
Security

What Hollywood thinks

computer security is about

What computer security is really about

Understanding humanity

Understanding

how systems work

Hardware

OS

App App App

Theoretical cryptography

Applied cryptography

Race Conditions:

Non-atomic System Call Pairs
//Process X
sys_call0();
sys_call1();

//Process Y
do_evil()

Time Time

Time

Linux: Mapping Humans to Privileges
• Each user has a user ID (UID), with root having UID 0

• Each user also has a group ID (GID), but we’ll mostly ignore

groups today

• Each file has:

• Read/write/execute permissions for the file’s owner, the file’s

group, and the world (i.e., all other users)

• Set-user-id bit: 1 if the file should be executed with the owner’s

permissions (shows up as “s” instead of “x” in “ls –l” output); 0 if

the file should be executed with launching user’s permissions
$ ls -l a.out
-rwxr-xr-x 1 mickens somegrp 524288 Jan 19 11:35

User

Group

World

Owner

Owner

group

Linux: Mapping Humans to Privileges
• Each process has a bunch of IDs, including:

• Real UID: The UID of the process owner

• Effective UID: The UID that the kernel checks when validating

access permissions

• On fork(), the child inherits the UIDs of its parent

• On exec(progName), the process keeps its UIDs unless the

progName file has the set-user-ID bit set, in which case the

effective UID of the process is set to the UID of the binary’s owner

• Ex: The passwd command needs to update a user’s entry in

/etc/shadow file

• The /etc/shadow file is sensitive and should only be modified

by root, but regular users need to be able to update their

passwords!

• So, the passwd binary is owned by root, but has a set-user-ID

bit of 1

Making New Processes: fork()
• fork() allows a parent process to create a child process

• Abstractly speaking, child gets a copy of parent’s address space

• Linux’s fork() uses copy-on-write pages: avoids synchronous

copy of the entire address space, and only incurs copy overhead

for pages which actually diverge between parent and child

Parent
virt addr
space

Child
virt addr
space

Physical
memory

X
Y
Z

X
Y
Z

Parent
virt addr
space

Child
virt addr
space

Physical
memory

X
Y
Z

X*
Y
Z

Child writes X

• BSD’s old fork() did full, synchronous copy

The Drunk Uncle Named BSD vfork()
• vfork() was intended for the situation in which

the parent does a fork() and the child does an

“immediate” exec()

• After vfork(), parent is suspended; child

executes using parent’s address space and

thread-of-control until exec() is called

• When child calls exec(), BSD makes a new

address space for the child and copies file

descriptors, current working directory, etc. like

a regular fork()

• Child process is supposed to not modify

anything in the parent’s address space before

calling exec() or otherwise undefined demons

happen

• BSD BE SERIOUS UGGHHH IMPLEMENT COW

The Drunk Uncle Named BSD vfork()
Problem: vfork()+exec() is not atomic!

Solution for priority inversion: Use

fork()+exec(), and implement COW to

make fork() fast.
[fork()+exec() still isn’t atomic, but the

denial of service is now fixed since the

parent isn’t blocked waiting for the

child.]

Fun With Symlinks
• Symbolic link: special file whose contents are name of another file

• Ex: link –s /etc/shadow /tmp/foo

• /tmp/foo is now an alias for /etc/shadow

• When a process P wants to read/write/execute /tmp/foo, the

kernel checks whether P has the appropriate access permissions for
the underlying path /etc/shadow

• A program can check whether path refers to symlink or regular file

• Sounds pretty secure, right?

SO CLOSE
Without careful coding, a

program’s security checks

on a pathname are not

atomic with respect to the

dereferencing of pathname!

//Imagine that a mailserver runs with
//root privileges.
char *filename = "/home/loki/mailbox";
char *new_msg = get_new_msg_for(“loki");
if(new_msg == NULL){

return;
}
int new_msg_len = strlen(new_msg);

//Write the new message into Loki's
//mailbox, but we're paranoid! Only
//write the new message if Loki's
//mailbox path isn't a symlink.
struct stat lstat_info;
int fd;
lstat(filename, &lstat_info);
if(!S_ISLNK(lstat_info.st_mode)){

fd = open(filename, O_RDWR);
write(fd, new_msg, new_msg_len);
close(fd);

}

//Window of vulnerability

$ rm /home/loki/mailbox
$ ln –s /etc/shadow

/home/loki/mailbox

The password file will
get overwritten with the
contents of Loki’s new
email. By the way, LOKI
CAN EMAIL HIMSELF.

char *filename = "/home/loki/mailbox";
char *new_msg = get_new_msg_for(“loki");
if(new_msg == NULL){return;}
int new_msg_len = strlen(new_msg);

struct stat lstat_info;
struct stat fstat_info;
int fd;

lstat(filename, &lstat_info); //Doesn’t follow
//symlinks

fd = open(filename, O_RDWR); //*Does* follow
//symlinks--“dereferences” symlink to get
//fd which represents the symlink target

fstat(fd, &fstat_info);
if (lstat_info.st_mode == fstat_info.st_mode &&

lstat_info.st_ino == fstat_info.st_ino &&
lstat_info.st_dev == fstat_info.st_dev){
write(fd, new_msg, new_msg_len);

}
close(fd);

Ensures that the

filename used to

open the file

wasn’t a symlink!
//Attacker window to corrupt the fd that will
//be opened by the mailserver.

Other Defenses
Linux added several new system

calls to reduce the number of race

conditions developers must check

//Ten directory race conditions
//to check.
int fd0 = open(“dirName/0.txt”);
int fd1 = open(“dirName/1.txt”);

. . .
int fd9 = open(“dirName/9.txt”);

//One directory race condition
//to check.
int dirFd = open(“dirName”);
int fd0 = openat(dirFd, “0.txt”);
int fd1 = openat(dirFd, “1.txt”);

. . .
int fd9 = openat(dirFd, “9.txt”);

Once process has an fd for

a path, symlink shenanigans

won’t change the inode that

the file descriptor points to!

Other Defenses
• There have been various research proposals to add

transactional support to file systems

• Regular journaling file systems provide all-or-nothing

transactions for individual file system calls

• We could add support for transactions which span

multiple file system calls (e.g., see TxOS)
sys_xbegin();
struct stat st;
int fd;
lstat(filename, &st_info);
if(!S_ISLNK(st_info.st_mode)){

//Race window would ordinarily
//be here, but transactions
//are isolated from each other!
fd = open(filename, O_RDWR);
write(fd, buf, buf_len);
close(fd);

}
sys_xend();

//Process Y
do_evil()

Time Time

Time

Race Conditions: Non-atomic System Call Pairs

//Process X
sys_call0();
sys_call1();

//Process X
sys_xbegin();
sys_call0();
sys_call1();
sys_xend();

Txn Txn

Impossible!

Race Conditions At

The Hardware Level

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

RAM

mov 1 --> [x]
mov [y] --> %eax

mov 1 --> [y]
mov [x] --> %ebx

//Assume that memory
//locations [x] and [y]
//both initialized to 0

x86 allows both threads

to read 0 (which would

be impossible if both

threads run instructions

sequentially (but may be

interrupted)).

How Hardware Shows Its Love For Us
• Modern processors do unholy things to improve performance

• Per-core store buffers avoid the need for a core to stall on

a synchronous write through the memory hierarchy

• A core may also reorder instructions (e.g., non-dependent

loads and stores) to increase parallelism of hardware usage

//Load is dependent on the
//store, so hardware will
//*not* reorder the memory
//operations.
x = 42;
y = x;

How Hardware Shows Its Love For Us
• Modern processors do unholy things to improve performance

• Per-core store buffers avoid the need for a core to stall on

a synchronous write through the memory hierarchy

• A core may also reorder instructions (e.g., non-dependent

loads and stores) to increase parallelism of hardware usage

//First core
while(shouldStop == 0){;}

//Second core
answer = 42;
shouldStop = 1;printf("%d", answer);

No data dependency w.r.t.

the local core. So, hardware

may reorder the stores!

This code may not print 42!

It’s hard for developers to

find all of the places in

which memory-ordering

primitives are necessary!

Linux TLB Flushing Logic on x86
• When the kernel changes a page table mapping, the kernel

must flush the local core’s TLB to remove any stale entry

• On a multi-core system, the local core must also send an IPI

to other cores so that those cores can flush their TLBs too

Race Conditions

Caused By Poor

Locking Discipline

Race Condition in Linux’s ELF Loader

• Just like OS161, Linux has code to load an ELF binary into

memory, parse it, and initialize various in-memory regions

for the stack, heap, and code

• Each process structure has a struct mm_struct
representing the process’ address space

• Kernel must grab mm_struct::mmap_sem before

modifying the process’ regions (there’s one struct
vm_area_struct for each region)

struct mm_struct{
struct vm_area_struct *mmap; /* List of VMAs */
pgd_t *pgd; /* Page table directory pointer,

* i.e., the thing that gets
* assigned to %cr3 */

struct rw_semaphore mmap_sem; /* Protects VMAs */
//...etc...

};

//In Linux 2.4.28, the mmap_sem lock was released too early!
static int load_elf_library(struct file *file){

down_write(¤t->mm->mmap_sem);
//Update the code VMA for the ELF library.
error = do_mmap(file,

ELF_PAGESTART(elf_phdata->p_vaddr),
(elf_phdata->p_filesz +

ELF_PAGEOFFSET(elf_phdata->p_vaddr)),
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
(elf_phdata->p_offset -

ELF_PAGEOFFSET(elf_phdata->p_vaddr)));
up_write(¤t->mm->mmap_sem);
if(error != ELF_PAGESTART(elf_phdata->p_vaddr))

goto out_free_ph;

elf_bss = elf_phdata->p_vaddr + elf_phdata->p_filesz;
padzero(elf_bss);

len = ELF_PAGESTART(elf_phdata->p_filesz + elf_phdata->p_vaddr +
ELF_MIN_ALIGN - 1);

bss = elf_phdata->p_memsz + elf_phdata->p_vaddr;
if(bss > len) //Create the data VMA for the ELF library.

do_brk(len, bss - len); //do_brk() assumes mmap_sem is held!

unsigned long do_brk(unsigned long addr, unsigned long len){
//Allocate a new VMA to represent the new
//extension to the process’ address space.
struct vm_area_struct *vma = kmem_cache_alloc(vm_area_cachep,

SLAB_KERNEL);
if(!vma)

return -ENOMEM;

//Update VMA bookkeeping.
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = flags;
vma->vm_page_prot = protection_map[flags & 0x0f];
//Other bookkeeping values updated . . .

//Add the new VMA to the process’ set of VMAs
//(the VMAs are stored in a red-black tree).
vma_link(mm, vma, prev, rb_link, rb_parent);

return addr;
}

The kernel may

sleep during

memory alloc!

unsigned long do_brk(unsigned long addr, unsigned long len){
//Allocate a new VMA to represent the new
//extension to the process’ address space.
struct vm_area_struct *vma = kmem_cache_alloc(vm_area_cachep,

SLAB_KERNEL);
if(!vma)

return -ENOMEM;

//Update VMA bookkeeping.
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = flags;
vma->vm_page_prot = protection_map[flags & 0x0f];
//Other bookkeeping values updated . . .

//Add the new VMA to the process’ set of VMAs
//(the VMAs are stored in a red-black tree).
vma_link(mm, vma, prev, rb_link, rb_parent);

return addr;
}

Attacker launches a program with several

threads that allocate a lot of memory and

call sys_uselib() with a carefully-crafted ELF

binary. Goal: Trigger race condition and

corrupt memory in attacker-controlled way!

• rb_link and rb_parent are pointers which

vma_link() uses to write kernel memory

• By controlling how the race condition

corrupts memory, the attacker can

overwrite pointers with attacker-controlled

values

• Later, when kernel writes memory through

corrupted pointers, the kernel will write to

memory addresses of the attacker’s

choosing

• If the attacker supplies the data for the

write, the attacker also chooses the new

contents of those memory addresses

• Ex: Overwriting a kernel function pointer to

trick the kernel into invoking the wrong

function

vma_link(mm, vma, prev, rb_link, rb_parent);

Kernel struct

[funcPtr]

[otherStuff]

Kernel function

foo()

Kernel function

bar()

Corrupted ptr

which kernel

writes to

Virtual mem

• rb_link and rb_parent are pointers which

vma_link() uses to write kernel memory

• By controlling how the race condition

corrupts memory, the attacker can

overwrite pointers with attacker-controlled

values

• Later, when kernel writes memory through

corrupted pointers, the kernel will write to

memory addresses of the attacker’s

choosing

• If the attacker supplies the data for the

write, the attacker also chooses the new

contents of those memory addresses

• Ex: Overwriting a kernel function pointer to

trick the kernel into invoking the wrong

function

vma_link(mm, vma, prev, rb_link, rb_parent);

Kernel struct

[funcPtr]

[otherStuff]

Kernel function

foo()

Kernel function

bar()

Corrupted ptr

which kernel

writes to

Virtual mem

HOW DO WE

PREVENT THIS?

HOW DO WE

PREVENT THIS?
• In the case of this specific ELF

vulnerability, the fix is to hold

mmap_sem while the data region for

the library is created
//Also, in do_brk() . . .
/*
* mm->mmap_sem is required to
* protect against another thread
* changing the mappings while we
* sleep (on kmalloc for one).
*/
verify_mmap_write_lock_held(mm);

HOW DO WE

PREVENT THIS?
• In the case of this specific ELF

vulnerability, the fix is to hold

mmap_sem while the data

region for the library is created

• However, memory corruption

vulnerabilities are often tricky to

prevent; they represent a large

fraction of all security holes!

TAKE CS 263 TO

LEARN MORE

FALL 2016

