
Virtualization

• Expose virtual hardware that is backed by physical hardware

• Virtual machine monitor (VMM) implements the virtualization

interface, enforces the illusion of isolated virtual machines

The Basic Idea
• Introduce a layer of abstraction that sits above the hardware, but

beneath the OS (or software that directly accesses hardware)

The Basic Idea
• Introduce a layer of abstraction that sits above the hardware, but

beneath the OS (or software that directly accesses hardware)

Virtual machine monitor (VMM)

Physical
hardware

Virtual
hardware

Linux Windows

Virtual machine Virtual machine

VMM Interface vs. OS Interface
• OS provides a high level of abstraction

• CPUs exposed via illusion of thread-private CPUs

• Physical memory exposed via virtual memory and

process abstractions

• Devices exposed via file system abstractions and file

descriptor operations (e.g., write()s on a socket)

• VMM provides a low level of abstraction

• Software appears to be running on raw hardware,

with direct access to physical memory and devices (so

each VM usually includes its own OS)

• Both an OS and a VMM try to isolate different tenants

(processes/VMs), and enforce fairness w.r.t. usage of

physical hardware

4/14/2016 CS161 Spring 2016 4

Why Is Virtualization Useful?
• Multiplexing physical hardware in datacenters

• A customer wants her application to run on an isolated

machine . . . but her application may have low hardware

utilization!

• Bad solution: Datacenter operator grants a separate physical

machine to each customer application

• Good solution: Datacenter operator runs multiple VMs atop a

single physical machine

• Physical machine will be highly utilized

even if individual VMs are lightly loaded

• Datacenter operators can buy fewer

physical machines!

Why Is Virtualization Useful?
• Multiplexing physical hardware in datacenters

• A customer wants her application to run on an isolated

machine . . . but her application may have low hardware

utilization!

• Bad solution: Datacenter operator grants a separate physical

machine to each customer application

• Good solution: Datacenter operator runs multiple VMs atop a

single physical machine

• Physical machine will be highly utilized

even if individual VMs are lightly loaded

• Datacenter operators can buy fewer

physical machines!

• But . . . SLAs! Can’t oversubscribe

physical machines *too* much.

Why Is Virtualization Useful?
• Security: Isolation between VMs is useful if VMs don’t trust each

other, and/or host doesn’t trust guests

• Ex: A multi-tenant datacenter like Amazon’s EC2 runs code

from multiple parties

• Ex: On a desktop machine, user can load untrusted content in

a VM (e.g., email attachment, software from unknown source)

Why Is Virtualization Useful?
• Improved productivity for developers

• Ex: You can run Mac OS as your host, and Linux as

your guest; do fun stuff on Mac OS, do dev stuff in

Linux VM

Mac OS

Your physical
machine

Virtual MIPS
hardware sys161

• Ex: A kernel developer loads her

kernel in a VM so that, when the

kernel crashes, her dev machine is

still alive!
RabidSquirtleOS

Why Is Virtualization Useful?
• Backwards compatibility: Use virtualization to run

programs from an earlier age of humanity

• Ex: Electronic archives who must run old software

• Ex: Video game emulators for dead platforms

How Can We Implement

Virtualization?

Virtualization Approach #1:

Hosted Interpretation
• Run the VMM as a regular user application atop a host OS

• VMM maintains a software-level representation of

physical hardware

• VMM steps through the instructions in the code of the

VM, updating the virtual hardware as necessary

• Hosted interpretation is used by sys161 (MIPS), Bochs (x86),

and several emulators for video game platforms

while(1){
curr_instr = fetch(virtHw.PC);
virtHw.PC += 4;
switch(curr_instr){

case ADD:
int sum = virtHw.regs[curr_instr.reg0] +

virtHw.regs[curr_instr.reg1];
virtHw.regs[curr_instr.reg0] = sum;
break;

case SUB:
//...etc...

Virtualization Approach #1:

Hosted Interpretation
• Good: Easy to handle privileged instructions

• The guest OS will want to read and write privileged registers,

manipulate the MMU, send commands to IO devices, etc.

• The interpreter can handle privileged instructions according to a

policy

• Ex: All VM disk IO is redirected to a backing file in the host

OS (similar to an OS161 SFS disk)

• Ex: VM cannot access the network at all, or can only access a

predefined set of remote IP addresses

• Good: Provides “complete” isolation (no guest instruction is directly

executed on host hardware)

• Good: Can debug even low-level boot code in the guest!

• Bad: Emulating a modern processor is difficult!

• Bad: Interpretation is slow! [Ex: Two orders of magnitude for Bochs]

Virtualization Approach #2:

Direct Execution w/Trap and Emulate

. . . but first, some x86 horrors.

Ring 0

Ring 2

Ring 3

Ring 1

Least
privileged

Most
privileged

Observation 1: Code in a more

privileged ring can read and write

memory in a lower privilege ring, but

function calls between rings can only

happen through hardware-enforced

mechanisms (e.g., system calls,

“gates” (DON’T ASK))

Observation 2: Only Ring 0 can

execute privileged instructions;

Rings 1, 2, and 3 will trap when

executing privileged instructions

In a normal setup, the OS

executes in Ring 0, and the

user-level applications execute

in Ring 3.

Virtualization Approach #2:

Direct Execution w/Trap and Emulate

• Guest apps can’t tamper with the

guest OS due to ring protections

• Guest apps and guest OS can’t

tamper with VMM due to ring

protections

• When the guest OS executes a

privileged instruction, it will trap

into the VMM

• When a guest app generates a

system call or exception, the app

will trap into the VMM

• VMM’s trap handler uses a policy

to decide what to do (e.g., emulate

the instruction, kill the VM, etc.)

Physical hardware

Ring 0

Ring 1

Ring 2

Ring 3

VMM

Guest OS

Guest apps

[Assumes that guest code uses

ISA of physical hardware!]

Virtualization Approach #2:

Direct Execution w/Trap and Emulate
• This approach requires that a processor be “virtualizable”

• Privileged instructions cause a trap when executed in Rings 1—3

• Sensitive instructions access low-level machine state that should

be managed by an OS or VMM

• Ex: Instructions that modify segment/page table registers

• Ex: IO instructions

• Virtualizable processor: all sensitive instructions are privileged

• If a processor is virtualizable, a VMM can interpose on any sensitive

instruction that the VM tries to execute

• VMM can control how the VM interacts with the “outside world”

(i.e., physical hardware)

• VMM can fool the guest OS into thinking that guest OS runs at

the highest privilege level (e.g., if guest OS invokes sensitive

instruction to check the current privilege level)

Virtualization Approach #2:

Direct Execution w/Trap and Emulate
• For many years, x86 chips were not virtualizable! For example, on

the Pentium chip, 17 instructions were not virtualizable.

• Ex: push can push a register value onto the top of the stack

• %cs register contains (among other things) 2 bits representing the

current privilege level

• A guest OS running in Ring 1 could push %cs and see that the

privilege level isn’t Ring 0!

• To be virtualizable, push should cause a trap when invoked from

Ring 1, allowing the VMM to push a fake %cs value which indicates

that the guest OS is running in Ring 0

Virtualization Approach #2:

Direct Execution w/Trap and Emulate
• For many years, x86 chips were not virtualizable! For example, on

the Pentium chip, 17 instructions were not virtualizable.

• Ex: pushf/popf read/write the %eflags register using TOS

• Bit 9 of %eflags enables interrupts

• In Ring 0, popf can set bit 9, but in Ring 1, CPU silently

ignores popf!

• To be virtualizable, pushf/popf should cause traps in Ring

1 so that the VMM can detect when guest OS wants to

changes its interrupt level (meaning that the VMM should

change which interrupts it forwards to the guest OS)

How Can We Handle Non-

virtualizable Processors?

Virtualization Approach #3:

Direct Execution w/Binary Translation
• VMM dynamically rewrites nonvirtualizable instructions so that they invoke VMM

• Bare metal VMM: VMM only needs to translate nonvirtualizable instructions

(sensitive virtualizable functions will cause traps into VMM)

• Hosted VMM: All sensitive instructions (even virtualizable ones) are

translated into user-mode instructions that invoke the VMM

Physical

hardware

Ring 0

Ring 1

Ring 2

Ring 3

VMM

Guest OS

User apps

Physical

hardware

Ring 0

Ring 1

Ring 2

Ring 3

Host OS

Guest OS

User apps

VMM

E
x: V

M
W

a
re

 E
S
X

 S
e
rve

r

Ex: VMWare
Workstation

Virtualization Approach #3:

Direct Execution w/Binary Translation
• Good: Guest code doesn’t have to be modified by developers

(translation is done automagically by VMM), so you can run off-

the-shelf guest OSes and applications

• Good: The vast majority of instructions run at bare-metal speed

• Bad: Implementing the VMM is tricky!

• Ex: A processor with a software-managed TLB

• We must distinguish between:

• Virtual memory: What the guest applications see

• Physical memory: What the guest OS manipulates

• Machine memory: The actual memory that the underlying

machine has (and is managed by the VMM)

Direct Execution w/Binary Translation

(Virtualizable Processor with Software-managed TLB)

Guest App (Ring 3) Guest OS (Ring 1) VMM (Ring 0)
Memory access causes a

TLB miss -> trap
TLB handler of the VMM:

Invoke the guest OS TLB

handler
TLB handler of the guest OS:

Extract VPN from VA; do page

table lookup; if present and

valid, get PFN and update TLB

Trap handler of the VMM

(unprivileged code trying to

write TLB entry): guest OS

wants to install VPN-to-PFN

mapping, but VMM installs

VPN-to-MFN mapping; return

to guest OS TLB handler

VPN: Virtual page number

PFN: Physical frame number

MFN: Machine frame number

Guest OS executes the “return

from trap” instruction Trap handler of the VMM

(unprivileged code trying

to execute privileged

instruction): Restart guest

app’s faulting instruction

Previously faulting memory

access now succeeds

Direct Execution w/Binary Translation

(Processor with Hardware-managed TLB)

Guest App (Ring 3) Guest OS (Ring 1) VMM (Ring 0)
Memory access causes

a TLB miss -> trap

OH HAI

I’M A HARDWAREIf page is present and valid,

TLB is filled and guest app

automatically restarted: No

opportunity for VMM mediation!

Direct Execution with Binary Translation and Hardware-

controlled TLBs: Shadow Page Tables on x86
• When the guest OS in Ring 1 context switches to a new

process, the guest OS sets the page table pointer %cr3

Directory number Page table number Offset

01112212231

PDE

PTE

PhysAddr

10

bits

10

bits

%cr3

32

bits

Page table

directory

Page table

4KB page

12 bits

Direct Execution with Binary Translation and Hardware-

controlled TLBs: Shadow Page Tables on x86
• When the guest OS in Ring 1 context switches to a new

process, the guest OS sets the page table pointer %cr3

• Assigning to %cr3 is a privileged operation!

• So, the guest OS will trap to the VMM

• VMM can install its own mappings for the new process

• VMM also marks the machine pages containing the guest

app’s page table structures as read-only

• The VMM knows how to interpret %cr3 and the page

table format because the page table format is hardware-

defined and thus well-known!

• So, when the guest OS tries to modify a PTE, a “write

attempted on read-only page” fault will invoke the VMM,

who can then modify the PTE according to a VMM policy

• Overall result: VMM can always control “real” machine-level

address translation

Virtualization Approach #4: Direct Execution

w/ Hardware-assisted Virtualization
• Direct execution with binary translation is tricky, so . . .

• . . . let’s add virtualization support to the hardware!

• Ex: Intel’s VT-x

• Adds two new modes of execution

• VMX root mode: Equivalent to x86 without VT-x; VMM runs

in this mode in Ring 0

• VMX non-root mode: Still has rings, but sensitive operations

trigger a transition to root mode, even in Ring 0

• Adds a new hardware structure

• Virtual machine control structure (VMCS): Configured by the

VMM to determine *which* sensitive operations cause non-

root code to transition to root code

• Example of sensitive operations: Writing to %cr3; receiving

an interrupt

Virtualization Approach #5:

Direct Execution w/Paravirtualization
• Direct execution with binary translation is tricky, so . . .

• . . . let’s rewrite the guest OS to remove sensitive-but-unprivileged

instructions!

• Define a subset of x86 that is virtualizable

• Port the guest OS to the virtualizable subset

• Example: The Xen hypervisor

Physical

hardware

Ring 0

Ring 1

Ring 2

Ring 3

Xen

Guest OS

User apps

• Guest OS is modified to inform Xen of changes

to page table mappings (avoids VMM chicanery

with read-only page table structures)

• Guest OS modified to install “fast” sys call handler

• Xen validates int handler at registration time,

then installs it directly

• Validated handler directly invokes guest OS in

Ring 0 (in contrast to “slow” path in which system

call exception invokes Xen handler in Ring 0, which

then invokes guest OS handler in Ring 1)

• Guest apps are unmodified

Virtualization Approach #5:

Direct Execution w/Paravirtualization
• Good: Don’t need any tricky binary translation, so paravirtualization

should be faster than direct execution with binary translation

• Paravirtualization has fewer context switches and less

bookkeeping logic

• Maybe bad: Someone must port an OS to the virtualizable x86

subset . . . is this easier or harder than implementing binary

translation logic?

• Various flavors of Linux and BSD have been ported to Xen. So,

porting is definitely possible for real OSes!

• Xen can also leverage hardware-assisted virtualization! So, Xen

can be used as a VMM for non-paravirtualized OSes like

Windows

Virtualization Approach #6: OS-level Virtualization
• “Container” technologies are the new hotness (e.g., Docker, LXC)

• A container is a group of Linux processes

• Linux cgroups (“control groups”) limit the CPU, memory, network, and disk

resources that the container can use; also assigns priorities

• Linux namespaces isolate the ability of the container to see various resources

• Ex: mnt namespace controls which part of the file system is visible to container

• Ex: pid namespace isolates the pids that a container can manipulate

• Ex: net namespace controls which NICs, iptables rules a container uses

• Good: Don’t need to rewrite/translate guest applications

• Good: High performance

• Avoids context transitions between guest apps, guest OS, and VMM

• Avoids “mark guest OS page table structures as read-only” nonsense

• Don’t have to boot an entire OS to launch an application!

• Don’t have to dedicate resources for an entire OS per application

• Good: Snapshots are smaller than with traditional VMs

• Don’t need to include OS state in the snapshot!

• Bad: Guest applications are forced to use a particular host OS’s interface

Virtualization: A Summary
1. Hosted interpretation

• Easy to handle privileged instructions, can debug all guest code (even

low-level code), but has bad performance and a complex VMM

implementation

2. Direct execution with trap-and-emulate

• Good performance, works with unmodified guest code, but requires a

virtualizable processor

3. Direct execution with binary translation

• Good performance, works with unmodified guest code and non-

virtualizable processors, but implementing the VMM is tricky

4. Direct execution with hardware-assisted virtualization

• Good performance, works with unmodified guest code, is probably the

future of virtualization once hardware context switches between root

and non-root are optimized

5. Paravirtualization

• Good performance, but requires modification of guest OS

6. OS-level virtualization

• Good performance, works with unmodified guest code, small VM

snapshots, fast VM launch, but VMs must use OS interface of the host

