
Security, Part II 



Using 
Virtualization 

for Evil 



Deprivileging a Guest OS 
• Using virtualization technology, we can mediate how a Guest OS 

(and its applications) interact with the outside world 
• Ex: Direct execution w/binary translation and a bare-metal VMM 
• VMM dynamically translates 

non-virtualizable instructions 
into virtualizable equivalents 

• As a result, all sensitive 
operations generate a trap into 
VMM; VMM can then decide 
whether to kill the Guest OS, 
perform the requested 
operation and return a (maybe 
modified) result, etc. 
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What if the deprivileged OS . . . 
WERE THE REAL USER’S OS? 



• Suppose that an attacker could hack into a target machine, and 
then move the user’s OS+apps into a VM 
• VMM controls physical RAM, so the VMM can arbitrarily 

tamper with the victim’s code and data 
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• VMM controls physical devices, 
so the VMM can snoop on the 
victim’s keystrokes, network 
traffic, disk IO 

• If VMM is well-implemented, the 
victim’s code can’t detect that 
it’s running inside a VM!  

• The fundamental principle: lower 
levels control higher levels! 

 

Virtual-machine Based Rootkit (VMBR) 



When You Turn The Power Button On . . . 
• The motherboard initializes itself and turns on a CPU to be the 

bootstrap CPU (the other CPUs are left idle at first) 
• The CPU starts executing the Basic Input-Output System (BIOS) 

• BIOS is low-level software provided by the motherboard 
manufacturer 

• The motherboard maps the BIOS code (typically stored in 
Flash memory) to a well-known location in RAM, so that the 
CPU knows where to start execution (on x86, location is 
0xF0000) 

• BIOS probes for the existence of other hardware like hard disks, 
keyboards, etc., and then starts the boot sequence 
• BIOS reads the first sector of the hard disk which contains the 

Master Boot Record (MBR) 
• BIOS loads MBR into memory and jumps to that instruction 
• BIOS then loads the rest of the OS from disk 

 
 



VMBR: Corrupting The Boot Sequence 
• Step 1: Attacker gains the ability to execute code 

• Probably the easiest part of the attack 
• Phishing emails, Java vulnerability, drive-by download, etc. 

UNINSTALL JAVA 

IT’S KILLING YOU 

DISABLE IT NOW 



Attacking Java’s Best-fit Mapping Conversions 
• Best-fit mapping occurs when a program converts a string from 

encoding X to encoding Y, and Y does not have an exact 
representation for a particular character 

• Java Web Start (JAWS) allows a user to 
launch a Java application by clicking 
on a link in a web browser 

 

U+02BA 

U+030E 

0x22 (ASCII) 
• Whenever a program receives input from an untrusted 

source, that input should be sanitized (i.e., stripped of 
dangerous characters) 

• To prevent a website from passing malicious arguments to 
javaw.exe, JAWS quotes entire argument string, and then 
escapes any quotation marks inside of it 
 javaw.exe -arg="maliciousArg1 maliciousArg2 "maliciousArg3 

javaw.exe "-arg=\" maliciousArg1 maliciousArg2 \"maliciousArg3" 
Attacker-provided string in red is sanitized to . . . 



Attacking Java’s Best-fit Mapping Conversions 
• Best-fit mapping occurs when a program converts a string from 

encoding X to encoding Y, and Y does not have an exact 
representation for a particular character 

• Java Web Start (JAWS) allows a user to 
launch a Java application by clicking 
on a link in a web browser 

 

U+02BA 

U+030E 

0x22 (ASCII) 
• Whenever a program receives input from an untrusted 

source, that input should be sanitized (i.e., stripped of 
dangerous characters) 

• To prevent a website from passing malicious arguments to 
javaw.exe, JAWS quotes entire argument string, and then 
escapes any quotation marks inside of it 
 javaw.exe -arg=[U+02BA] maliciousArg1 maliciousArg2 [U+02BA]maliciousArg3 

javaw.exe "-arg=" maliciousArg1 maliciousArg2 "maliciousArg3" 
Sanitizer only looks for 0x22, and then JAWS best-fits to ASCII . . . 



VMBR: Corrupting The Boot Sequence 
• Step 1: Attacker gains the ability to execute code 

• Probably the easiest part of the attack 
• Phishing emails, Java vulnerability, drive-by download, etc. 

• Step 2: Attacker downloads the VMBR 
• I was lying; this is actually the easiest part of the attack 

• Step 3: Corrupt the disk state 
• In the first proof-of-concept VMBR on Linux, the attacker 

disables swapping and then stores the rootkit state in the 
swap space; leaves other on-disk blocks in their normal place 

• Definitely the trickiest part of the attack, since the attacker 
needs to do this without causing the kernel to crash, while 
simultaneously avoiding antivirus software (which looks for 
tampering of boot blocks!) 

• Step 4: Reboot the machine 
• If the attacker has root privileges, then rebooting is easy 



VMBR: After Post-infection reboot 
• VMBR loads target OS in a virtual machine 

• Target OS’s disk IO is redirected to a virtual disk that’s 
controlled by the VMBR 

• VMBR also creates an “attack OS” to manage the evil 
• Attack OS allows the malware to implement the 

attack control logic in user-mode code, and take 
advantage of device drivers and other OS 
functionality 
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Can VMBR Be Detected? 
• User can boot from a safe medium like a CD-ROM or USB 

drive, use a recovery program to detect the malicious boot 
data on disk 
• But why would the user think to do this? Perf problems? 

• Virtualization adds overhead via trap-and-emulate 
• Target OS can measure the speed of benchmarks that use 

sensitive instructions 
• However, if VMBR uses hardware-assisted virtualization 

(e.g., Intel VT-x), the attacker can virtualize timestamp 
instructions (e.g., RDTSC on x86)! 

• Target OS can try to look for “virtualization artifacts” 
• Ex: VMWare-specific paravirtualization network drivers 

placed in the target OS 
• However, an attacker which uses a customized VMM will 

avoid leaving such artifacts 



What About Anti-virus Scanners and 
Network Intrusion Detectors? 

• Anti-virus scanners are typically implemented as a file 
system driver (Windows) or “stackable file system” (Linux) 

Anti-virus scanner 

Real file system (e.g., ext3) 

VFS interface 

User-level process 
User 

Kernel 

• Network intrusion detectors are similarly implemented as 
filter drivers 

• Both types of defensive mechanisms live in the kernel . . . 
• . . . and thus cannot detect evil at the VMBR level! 



The “Blue Pill” Kerfuffle 



The “Blue Pill” Kerfuffle 

• Blue Pill was a proof-of-concept VMBR that used AMD/x86 
hardware-assisted virtualization 

• “There is no software-visible bit whose 
setting indicates whether a logical 
processor is in VMX non-root 
operation. This fact may allow a VMM 
to prevent guest software from 
determining that it is running in a 
virtual machine.” –Intel VT-x 
specification 

• Inventor of Blue Pill claimed that since 
Blue Pill uses hardware-assisted 
virtualization (including RDTSC), Blue 
Pill is “100% undetectable” 



The “Blue Pill” Kerfuffle 

• Security researchers started looking for “red pills,” i.e., mechanisms 
that target OSes can use to detect Blue Pill 

• One commonly proposed red pill: 
external sources of time 
• VMBR can virtualize local clock 

interfaces, but can’t virtualize 
clocks on remote machines! 

• So, target OS can try to time 
sensitive instructions w.r.t. time 
stamps fetched over the 
network 

• Timing complication 1: VMBR controls network interfaces, so if it 
knew the network timing protocol, could it rewrite packets? [Seems 
hard] 

• Timing complication 2: How much jitter is involved in received 
network packets? Will this confuse timing measurements? [VMBR 
can inject jitter—very easy] 



• Many people also claimed that properly virtualizing RDTSC is 
impossible for the VMBR to do correctly 

• An engineer at VMware called the 
Blue Pill research “quasi-illiterate 
gibberish” 

• “The claim is that SVM/VT make it 
possible to cloak the presence of a 
VMM rootkit completely. Allow me 
to go on record: this claim is pure 
fantasy. In practice, it is always 
possible to detect the presence of 
a VMM, via timing attacks.” 

• “VMware's software goes to extremely clever lengths in coordinating and 
manipulating the various virtual time sources just to get certain versions 
of the Linux kernel to boot . . . This was the result of a real, naturally 
occurring guest code that had nothing to do with VM detection; you can 
imagine that a dedicated attack on the VMM's virtual time sources could 
be many orders of magnitude more effective.” 



• Fundamental challenge: Completely accurate timing virtualization 
requires attacker to do full system simulation via interpretation 
(much slower than trap-and-emulate!) 

• Ex: Does the VMBR emulate the 
relative latencies of a TLB miss 
versus polling the network card for 
data? If the VMBR doesn’t do both, 
target OS can detect the timing 
discrepancy! 

• Cycle-accurate simulation has a 
performance overhead of 
~25,000x; users would notice! 

• Given the 
complexity of 
VMBRs, they 
don’t seem worth 
the trouble for 
most attackers 



Attested Booting: iPhone 

• Each participant Alice in the cryptosystem has a public key and a 
private key 
• Alice distributes PubKeyAlice to people who want to verify that 

Alice has sent them messages 
• Alice keeps PrivKeyAlice private 

• The signature function sig(msg, key) has a special property . . . 
           sig( sig(msg, PrivKeyAlice), PubKeyAlice) = msg 

     . . . but only if the public/private keys match 
• Alice can send <msg,  sig(msg, PrivKeyAlice)> to Bob, allowing Bob 

to use PubKeyAlice to verify the signature 
• Optimization: Alice sends <msg,  sig(hash(msg), PrivKeyAlice)> 
• hash(msg) takes an arbitrary length msg and outputs a fixed-

length output (say, 20 bytes) 
• A good hash function should be uniform (i.e., spreading all 

inputs evenly and randomly across output space) 

. . . but first, public key cryptography 









//Example written in the Dafny language 
//(a language which is designed to be 
//easily verified) 
method Abs(x: int) returns (y: int) 
    ensures y >= 0; 
    ensures x >= 0 ==> y == x; 
    ensures x < 0 ==> y == -x; 
{ 

Formally Verified Software 
• If you could verify the correctness of your code, you 

could attest to a formally correct software stack! 

    //Here’s the code to write. 
} 



//Example written in the Dafny language 
//(a language which is designed to be 
//easily verified) 
method Abs(x: int) returns (y: int) 
    ensures y >= 0; 
    ensures x >= 0 ==> y == x; 
    ensures x < 0 ==> y == -x; 
{ 

Formally Verified Software 
• If you could verify the correctness of your code, you 

could attest to a formally correct software stack! 

    y := -x; 
} 

Compilation 
fails! 



//Example written in the Dafny language 
//(a language which is designed to be 
//easily verified) 
method Abs(x: int) returns (y: int) 
    ensures y >= 0; 
    ensures x >= 0 ==> y == x; 
    ensures x < 0 ==> y == -x; 
{ 

Formally Verified Software 
• If you could verify the correctness of your code, you 

could attest to a formally correct software stack! 

    if(x < 0){ 
        y := -x; 
    }else{ 
        y := x; 
    } 
} 

Compilation 
succeeds! 



Formally Verified Software 
• Basic idea: Compile your program into a formula, prove that the 

formula satisfies certain properties, and if so, compile the formula 
to assembly code 
• Analyze formula using SMT solver (“satisfiability modulo theory”) 
• SMTs are a type of logical formula, and the SMT solver tries to 

solve a constraint satisfaction problem 
• Open questions: 

• What’s the best way to reason about time and asynchrony? 
• Is the programmer effort spent writing (formal, but maybe still 

buggy) specs more or less than effort for writing (certainly 
incomplete, but maybe good enough) tests? 

• Should we design hardware to be more amenable to 
verification? [Formally verifying software requires a formal model 
for the underlying hardware—x86 OH NO, but maybe you just 
need to formally model an x86 subset?] 

• See the Ironclad paper for more details [Hawblitzel 2014] 
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