Scheduling

« Topics
e The scheduling problem
e Mechanism and policy
e Approaches to scheduling

« Learning Objectives:

e Define the scheduling problem that an operating system
must solve.

» Discuss the trade-offs between fairness and efficiency.
e Describe several different scheduling algorithms.

2/11/16 CS161 Spring 2016

The Scheduling Problem

 The OS must make sure that processes do not interfere
with one another. This means it must:

e Guarantee that all processes get to run: fair scheduling or
multiplexing.

 Make sure they do not modify each other’s state: protection.
« At the heart of an operating system, its functionality is
simple: it is a dispatcher:
e Let the current process run.
e Save the current process state.
* Load the state of another process.
 Run the new process.

« The act of selecting a process to run is called scheduling.

2/11/16 CS161 Spring 2016

Goals of scheduling

* Preserve the illusion that we present to each process that
that process is the sole user of the hardware resources.

* A correct program should be oblivious to the scheduling
decisions that are made.

« Each process (in the absence of parallel threads) acts as

if it were a sequential process with full control over all the
hardware resources.

« Resources come in two flavors:

 Preemptible: you can take the resource away

* Need a scheduling policy: How long do you get the resources? In what order
to you grant resources?

 Non-preemptible: once you gi(ive the resource away, it's gone
until the process gives it back.

* Need an allocation policy: Who gets what resource?

2/11/16 CS161 Spring 2016 3

Mechanism vs Policy

* Mechanisms are the basic tools and techniques you use
to accomplish tasks.

» Policies are how you use those mechanisms to
accomplish things.
* There are real-world examples:
* Teaching my kids fiscal responsibility.
e Completing problem sets.
« There are many examples in computer systems.
e Disk block allocation.
* Network management (QoS: Quality of service).
e Web site security
e Facebook privacy settings
e More?

2/11/16 CS161 Spring 2016

Scheduling Mechanisms

« Create thread: a way to create items to schedule.
 Run queue: a list of threads that are runnable.
« Wait channel: a list of threads that are blocked on some particular event.

« Timer interrupts: can set a CPU timer that will generate an interrupt at a
particular time.

Create thread Run queue

Wait channel

Event!

2/11/16 CS161 Spring 2016

Enhancing the Mechanism

« What are some of the limitations of our existing
mechanism?

e The run queue is FIFO.

e Threads are only de-scheduled when they voluntarily
relinquish the processor.

* S0, what can we add to our mechanism?
* A more sophisticated data structure for the run queue.

e Timers: allow us to generate an interrupt so that we can de-
schedule threads.

e Perhaps multiple run queues:

» Perhaps have different queues for different priorities.
« Perhaps have different queues for different processors.

2/11/16 CS161 Spring 2016

Metrics for a Scheduling Policy

« Throughput: Efficiency of resource utilization
e Goal: Keep the CPUs and disks busy.
e Metric: #completed/unit-time (e.g., ops/sec, MB/sec)

« Latency: Minimize response time

e Goal: Complete work quickly
e Metric: Elapsed time to completion

» Fairness: Distribute resources equitably

e Goal: Not entirely clear...
» | get more cycles because I’'m the professor.
* You get more cycles because you’re being graded.
+ We all get the same number of cycles, because that’s “fair.”
* | have more work to do so | get more cycles.

e Metric: Gap between most privileged processes and least
privileged process.

2/11/16 CS161 Spring 2016

FIFO (First Come First Serve; FCFS)

* Run process until finished.

* In the simplest case, this results in uni-programming (run
one job until it's done, run the next).

« Usually, “finished” can also mean blocked.

« While a process waits (on the disk, the keyboard, a
semaphore), another process can use the CPU. When the
event on which the process is waiting happens, it can go
back on the ready queue.

* Problems?

e Solution?

2/11/16 CS161 Spring 2016 8

FIFO (First Come First Serve; FCFS)

* Run process until finished.

« Inthe simplest case, this results in uni-programming (run
one job until it's done, run the next).

« Usually, “finished” can also mean blocked.

« While a process waits (on the disk, the keyboard, a
semaphore), another process can use the CPU. When the
event on which the process is waiting happens, it can go
back on the ready queue.

* Problems?

e One process can monopolize CPU.

« Solution?

e Limit maximum amount of time a process can run. Call this unit
a time slice.

2/11/16 CS161 Spring 2016 9

FIFO

« |/O Job does 20 ms of computation then 100 ms of I/O.
« Compute Job is pure computation.

Time /10 Job Compute Job

2/11/16 CS161 Spring 2016 10

Round Robin

* Run a process for one time slice (or until it blocks), then let another process

run.

« If process blocked voluntarily, it goes into a blocked state.

« If not, process is put at the end of the ready queue.

« Each process gets approximately equal fraction of the CPU.

Process 1

Process 2

Blocking events

{

Process 3

» What happens if the time slice isn’t chosen properly?

e Too short?
e Too long?

2/11/16

CS161 Spring 2016

11

Priority-based Round Robin

* Run highest priority first.
* Use round robin within a priority.

 When de-scheduling; put at end of queue of
appropriate priority.

 Problems?
 Round Robin sometimes produces weird results.

 How long will it take 10 processes of 100 time slices each to
complete?

 What is the average time to completion?
 What would it be with FCFS?

What is the absolute best we can do?

2/11/16 CS161 Spring 2016 12

Shortest Time to Completion First

e Assume we have total information.

« We know the future, in particular, when a process will either exit or
voluntarily block.

« We can see all the processes all the time.
* Run the job with the shortest time to completion first (STCF).
e This will minimize the average response time.

2/11/16 CS161 Spring 2016 13

Let’s all use STCF!

 Problems:

2/11/16

Need to be able to see into the future.

Since knowing the future is challenging, use the past to predict
the future.

Turns out that we use this a lot, both in real life and in
computer:

* How do you pick classes?
+ How do employers decide to hire you?
» Are you likely to pet the dog that bit you yesterday?

Translate to scheduling:

 |If the process has already taken a long time to run, it’s likely to take a long
time still.

» |If a process does I/O regularly, it will continue to do I/O regularly.
« Use some mechanism to disfavor long running processes.

CS161 Spring 2016 14

