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VM: The Saga Continues 

•  Topics 
•  Where are we? 
•  When memory needs exceed capacity: paging 
•  Paging: who to evict 
•  Working sets 

•  Learning Objectives: 
•  Identify strategies for efficiently sharing physical memory. 
•  Define a page fault and explain how they occur and are 

handled. 
•  Explain the MIN, LRU, Clock, and Working set paging 

algorithms. 
•  Tackle Assignment 3. 



Where are we? 

•  Virtual Memory so far: 

 

•  What problem haven’t we solved? 
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What is Paging? 
•  The mechanism by which we allow processes to run with 

only some of their pages resident in memory. 
•  In a demand paging system, virtual pages can be in one of 

three states: 
•  Memory resident: everything we’ve talked about so far. 
•  Unmapped: there is nothing present at a virtual address. 
•  Disk resident: there exists something at this VA, but it’s not 

currently in memory. 
•  Pages in main memory are frequently called page frames. 
•  Pages on disk are frequently called backing frames. 
•  Our goal is to provide the illusion that main memory is as 

large as disk and as fast as memory. 
•  When things go wrong, you get the feeling that memory is as 

small as memory and as slow as disk! 
•  Fortunately, locality saves us (in most cases). 
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Our New View of Memory 
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Our old view Our new view 
VAS PAS 

DISK 

PAS VAS 

•  Two challenges: 
•  How to run processes with some pages are missing 
•  How to schedule which page are in main memory? 



Extending PTEs 
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DISK 

VAS PAS 

20-bit page number U W PM

20-bit page number U W PM

20-bit page number U W PM

20-bit disk address U W PM

20-bit page number U W PM

20-bit disk address U W PM

20-bit disk address U W PM

20-bit disk address U W PM

20-bit page number U W PM

20-bit disk address 
 

U W PM

20-bit disk address U W PM

20-bit page number U W PM

Let’s add an “in-memory” bit that indicates if the page 
Is in-memory; when 0, the page has been swapped out. 



Page Faults 
•  Extend page table entry (PTE) to include a bit that 

indicates if the page is in-memory. 
•  If virtual to physical translation yields a page table entry in 

which this bit is not set, the reference results in a trap, 
called a page fault. 

•  Any page not in main memory has an in-memory bit of 0. 
•  When a page fault occurs: 

•  Operating system brings page into memory. 
•  Page table is updated; in-memory bit is set. 
•  Update TLB* 
•  The process that faulted continues execution. 

•  Continuing a process is extremely tricky. 
•  Page fault may have occurred in the middle of an instruction. 
•  Need to make the fault invisible to the user process. 
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What do we do on the x86? 
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DISK 

VAS PAS 
20-bit page number 
20-bit page number 
20-bit page number 
20-bit page number 
20-bit page number 
20-bit page number 
20-bit page number 
20-bit page number 

20-bit page number 
20-bit page number 

20-bit page number 
20-bit page number 

? 
? 

? 
? 

? 

? 

The x86 does not have an in-memory bit! 
Translations are in hardware; if the page is not in-memory, then 

the hardware cannot translate it.  What do you do??? 



Exercise 1 

•  On the x86, the operating system gains control any 
time a page in the VAS is not in-memory (even if the 
memory access is to a valid virtual address). 

•  Think about what information you need to store in the 
PTE to let you find a page that you have stashed 
away on disk. 

•  Design: 
•  A PTE that describes an on-disk page (how can you tell the 

difference between an on-disk page and a page that is 
invalid in the VAS?). 

•  Data structures to describe what is stored on disk. 

2/25/16 CS161 Spring 2016 8 



Linux Paging (1) 

24-bit offset into a region 

Present = 0 
swp_entry_t 

Identify a 
swap area 

Offset into swap area 

If a swap entry references a 4 KB page, what is the maximum 
size of a swap area? 



struct	swap_info_struct{	
				unsigned	int	flags;								/*	Indicates	if	entry	is	inuse	or	not.	*/	
				struct	file	*swap_file;			/*	Where	the	swap	data	lives	on-disk	*/	
				unsigned	char	*swap_map;		/*	For	each	swapped-out	page,	stores	a	
																															*	reference	count	of	how	many	tasks	
																															*	use	that	page	*/	
				unsigned	int	max;									/*	Number	of	entries	in	swap_map	*/	
				unsigned	int	inuse_pages;	/*	Number	of	swap	entries	that	currently	
																															*	contain	a	virtual	memory	page	*/	
				unsigned	int	lowest_bit;		/*	First	possible	free	slot	in	swap_map	*/	
				spinlock_t	lock;	
				…																									/*	And	other	fields	...	*/	
};	
struct	swap_info_struct	*swap_info[MAX_SWAPFILES];	

Linux Paging (2) 
Maintain an array of structures, each of which describes a 
swap region: 



Linux Address Space Management 

•  Linux uses the task_struct to represent a process. 
•  Inside the task_struct, you’ll find an mm_struct. 
•  The mm_struct is a summary of a process’s virtual 

address space, containing: 
 struct vm_aera_struct *mmap; 
unsigned long start_code, end_code;
unsigned long start_data, end_data;
unsigned long start_brk, brk;
unsigned long start_stack;

•  (as well as a ton of other stuff) 
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Parts of a Linux Memory Map (1) 
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Text segment 
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Parts of a Linux Memory Map (2) 

•  Linux describes each of these parts of the VAS using 
a virtual memory area (VMA). 

•  A VMA describes a contiguous chunk of the VAS. 
•  Each VMA is described by a vm_area_struct, which 

contains (among other things): 
•  Start and end address of the region 
•  Pointer to its address space 
•  Protection information 
•  Links (to connect all the areas) 
•  Information about the source of the area (e.g., file mapped) 
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Parts of a Linux Memory Map (3) 
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Text segment 

Data segment 
BSS segment 

Heap 

Memory Mapping 
Segment 

Stack 

vm_area_struct 
VM_READ | VM_EXEC 

vm_area_struct 
VM_READ | VM_WRITE 

vm_area_struct 
VM_READ | VM_WRITE 

vm_area_struct 
VM_READ | VM_WRITE 

vm_area_struct 
VM_READ | VM_EXEC 

vm_area_struct 
VM_READ | VM_WRITE 

| VM_GROWSDOWN 

executable 

libc.so 



Exercise 2 

•  At this point, we’ve introduced examples of data 
structures that: 
•  Facilitate hardware translation (TLBs and Page Tables) 
•  Facilitate handling page faults (VMAs, Page Tables) 

•  What other algorithms and/or data structures might 
we need? 
1.  Let’s say that you have to bring a page in from swap; how 

do you decide where to place it in physical memory? 
•  Design a data structure to handle this case. 

2.  Let’s say that memory is full and you need to kick out a 
page, how do you decide what page to kick out (evict?) 
•  Think about what goals you want to achieve 
•  Propose an algorithm or two to accomplish your goal 
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!!!Copy-on-write Pages 

•  !!!Useful for fork() 
•  !!!OS initially marks pages as read-only 
•  !!!On page fault caused by write, the OS gives each process 

its own version of the page 
•  !!!Make a reference back to the MOD page fault on MIPS 

(which indicates that a process tried to write a page that 
doesn’t have the writable bit set) 
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More data structures: Core Map 

•  Core map maps physical addresses to virtual 
addresses. 

•   Uses of core map: 
•  Find a free spot (page frame) into which a new page can be 

allocated. 
•  Pre-emptively write dirty pages to disk. 
•  Record space consumed by the operating system (so you 

don’t inadvertently allocate that space to user processes!) 
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!!!Huge Pages 

•  !!!Define TLB reach 

2/23/2016 CS161 Spring 2016 18 



Page Fault Handling Mechanics (1) 
•  Typically, the PC is incremented at the beginning of the 

instruction cycle. Therefore, if you do not do anything 
special, you will continue running the process at the 
instruction after the faulting one and it will appear as if the 
faulting instruction got skipped. 
•  Users probably will not like this behavior. 
•  “Hi, we’re giving you virtual memory. Oh by the way, sometimes 

we skip instructions.” 
•  You have three options: 

•  Restart the instruction: undo whatever the instruction may have 
already done and then reissue the instruction. 

•  Used by PDP-11, MIPS R3000, and most modern architectures. 
•  Complete the instruction: continue where you left off. 

•  Used in the Intel x86. 
•  Test for faults before issuing the instruction. 

•  Used in the IBM 370. 
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Page Fault Handling Mechanics (2) 

•  Without hardware support, you should either forget 
about paging or use complex (and disgusting) 
solutions. 
•  MC68000, Intel 8086 and 80286: could not restart 

instructions. 
•  Apollo systems (used Motorola CPUs) had two CPUs. 

•  One executed user code. 
•  If it took a fault, the user CPU stalled while the OS CPU fetched the 

page. 
•  Once it got the page, the user CPU was un-stalled. 

•  Even with hardware support, the page fault handler 
must be able to recover the cause of the fault and 
enough of the machine state to continue the program. 
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Algorithm: Page Replacement 

•  If all our processes fit comfortably in memory, life is 
good. 

•  Life is rarely good! 
•  Page replacement is the act of selecting a page in 

memory for eviction. 
•  Selecting such pages badly can have dire 

performance consequences! 
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Page Replacement 
•  Random 

•  Pick any page to evict. 
•  Works surprisingly well! 

•  FIFO 
•  Throw out page that has been in memory the longest. 
•  The basic idea is that you give all pages equal residency. 

•  MIN 
•  Predict the future. 
•  Evict the page that will not be referenced for the longest time. 
•  Tough to implement. 
•  Good for comparison. 
•  Defined by Laszlo Belady (known as Belady’s algorithm). 

•  LRU 
•  As usual, use past to predict future. 
•  Evict page that has been unreferenced the longest. 
•  With locality, this is a good approximation to MIN. 

•  What makes implementing some of these difficult? What other metrics/
statistics might you want to keep about your pages? 
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Page Replacement 
•  Random 

•  Pick any page to evict. 
•  Works surprisingly well! 

•  FIFO 
•  Throw out page that has been in memory the longest. 
•  The basic idea is that you give all pages equal residency. 

•  MIN 
•  Predict the future. 
•  Evict the page that will not be referenced for the longest time. 
•  Tough to implement. 
•  Good for comparison. 
•  Defined by Laszlo Belady (known as Belady’s algorithm). 

•  LRU 
•  As usual, use past to predict future. 
•  Evict page that has been unreferenced the longest. 
•  With locality, this is a good approximation to MIN. 

•  What makes implementing some of these difficult? What other metrics/statistics might 
you want to keep about your pages? 
•  LRU is recency; requires a single queue 
•  Frequency is easier (sorting is hard). 
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Playing pager (3 memory frames) 
Reference 
stream 

A B C A B D A D B C B 

FIFO A 
B 

C 
MIN A 

B 
C 

LRU A 
B 

C 
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•  Just like STCF, MIN is optimal, but  not implementable. 
•  Just like priority queues or fair-share scheduling, use the past to predict the future. For page 

replacement, LRU (least recently- used) works remarkably well. 



Implementing LRU 
•  Need hardware to keep track of recently used pages. 
•  Perfect LRU?  

•  Register for every physical page. 
•  Store clock on every access. 
•  To replace, scan through all the registers. 
•  Assessment? 

•    
•    

•  Approximate LRU 
•  Find any old page. 
•  May not be oldest, but if it’s old, it’s probably good enough. 
•  After all, LRU is an approximation of MIN; what’s another level of 

approximation? 
•  Clock 

•  Maintain a use bit for each frame. 
•  Set bit on every reference. 
•  Operating system sweeps through memory clearing use bits. 
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Implementing LRU 
•  Need hardware to keep track of recently used pages. 
•  Perfect LRU?  

•  Register for every physical page. 
•  Store clock on every access. 
•  To replace, scan through all the registers. 
•  Assessment? 

•  Expensive! 
•  Not very practical. 

•  Approximate LRU 
•  Find any old page. 
•  May not be oldest, but if it’s old, it’s probably good enough. 
•  After all, LRU is an approximation of MIN; what’s another level of 

approximation? 
•  Clock 

•  Maintain a use bit for each frame. 
•  Set bit on every reference. 
•  Operating system sweeps through memory clearing use bits. 
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Implementing Clock 
•  When time to replace, replace a page frame with a 0 use bit. 
•  On page fault — circle around clock. 

•  If bit is set, clear it. 
•  If bit is not set, replace it. 
•  Can this loop infinitely?  
•  Can also incorporate dirty bit since dirty pages are more expensive to 

evict than clean ones. 
•  In clock, what does it mean if the clock hand is sweeping very 

slowly? 
•    
•    
•    

•  What if the hand is sweeping very quickly? 
•    
•    
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Implementing Clock 
•  When time to replace, replace a page frame with a 0 use bit. 
•  On page fault — circle around clock. 

•  If bit is set, clear it. 
•  If bit is not set, replace it. 
•  Can this loop infinitely? NO 
•  Can also incorporate dirty bit since dirty pages are more expensive to 

evict than clean ones. 
•  In clock, what does it mean if the clock hand is sweeping very 

slowly? 
•  Plenty of memory. 
•  Not many page faults. 
•  This is good (desirable). 

•  What if the hand is sweeping very quickly? 
•  Not enough memory. 
•  Thrashing. 
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