
Security, Part II

Using
Virtualization

for Evil

Deprivileging a Guest OS
• Using virtualization technology, we can mediate how a Guest OS

(and its applications) interact with the outside world
• Ex: Direct execution w/binary translation and a bare-metal VMM
• VMM dynamically translates

non-virtualizable instructions
into virtualizable equivalents

• As a result, all sensitive
operations generate a trap into
VMM; VMM can then decide
whether to kill the Guest OS,
perform the requested
operation and return a (maybe
modified) result, etc.

Physical
hardware

Ring 0

Ring 1

Ring 2

Ring 3

VMM

Guest OS

User apps

All sensitive operations trap

Deprivileging a Guest OS
• Using virtualization technology, we can mediate how a Guest OS

(and its applications) interact with the outside world
• Ex: Direct execution w/binary translation and a bare-metal VMM

Physical
hardware

Ring 0

Ring 1

Ring 2

Ring 3

VMM

Guest OS

User apps

All sensitive operations trap

What if the deprivileged OS . . .
WERE THE REAL USER’S OS?

• Suppose that an attacker could hack into a target machine, and
then move the user’s OS+apps into a VM
• VMM controls physical RAM, so the VMM can arbitrarily

tamper with the victim’s code and data

Physical
hardware

Ring 0

Ring 1

Ring 2

Ring 3

VMBR

Target OS

User apps

• VMM controls physical devices,
so the VMM can snoop on the
victim’s keystrokes, network
traffic, disk IO

• If VMM is well-implemented, the
victim’s code can’t detect that
it’s running inside a VM!

• The fundamental principle: lower
levels control higher levels!

Virtual-machine Based Rootkit (VMBR)

When You Turn The Power Button On . . .
• The motherboard initializes itself and turns on a CPU to be the

bootstrap CPU (the other CPUs are left idle at first)
• The CPU starts executing the Basic Input-Output System (BIOS)

• BIOS is low-level software provided by the motherboard
manufacturer

• The motherboard maps the BIOS code (typically stored in
Flash memory) to a well-known location in RAM, so that the
CPU knows where to start execution (on x86, location is
0xF0000)

• BIOS probes for the existence of other hardware like hard disks,
keyboards, etc., and then starts the boot sequence
• BIOS reads the first sector of the hard disk which contains the

Master Boot Record (MBR)
• BIOS loads MBR into memory and jumps to that instruction
• BIOS then loads the rest of the OS from disk

VMBR: Corrupting The Boot Sequence
• Step 1: Attacker gains the ability to execute code

• Probably the easiest part of the attack
• Phishing emails, Java vulnerability, drive-by download, etc.

UNINSTALL JAVA

IT’S KILLING YOU

DISABLE IT NOW

Attacking Java’s Best-fit Mapping Conversions
• Best-fit mapping occurs when a program converts a string from

encoding X to encoding Y, and Y does not have an exact
representation for a particular character

• Java Web Start (JAWS) allows a user to
launch a Java application by clicking
on a link in a web browser

U+02BA

U+030E

0x22 (ASCII)
• Whenever a program receives input from an untrusted

source, that input should be sanitized (i.e., stripped of
dangerous characters)

• To prevent a website from passing malicious arguments to
javaw.exe, JAWS quotes entire argument string, and then
escapes any quotation marks inside of it
 javaw.exe -arg="maliciousArg1 maliciousArg2 "maliciousArg3

javaw.exe "-arg=\" maliciousArg1 maliciousArg2 \"maliciousArg3"
Attacker-provided string in red is sanitized to . . .

Attacking Java’s Best-fit Mapping Conversions
• Best-fit mapping occurs when a program converts a string from

encoding X to encoding Y, and Y does not have an exact
representation for a particular character

• Java Web Start (JAWS) allows a user to
launch a Java application by clicking
on a link in a web browser

U+02BA

U+030E

0x22 (ASCII)
• Whenever a program receives input from an untrusted

source, that input should be sanitized (i.e., stripped of
dangerous characters)

• To prevent a website from passing malicious arguments to
javaw.exe, JAWS quotes entire argument string, and then
escapes any quotation marks inside of it
 javaw.exe -arg=[U+02BA] maliciousArg1 maliciousArg2 [U+02BA]maliciousArg3

javaw.exe "-arg=" maliciousArg1 maliciousArg2 "maliciousArg3"
Sanitizer only looks for 0x22, and then JAWS best-fits to ASCII . . .

VMBR: Corrupting The Boot Sequence
• Step 1: Attacker gains the ability to execute code

• Probably the easiest part of the attack
• Phishing emails, Java vulnerability, drive-by download, etc.

• Step 2: Attacker downloads the VMBR
• I was lying; this is actually the easiest part of the attack

• Step 3: Corrupt the disk state
• In the first proof-of-concept VMBR on Linux, the attacker

disables swapping and then stores the rootkit state in the
swap space; leaves other on-disk blocks in their normal place

• Definitely the trickiest part of the attack, since the attacker
needs to do this without causing the kernel to crash, while
simultaneously avoiding antivirus software (which looks for
tampering of boot blocks!)

• Step 4: Reboot the machine
• If the attacker has root privileges, then rebooting is easy

VMBR: After Post-infection reboot
• VMBR loads target OS in a virtual machine

• Target OS’s disk IO is redirected to a virtual disk that’s
controlled by the VMBR

• VMBR also creates an “attack OS” to manage the evil
• Attack OS allows the malware to implement the

attack control logic in user-mode code, and take
advantage of device drivers and other OS
functionality

Physical
hardware

Ring 0

Ring 1

Ring 2

Ring 3

VMBR

Target OS

User apps

All sensitive operations trap

Attack OS

Attack apps
One implementation
option: Put Attack OS
and apps in separate
VM

Can VMBR Be Detected?
• User can boot from a safe medium like a CD-ROM or USB

drive, use a recovery program to detect the malicious boot
data on disk
• But why would the user think to do this? Perf problems?

• Virtualization adds overhead via trap-and-emulate
• Target OS can measure the speed of benchmarks that use

sensitive instructions
• However, if VMBR uses hardware-assisted virtualization

(e.g., Intel VT-x), the attacker can virtualize timestamp
instructions (e.g., RDTSC on x86)!

• Target OS can try to look for “virtualization artifacts”
• Ex: VMWare-specific paravirtualization network drivers

placed in the target OS
• However, an attacker which uses a customized VMM will

avoid leaving such artifacts

What About Anti-virus Scanners and
Network Intrusion Detectors?

• Anti-virus scanners are typically implemented as a file
system driver (Windows) or “stackable file system” (Linux)

Anti-virus scanner

Real file system (e.g., ext3)

VFS interface

User-level process
User

Kernel

• Network intrusion detectors are similarly implemented as
filter drivers

• Both types of defensive mechanisms live in the kernel . . .
• . . . and thus cannot detect evil at the VMBR level!

The “Blue Pill” Kerfuffle

The “Blue Pill” Kerfuffle

• Blue Pill was a proof-of-concept VMBR that used AMD/x86
hardware-assisted virtualization

• “There is no software-visible bit whose
setting indicates whether a logical
processor is in VMX non-root
operation. This fact may allow a VMM
to prevent guest software from
determining that it is running in a
virtual machine.” –Intel VT-x
specification

• Inventor of Blue Pill claimed that since
Blue Pill uses hardware-assisted
virtualization (including RDTSC), Blue
Pill is “100% undetectable”

The “Blue Pill” Kerfuffle

• Security researchers started looking for “red pills,” i.e., mechanisms
that target OSes can use to detect Blue Pill

• One commonly proposed red pill:
external sources of time
• VMBR can virtualize local clock

interfaces, but can’t virtualize
clocks on remote machines!

• So, target OS can try to time
sensitive instructions w.r.t. time
stamps fetched over the
network

• Timing complication 1: VMBR controls network interfaces, so if it
knew the network timing protocol, could it rewrite packets? [Seems
hard]

• Timing complication 2: How much jitter is involved in received
network packets? Will this confuse timing measurements? [VMBR
can inject jitter—very easy]

• Many people also claimed that properly virtualizing RDTSC is
impossible for the VMBR to do correctly

• An engineer at VMware called the
Blue Pill research “quasi-illiterate
gibberish”

• “The claim is that SVM/VT make it
possible to cloak the presence of a
VMM rootkit completely. Allow me
to go on record: this claim is pure
fantasy. In practice, it is always
possible to detect the presence of
a VMM, via timing attacks.”

• “VMware's software goes to extremely clever lengths in coordinating and
manipulating the various virtual time sources just to get certain versions
of the Linux kernel to boot . . . This was the result of a real, naturally
occurring guest code that had nothing to do with VM detection; you can
imagine that a dedicated attack on the VMM's virtual time sources could
be many orders of magnitude more effective.”

• Fundamental challenge: Completely accurate timing virtualization
requires attacker to do full system simulation via interpretation
(much slower than trap-and-emulate!)

• Ex: Does the VMBR emulate the
relative latencies of a TLB miss
versus polling the network card for
data? If the VMBR doesn’t do both,
target OS can detect the timing
discrepancy!

• Cycle-accurate simulation has a
performance overhead of
~25,000x; users would notice!

• Given the
complexity of
VMBRs, they
don’t seem worth
the trouble for
most attackers

Attested Booting: iPhone

• Each participant Alice in the cryptosystem has a public key and a
private key
• Alice distributes PubKeyAlice to people who want to verify that

Alice has sent them messages
• Alice keeps PrivKeyAlice private

• The signature function sig(msg, key) has a special property . . .
 sig(sig(msg, PrivKeyAlice), PubKeyAlice) = msg

 . . . but only if the public/private keys match
• Alice can send <msg, sig(msg, PrivKeyAlice)> to Bob, allowing Bob

to use PubKeyAlice to verify the signature
• Optimization: Alice sends <msg, sig(hash(msg), PrivKeyAlice)>
• hash(msg) takes an arbitrary length msg and outputs a fixed-

length output (say, 20 bytes)
• A good hash function should be uniform (i.e., spreading all

inputs evenly and randomly across output space)

. . . but first, public key cryptography

//Example written in the Dafny language
//(a language which is designed to be
//easily verified)
method Abs(x: int) returns (y: int)
 ensures y >= 0;
 ensures x >= 0 ==> y == x;
 ensures x < 0 ==> y == -x;
{

Formally Verified Software
• If you could verify the correctness of your code, you

could attest to a formally correct software stack!

 //Here’s the code to write.
}

//Example written in the Dafny language
//(a language which is designed to be
//easily verified)
method Abs(x: int) returns (y: int)
 ensures y >= 0;
 ensures x >= 0 ==> y == x;
 ensures x < 0 ==> y == -x;
{

Formally Verified Software
• If you could verify the correctness of your code, you

could attest to a formally correct software stack!

 y := -x;
}

Compilation
fails!

//Example written in the Dafny language
//(a language which is designed to be
//easily verified)
method Abs(x: int) returns (y: int)
 ensures y >= 0;
 ensures x >= 0 ==> y == x;
 ensures x < 0 ==> y == -x;
{

Formally Verified Software
• If you could verify the correctness of your code, you

could attest to a formally correct software stack!

 if(x < 0){
 y := -x;
 }else{
 y := x;
 }
}

Compilation
succeeds!

Formally Verified Software
• Basic idea: Compile your program into a formula, prove that the

formula satisfies certain properties, and if so, compile the formula
to assembly code
• Analyze formula using SMT solver (“satisfiability modulo theory”)
• SMTs are a type of logical formula, and the SMT solver tries to

solve a constraint satisfaction problem
• Open questions:

• What’s the best way to reason about time and asynchrony?
• Is the programmer effort spent writing (formal, but maybe still

buggy) specs more or less than effort for writing (certainly
incomplete, but maybe good enough) tests?

• Should we design hardware to be more amenable to
verification? [Formally verifying software requires a formal model
for the underlying hardware—x86 OH NO, but maybe you just
need to formally model an x86 subset?]

• See the Ironclad paper for more details [Hawblitzel 2014]

	Security, Part II
	Using Virtualization for Evil
	Deprivileging a Guest OS
	Deprivileging a Guest OS
	Slide Number 5
	When You Turn The Power Button On . . .
	VMBR: Corrupting The Boot Sequence
	Attacking Java’s Best-fit Mapping Conversions
	Attacking Java’s Best-fit Mapping Conversions
	VMBR: Corrupting The Boot Sequence
	VMBR: After Post-infection reboot
	Can VMBR Be Detected?
	What About Anti-virus Scanners and Network Intrusion Detectors?
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Attested Booting: iPhone
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Formally Verified Software
	Formally Verified Software
	Formally Verified Software
	Formally Verified Software

