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Race Conditions:

Non-atomic System Call Pairs
//Process X
sys_call0();
sys_call1();

//Process Y
do_evil()

Time Time

Time



Linux: Mapping Humans to Privileges
• Each user has a user ID (UID), with root having UID 0

• Each user also has a group ID (GID), but we’ll mostly ignore 

groups today

• Each file has:

• Read/write/execute permissions for the file’s owner, the file’s 

group, and the world (i.e., all other users)

• Set-user-id bit: 1 if the file should be executed with the owner’s 

permissions (shows up as “s” instead of “x” in “ls –l” output); 0 if 

the file should be executed with launching user’s permissions
$ ls -l a.out
-rwxr-xr-x    1 mickens  somegrp 524288 Jan 19 11:35
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Owner

group



Linux: Mapping Humans to Privileges
• Each process has a bunch of IDs, including:

• Real UID: The UID of the process owner

• Effective UID: The UID that the kernel checks when validating 

access permissions

• On fork(), the child inherits the UIDs of its parent

• On exec(progName), the process keeps its UIDs unless the 

progName file has the set-user-ID bit set, in which case the 

effective UID of the process is set to the UID of the binary’s owner

• Ex: The passwd command needs to update a user’s entry in 

/etc/shadow file

• The /etc/shadow file is sensitive and should only be modified 

by root, but regular users need to be able to update their 

passwords!

• So, the passwd binary is owned by root, but has a set-user-ID 

bit of 1



Making New Processes: fork()
• fork() allows a parent process to create a child process

• Abstractly speaking, child gets a copy of parent’s address space

• Linux’s fork() uses copy-on-write pages: avoids synchronous 

copy of the entire address space, and only incurs copy overhead 

for pages which actually diverge between parent and child
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• BSD’s old fork() did full, synchronous copy



The Drunk Uncle Named BSD vfork()
• vfork() was intended for the situation in which 

the parent does a fork() and the child does an 

“immediate” exec()

• After vfork(), parent is suspended; child 

executes using parent’s address space and 

thread-of-control until exec() is called

• When child calls exec(), BSD makes a new 

address space for the child and copies file 

descriptors, current working directory, etc. like 

a regular fork()

• Child process is supposed to not modify 

anything in the parent’s address space before 

calling exec() or otherwise undefined demons 

happen

• BSD BE SERIOUS UGGHHH IMPLEMENT COW





The Drunk Uncle Named BSD vfork()
Problem: vfork()+exec() is not atomic!

Solution for priority inversion: Use 

fork()+exec(), and implement COW to 

make fork() fast.
[fork()+exec() still isn’t atomic, but the 

denial of service is now fixed since the 

parent isn’t blocked waiting for the 

child.]



Fun With Symlinks
• Symbolic link: special file whose contents are name of another file

• Ex: link –s /etc/shadow /tmp/foo

• /tmp/foo is now an alias for /etc/shadow

• When a process P wants to read/write/execute /tmp/foo, the 

kernel checks whether P has the appropriate access permissions for 
the underlying path /etc/shadow

• A program can check whether path refers to symlink or regular file

• Sounds pretty secure, right?

SO CLOSE
Without careful coding, a 

program’s security checks

on a pathname are not 

atomic with respect to the 

dereferencing of pathname!



//Imagine that a mailserver runs with
//root privileges.
char *filename = "/home/loki/mailbox";
char *new_msg = get_new_msg_for(“loki");
if(new_msg == NULL){

return;
}
int new_msg_len = strlen(new_msg);

//Write the new message into Loki's
//mailbox, but we're paranoid! Only
//write the new message if Loki's
//mailbox path isn't a symlink.
struct stat lstat_info;
int fd;
lstat(filename, &lstat_info);
if(!S_ISLNK(lstat_info.st_mode)){

fd = open(filename, O_RDWR);
write(fd, new_msg, new_msg_len);
close(fd);

}

//Window of vulnerability

$ rm /home/loki/mailbox
$ ln –s /etc/shadow 

/home/loki/mailbox

The password file will 
get overwritten with the 
contents of Loki’s new 
email. By the way, LOKI 
CAN EMAIL HIMSELF.



char *filename = "/home/loki/mailbox";
char *new_msg = get_new_msg_for(“loki");
if(new_msg == NULL){return;}
int new_msg_len = strlen(new_msg);

struct stat lstat_info;
struct stat fstat_info;
int fd;

lstat(filename, &lstat_info);     //Doesn’t follow
//symlinks

fd = open(filename, O_RDWR);      //*Does* follow
//symlinks--“dereferences” symlink to get
//fd which represents the symlink target

fstat(fd, &fstat_info);
if (lstat_info.st_mode == fstat_info.st_mode &&

lstat_info.st_ino == fstat_info.st_ino &&
lstat_info.st_dev == fstat_info.st_dev){
write(fd, new_msg, new_msg_len);

}
close(fd);

Ensures that the 

filename used to 

open the file 

wasn’t a symlink!
//Attacker window to corrupt the fd that will
//be opened by the mailserver.



Other Defenses
Linux added several new system 

calls to reduce the number of race 

conditions developers must check

//Ten directory race conditions
//to check.
int fd0 = open(“dirName/0.txt”);
int fd1 = open(“dirName/1.txt”);

. . .
int fd9 = open(“dirName/9.txt”);

//One directory race condition
//to check.
int dirFd = open(“dirName”);
int fd0 = openat(dirFd, “0.txt”);
int fd1 = openat(dirFd, “1.txt”);

. . .
int fd9 = openat(dirFd, “9.txt”);

Once process has an fd for 

a path, symlink shenanigans 

won’t change the inode that 

the file descriptor points to!



Other Defenses
• There have been various research proposals to add 

transactional support to file systems

• Regular journaling file systems provide all-or-nothing 

transactions for individual file system calls

• We could add support for transactions which span 

multiple file system calls (e.g., see TxOS)
sys_xbegin();
struct stat st;
int fd;
lstat(filename, &st_info);
if(!S_ISLNK(st_info.st_mode)){

//Race window would ordinarily
//be here, but transactions
//are isolated from each other!
fd = open(filename, O_RDWR);
write(fd, buf, buf_len);
close(fd);

}
sys_xend();

//Process Y
do_evil()

Time Time

Time

Race Conditions: Non-atomic System Call Pairs

//Process X
sys_call0();
sys_call1();

//Process X
sys_xbegin();
sys_call0();
sys_call1();
sys_xend();

Txn Txn

Impossible!



Race Conditions At 

The Hardware Level



L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

RAM

mov 1 --> [x]
mov [y] --> %eax

mov 1 --> [y]
mov [x] --> %ebx

//Assume that memory 
//locations [x] and [y] 
//both initialized to 0 

x86 allows both threads 

to read 0 (which would 

be impossible if both 

threads run instructions 

sequentially (but may be 

interrupted)).





How Hardware Shows Its Love For Us
• Modern processors do unholy things to improve performance

• Per-core store buffers avoid the need for a core to stall on 

a synchronous write through the memory hierarchy

• A core may also reorder instructions (e.g., non-dependent 

loads and stores) to increase parallelism of hardware usage

//Load is dependent on the
//store, so hardware will 
//*not* reorder the memory
//operations.
x = 42;
y = x;



How Hardware Shows Its Love For Us
• Modern processors do unholy things to improve performance

• Per-core store buffers avoid the need for a core to stall on 

a synchronous write through the memory hierarchy

• A core may also reorder instructions (e.g., non-dependent 

loads and stores) to increase parallelism of hardware usage

//First core
while(shouldStop == 0){;}

//Second core
answer = 42;
shouldStop = 1;printf("%d", answer);

No data dependency w.r.t. 

the local core. So, hardware 

may reorder the stores!

This code may not print 42!





It’s hard for developers to 

find all of the places in 

which memory-ordering 

primitives are necessary!



Linux TLB Flushing Logic on x86
• When the kernel changes a page table mapping, the kernel 

must flush the local core’s TLB to remove any stale entry

• On a multi-core system, the local core must also send an IPI 

to other cores so that those cores can flush their TLBs too











Race Conditions 

Caused By Poor 

Locking Discipline



Race Condition in Linux’s ELF Loader

• Just like OS161, Linux has code to load an ELF binary into 

memory, parse it, and initialize various in-memory regions 

for the stack, heap, and code

• Each process structure has a struct mm_struct
representing the process’ address space

• Kernel must grab mm_struct::mmap_sem before 

modifying the process’ regions (there’s one struct
vm_area_struct for each region)

struct mm_struct{
struct vm_area_struct *mmap;  /* List of VMAs */
pgd_t *pgd;                   /* Page table directory pointer,

* i.e., the thing that gets
* assigned to %cr3 */

struct rw_semaphore mmap_sem; /* Protects VMAs */
//...etc...

};



//In Linux 2.4.28, the mmap_sem lock was released too early!
static int load_elf_library(struct file *file){

down_write(&current->mm->mmap_sem);
//Update the code VMA for the ELF library.
error = do_mmap(file,

ELF_PAGESTART(elf_phdata->p_vaddr),
(elf_phdata->p_filesz +

ELF_PAGEOFFSET(elf_phdata->p_vaddr)),
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
(elf_phdata->p_offset -

ELF_PAGEOFFSET(elf_phdata->p_vaddr)));
up_write(&current->mm->mmap_sem);
if(error != ELF_PAGESTART(elf_phdata->p_vaddr))

goto out_free_ph;

elf_bss = elf_phdata->p_vaddr + elf_phdata->p_filesz;
padzero(elf_bss);

len = ELF_PAGESTART(elf_phdata->p_filesz + elf_phdata->p_vaddr +
ELF_MIN_ALIGN - 1);

bss = elf_phdata->p_memsz + elf_phdata->p_vaddr;
if(bss > len) //Create the data VMA for the ELF library.

do_brk(len, bss - len); //do_brk() assumes mmap_sem is held!



unsigned long do_brk(unsigned long addr, unsigned long len){
//Allocate a new VMA to represent the new
//extension to the process’ address space.
struct vm_area_struct *vma = kmem_cache_alloc(vm_area_cachep,

SLAB_KERNEL);
if(!vma)

return -ENOMEM;

//Update VMA bookkeeping.
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = flags;
vma->vm_page_prot = protection_map[flags & 0x0f];
//Other bookkeeping values updated . . .

//Add the new VMA to the process’ set of VMAs
//(the VMAs are stored in a red-black tree).
vma_link(mm, vma, prev, rb_link, rb_parent);

return addr;
}

The kernel may 

sleep during 

memory alloc!



unsigned long do_brk(unsigned long addr, unsigned long len){
//Allocate a new VMA to represent the new
//extension to the process’ address space.
struct vm_area_struct *vma = kmem_cache_alloc(vm_area_cachep,

SLAB_KERNEL);
if(!vma)

return -ENOMEM;

//Update VMA bookkeeping.
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = flags;
vma->vm_page_prot = protection_map[flags & 0x0f];
//Other bookkeeping values updated . . .

//Add the new VMA to the process’ set of VMAs
//(the VMAs are stored in a red-black tree).
vma_link(mm, vma, prev, rb_link, rb_parent);

return addr;
}

Attacker launches a program with several 

threads that allocate a lot of memory and 

call sys_uselib() with a carefully-crafted ELF 

binary. Goal: Trigger race condition and 

corrupt memory in attacker-controlled way!



• rb_link and rb_parent are pointers which 

vma_link() uses to write kernel memory

• By controlling how the race condition 

corrupts memory, the attacker can 

overwrite pointers with attacker-controlled 

values

• Later, when kernel writes memory through 

corrupted pointers, the kernel will write to 

memory addresses of the attacker’s 

choosing

• If the attacker supplies the data for the 

write, the attacker also chooses the new 

contents of those memory addresses

• Ex: Overwriting a kernel function pointer to 

trick the kernel into invoking the wrong 

function

vma_link(mm, vma, prev, rb_link, rb_parent);

Kernel struct

[funcPtr]

[otherStuff ]

Kernel function

foo()

Kernel function

bar()

Corrupted ptr

which kernel

writes to

Virtual mem



• rb_link and rb_parent are pointers which 

vma_link() uses to write kernel memory

• By controlling how the race condition 

corrupts memory, the attacker can 

overwrite pointers with attacker-controlled 

values

• Later, when kernel writes memory through 

corrupted pointers, the kernel will write to 

memory addresses of the attacker’s 

choosing

• If the attacker supplies the data for the 

write, the attacker also chooses the new 

contents of those memory addresses

• Ex: Overwriting a kernel function pointer to 

trick the kernel into invoking the wrong 

function

vma_link(mm, vma, prev, rb_link, rb_parent);

Kernel struct

[funcPtr]

[otherStuff ]

Kernel function

foo()

Kernel function

bar()

Corrupted ptr

which kernel

writes to

Virtual mem



HOW DO WE 

PREVENT THIS?



HOW DO WE 

PREVENT THIS?
• In the case of this specific ELF 

vulnerability, the fix is to hold 

mmap_sem while the data region for 

the library is created
//Also, in do_brk() . . .
/*
* mm->mmap_sem is required to 
* protect against another thread
* changing the mappings while we 
* sleep (on kmalloc for one).
*/
verify_mmap_write_lock_held(mm); 



HOW DO WE 

PREVENT THIS?
• In the case of this specific ELF 

vulnerability, the fix is to hold 

mmap_sem while the data 

region for the library is created

• However, memory corruption 

vulnerabilities are often tricky to 

prevent; they represent a large 

fraction of all security holes!



TAKE CS 263 TO 

LEARN MORE

FALL 2016


