solved?

2 2/25/16 CS161 Spring 2016

What is Paging?
•  The mechanism by which we allow processes to run with

only some of their pages resident in memory.
•  In a demand paging system, virtual pages can be in one of

three states:
•  Memory resident: everything we’ve talked about so far.
•  Unmapped: there is nothing present at a virtual address.
•  Disk resident: there exists something at this VA, but it’s not

currently in memory.
•  Pages in main memory are frequently called page frames.
•  Pages on disk are frequently called backing frames.
•  Our goal is to provide the illusion that main memory is as

large as disk and as fast as memory.
•  When things go wrong, you get the feeling that memory is as

small as memory and as slow as disk!
•  Fortunately, locality saves us (in most cases).

2/25/16 CS161 Spring 2016 3

Our New View of Memory

2/25/16 CS161 Spring 2016 4

Our old view Our new view
VAS PAS

DISK

PAS VAS

•  Two challenges:
•  How to run processes with some pages are missing
•  How to schedule which page are in main memory?

Extending PTEs

2/25/16 CS161 Spring 2016 5

DISK

VAS PAS

20-bit page number U W PM

20-bit page number U W PM

20-bit page number U W PM

20-bit disk address U W PM

20-bit page number U W PM

20-bit disk address U W PM

20-bit disk address U W PM

20-bit disk address U W PM

20-bit page number U W PM

20-bit disk address

U W PM

20-bit disk address U W PM

20-bit page number U W PM

Let’s add an “in-memory” bit that indicates if the page
Is in-memory; when 0, the page has been swapped out.

Page Faults
•  Extend page table entry (PTE) to include a bit that

indicates if the page is in-memory.
•  If virtual to physical translation yields a page table entry in

which this bit is not set, the reference results in a trap,
called a page fault.

•  Any page not in main memory has an in-memory bit of 0.
•  When a page fault occurs:

•  Operating system brings page into memory.
•  Page table is updated; in-memory bit is set.
•  Update TLB*
•  The process that faulted continues execution.

•  Continuing a process is extremely tricky.
•  Page fault may have occurred in the middle of an instruction.
•  Need to make the fault invisible to the user process.

2/25/16 CS161 Spring 2016 6

What do we do on the x86?

2/25/16 CS161 Spring 2016 7

DISK

VAS PAS
20-bit page number
20-bit page number
20-bit page number
20-bit page number
20-bit page number
20-bit page number
20-bit page number
20-bit page number

20-bit page number
20-bit page number

20-bit page number
20-bit page number

?
?

?
?

?

?

The x86 does not have an in-memory bit!
Translations are in hardware; if the page is not in-memory, then

the hardware cannot translate it. What do you do???

Exercise 1

•  On the x86, the operating system gains control any
time a page in the VAS is not in-memory (even if the
memory access is to a valid virtual address).

•  Think about what information you need to store in the
PTE to let you find a page that you have stashed
away on disk.

•  Design:
•  A PTE that describes an on-disk page (how can you tell the

difference between an on-disk page and a page that is
invalid in the VAS?).

•  Data structures to describe what is stored on disk.

2/25/16 CS161 Spring 2016 8

Linux Paging (1)

24-bit offset into a region

Present = 0
swp_entry_t

Identify a
swap area

Offset into swap area

If a swap entry references a 4 KB page, what is the maximum
size of a swap area?

struct	swap_info_struct{	
				unsigned	int	flags;								/*	Indicates	if	entry	is	inuse	or	not.	*/	
				struct	file	*swap_file;			/*	Where	the	swap	data	lives	on-disk	*/	
				unsigned	char	*swap_map;		/*	For	each	swapped-out	page,	stores	a	
																															*	reference	count	of	how	many	tasks	
																															*	use	that	page	*/	
				unsigned	int	max;									/*	Number	of	entries	in	swap_map	*/	
				unsigned	int	inuse_pages;	/*	Number	of	swap	entries	that	currently	
																															*	contain	a	virtual	memory	page	*/	
				unsigned	int	lowest_bit;		/*	First	possible	free	slot	in	swap_map	*/	
				spinlock_t	lock;	
				…																									/*	And	other	fields	...	*/	
};	
struct	swap_info_struct	*swap_info[MAX_SWAPFILES];	

Linux Paging (2)
Maintain an array of structures, each of which describes a
swap region:

Linux Address Space Management

•  Linux uses the task_struct to represent a process.
•  Inside the task_struct, you’ll find an mm_struct.
•  The mm_struct is a summary of a process’s virtual

address space, containing:
 struct vm_aera_struct *mmap;
unsigned long start_code, end_code;
unsigned long start_data, end_data;
unsigned long start_brk, brk;
unsigned long start_stack;

•  (as well as a ton of other stuff)

2/25/16 CS161 Spring 2016 11

Parts of a Linux Memory Map (1)

2/25/16 CS161 Spring 2016 12

Text segment

Data segment
BSS segment

Heap

Memory Mapping
Segment

Stack
m

m
_s

tru
ct

start_code

end_code start_data

end_data
start_brk

brk

mmap_base

start_stack

Parts of a Linux Memory Map (2)

•  Linux describes each of these parts of the VAS using
a virtual memory area (VMA).

•  A VMA describes a contiguous chunk of the VAS.
•  Each VMA is described by a vm_area_struct, which

contains (among other things):
•  Start and end address of the region
•  Pointer to its address space
•  Protection information
•  Links (to connect all the areas)
•  Information about the source of the area (e.g., file mapped)

2/25/16 CS161 Spring 2016 13

Parts of a Linux Memory Map (3)

2/25/16 CS161 Spring 2016 14

Text segment

Data segment
BSS segment

Heap

Memory Mapping
Segment

Stack

vm_area_struct
VM_READ | VM_EXEC

vm_area_struct
VM_READ | VM_WRITE

vm_area_struct
VM_READ | VM_WRITE

vm_area_struct
VM_READ | VM_WRITE

vm_area_struct
VM_READ | VM_EXEC

vm_area_struct
VM_READ | VM_WRITE

| VM_GROWSDOWN

executable

libc.so

Exercise 2

•  At this point, we’ve introduced examples of data
structures that:
•  Facilitate hardware translation (TLBs and Page Tables)
•  Facilitate handling page faults (VMAs, Page Tables)

•  What other algorithms and/or data structures might
we need?
1.  Let’s say that you have to bring a page in from swap; how

do you decide where to place it in physical memory?
•  Design a data structure to handle this case.

2.  Let’s say that memory is full and you need to kick out a
page, how do you decide what page to kick out (evict?)
•  Think about what goals you want to achieve
•  Propose an algorithm or two to accomplish your goal

2/25/16 CS161 Spring 2016 15

!!!Copy-on-write Pages

•  !!!Useful for fork()
•  !!!OS initially marks pages as read-only
•  !!!On page fault caused by write, the OS gives each process

its own version of the page
•  !!!Make a reference back to the MOD page fault on MIPS

(which indicates that a process tried to write a page that
doesn’t have the writable bit set)

2/23/2016 CS161 Spring 2016 16

More data structures: Core Map

•  Core map maps physical addresses to virtual
addresses.

•  Uses of core map:
•  Find a free spot (page frame) into which a new page can be

allocated.
•  Pre-emptively write dirty pages to disk.
•  Record space consumed by the operating system (so you

don’t inadvertently allocate that space to user processes!)

2/23/2016 CS161 Spring 2016 17

!!!Huge Pages

•  !!!Define TLB reach

2/23/2016 CS161 Spring 2016 18

Page Fault Handling Mechanics (1)
•  Typically, the PC is incremented at the beginning of the

instruction cycle. Therefore, if you do not do anything
special, you will continue running the process at the
instruction after the faulting one and it will appear as if the
faulting instruction got skipped.
•  Users probably will not like this behavior.
•  “Hi, we’re giving you virtual memory. Oh by the way, sometimes

we skip instructions.”
•  You have three options:

•  Restart the instruction: undo whatever the instruction may have
already done and then reissue the instruction.

•  Used by PDP-11, MIPS R3000, and most modern architectures.
•  Complete the instruction: continue where you left off.

•  Used in the Intel x86.
•  Test for faults before issuing the instruction.

•  Used in the IBM 370.

2/25/16 CS161 Spring 2016 19

Page Fault Handling Mechanics (2)

•  Without hardware support, you should either forget
about paging or use complex (and disgusting)
solutions.
•  MC68000, Intel 8086 and 80286: could not restart

instructions.
•  Apollo systems (used Motorola CPUs) had two CPUs.

•  One executed user code.
•  If it took a fault, the user CPU stalled while the OS CPU fetched the

page.
•  Once it got the page, the user CPU was un-stalled.

•  Even with hardware support, the page fault handler
must be able to recover the cause of the fault and
enough of the machine state to continue the program.

2/25/16 CS161 Spring 2016 20

Algorithm: Page Replacement

•  If all our processes fit comfortably in memory, life is
good.

•  Life is rarely good!
•  Page replacement is the act of selecting a page in

memory for eviction.
•  Selecting such pages badly can have dire

performance consequences!

2/25/16 CS161 Spring 2016 21

Page Replacement
•  Random

•  Pick any page to evict.
•  Works surprisingly well!

•  FIFO
•  Throw out page that has been in memory the longest.
•  The basic idea is that you give all pages equal residency.

•  MIN
•  Predict the future.
•  Evict the page that will not be referenced for the longest time.
•  Tough to implement.
•  Good for comparison.
•  Defined by Laszlo Belady (known as Belady’s algorithm).

•  LRU
•  As usual, use past to predict future.
•  Evict page that has been unreferenced the longest.
•  With locality, this is a good approximation to MIN.

•  What makes implementing some of these difficult? What other metrics/
statistics might you want to keep about your pages?

2/25/16 CS161 Spring 2016 22

Page Replacement
•  Random

•  Pick any page to evict.
•  Works surprisingly well!

•  FIFO
•  Throw out page that has been in memory the longest.
•  The basic idea is that you give all pages equal residency.

•  MIN
•  Predict the future.
•  Evict the page that will not be referenced for the longest time.
•  Tough to implement.
•  Good for comparison.
•  Defined by Laszlo Belady (known as Belady’s algorithm).

•  LRU
•  As usual, use past to predict future.
•  Evict page that has been unreferenced the longest.
•  With locality, this is a good approximation to MIN.

•  What makes implementing some of these difficult? What other metrics/statistics might
you want to keep about your pages?
•  LRU is recency; requires a single queue
•  Frequency is easier (sorting is hard).

2/25/16 CS161 Spring 2016 23

Playing pager (3 memory frames)
Reference
stream

A B C A B D A D B C B

FIFO A
B

C
MIN A

B
C

LRU A
B

C

2/25/16 CS161 Spring 2016 24

Playing pager (3 memory frames)
Reference
stream

A B C A B D A D B C B

FIFO A
B

C
MIN A

B
C

LRU A
B

C

2/25/16 CS161 Spring 2016 25

D
A

B

C

D

C

D

C

•  Just like STCF, MIN is optimal, but not implementable.
•  Just like priority queues or fair-share scheduling, use the past to predict the future. For page

replacement, LRU (least recently- used) works remarkably well.

Implementing LRU
•  Need hardware to keep track of recently used pages.
•  Perfect LRU?

•  Register for every physical page.
•  Store clock on every access.
•  To replace, scan through all the registers.
•  Assessment?

• 
• 

•  Approximate LRU
•  Find any old page.
•  May not be oldest, but if it’s old, it’s probably good enough.
•  After all, LRU is an approximation of MIN; what’s another level of

approximation?
•  Clock

•  Maintain a use bit for each frame.
•  Set bit on every reference.
•  Operating system sweeps through memory clearing use bits.

2/25/16 CS161 Spring 2016 26

Implementing LRU
•  Need hardware to keep track of recently used pages.
•  Perfect LRU?

•  Register for every physical page.
•  Store clock on every access.
•  To replace, scan through all the registers.
•  Assessment?

•  Expensive!
•  Not very practical.

•  Approximate LRU
•  Find any old page.
•  May not be oldest, but if it’s old, it’s probably good enough.
•  After all, LRU is an approximation of MIN; what’s another level of

approximation?
•  Clock

•  Maintain a use bit for each frame.
•  Set bit on every reference.
•  Operating system sweeps through memory clearing use bits.

2/25/16 CS161 Spring 2016 27

Implementing Clock
•  When time to replace, replace a page frame with a 0 use bit.
•  On page fault — circle around clock.

•  If bit is set, clear it.
•  If bit is not set, replace it.
•  Can this loop infinitely?
•  Can also incorporate dirty bit since dirty pages are more expensive to

evict than clean ones.
•  In clock, what does it mean if the clock hand is sweeping very

slowly?
• 
• 
• 

•  What if the hand is sweeping very quickly?
• 
• 

2/25/16 CS161 Spring 2016 28

Implementing Clock
•  When time to replace, replace a page frame with a 0 use bit.
•  On page fault — circle around clock.

•  If bit is set, clear it.
•  If bit is not set, replace it.
•  Can this loop infinitely? NO
•  Can also incorporate dirty bit since dirty pages are more expensive to

evict than clean ones.
•  In clock, what does it mean if the clock hand is sweeping very

slowly?
•  Plenty of memory.
•  Not many page faults.
•  This is good (desirable).

•  What if the hand is sweeping very quickly?
•  Not enough memory.
•  Thrashing.

2/25/16 CS161 Spring 2016 29

