
Scheduling: Case Studies
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Are you sure that you 

want to try multi-

threading for A2?



Scheduling Basics
• Goal of scheduling: Pick the “best” task to run on a CPU

• Often a good idea to prioritize IO-bound tasks

• If IO comes from user (e.g., keyboard, mouse), we 

want interactive programs to feel responsive

• IO is typically slow, so start it early!
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Scheduling Basics
• Goal of scheduling: Pick the “best” task to run on a CPU

• Often a good idea to prioritize IO-bound tasks

• If IO comes from user (e.g., keyboard, mouse), we 

want interactive programs to feel responsive

• IO is typically slow, so start it early!
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1 CPU cycle: 0.3 ns

L1 cache access: 0.9 ns

L2 cache access: 2.8 ns

L3 cache access: 12.9 ns

RAM access: 120 ns

SSD access: 50—150 µs

Disk access: 5—10 ms

Network RTT: 10—500 ms

User input: 200 ms—seconds

1 OMag

1 OMag

3 OMags

1—2 OMags

1—2 OMags
1+ OMags

IO is slow, 

and other 

tasks need 

to run!



Scheduling Basics
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• Goal of scheduling: Pick the “best” task to run on a CPU

• Often a good idea to prioritize IO-bound tasks

• If IO comes from user (e.g., keyboard, mouse), we 

want interactive programs to feel responsive

• IO is typically slow, so start it early!

• Fairness: All tasks should eventually get to run

• Scheduling speed: The scheduler is PURE OVERHEAD

• Linux 2.4: O(n) scheduler

• Linux 2.6.early: O(1) scheduler

• Linux 2.6.23+: O(log n) CFS scheduler 



Linux O(n) Scheduler
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Each Task Has Three Priorities
• Static priorities (do not change over lifetime of task)

• “Real-time” priority

• Between 1 and 99 for “real-time” tasks, 0 for normal tasks

• RT task runs to completion unless it issues                                                  

a blocking IO, voluntarily yields, or is                                               

preempted by higher priority RT task

• Niceness priority
• Normally 0; set by “nice” command to [-20, 19]

• Dynamic priority

• Scheduler divides time into epochs

• At start of epoch, each task is assigned                                       

a positive counter value (“time slice”)

• Unit is “scheduler ticks” or “jiffies”

• #define HZ 1000 //Rate that the timer interrupt fires

• Task’s time slice: remaining CPU time that task can use during 

the current epoch (measured in 1/HZ long quanta )

• Timer interrupt decrements counter for currently executing task

void do_timer(){
jiffies++;
update_process_times();

}

void update_process_times(){
struct task_struct *p = current;
p->counter--;
//Other bookkeeping involving 
//time statistics for this task 
//and the cpu the task is 
//running on.

}



Linux O(n) Scheduler
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struct task_struct{
unsigned long rt_priority;  //For “real-time” tasks
int static_prio;            //The task’s nice value
int counter;                //The task’s remaining

//time slice, i.e., the
//task’s dynamic priority

...
}



void schedule(){
struct task_struct *next, *p;
struct list_head *tmp;
int this_cpu = ..., c;

spin_lock_irq(&runqueue_lock); //Grabs global lock.
next = idle_task(this_cpu);
c = -1000; //Best goodness seen so far.
list_for_each(tmp, &runqueue_head){

p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {

int weight = goodness(p);
if(weight > c){

c = weight;
next = p;

}
}

}
spin_unlock_irq(&runqueue_lock);
switch_to(next, ...);

}

struct task_struct{
volatile long state;//-1 unrunnable,

// 0 runnable,
// >0 stopped

int exit_code;
struct mm_struct *mm;
unsigned long cpus_allowed;

//bitmask representing which
//cpus the task can run on

...
};



Calculating Goodness
int goodness(struct task_struct *p){

if(p->policy == SCHED_NORMAL){
//Normal task
if(p->counter == 0){

//Task has used all of its
//time for this epoch!
return 0;

}
return p->counter + 20 – p->nice;

}else{
//“Real-time” task
return 1000 + p->rt_priority;

//Will always be
//greater than
//priority of a
//normal task

}
}

Linux “nice” command or 

nice() sys call: Increase or 

decrease static priority by 

[-20, +19]

The dynamic priority 

(i.e., time slice)



void schedule(){
struct task_struct *next, *p;
struct list_head *tmp;
int this_cpu = ..., c;

spin_lock_irq(&runqueue_lock);
next = idle_task(this_cpu);
c = -1000; //Best goodness seen so far.
list_for_each(tmp, &runqueue_head){

p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {

int weight = goodness(p);
if(weight > c){

c = weight;
next = p;

}
}

}
spin_unlock_irq(&runqueue_lock);
switch_to(next);

}

Pick highest priority 

“real time” task; if no 

such task, pick the 

normal task with the 

largest sum of static 

priority and remaining 

time slice



void schedule(){
struct task_struct *next, *p;
struct list_head *tmp;
int this_cpu = ..., c;

spin_lock_irq(&runqueue_lock);
next = idle_task(this_cpu);
c = -1000; //Best goodness seen so far.
list_for_each(tmp, &runqueue_head){

p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {

int weight = goodness(p);
if(weight > c){

c = weight;
next = p;

}
}

}
spin_unlock_irq(&runqueue_lock);
switch_to(next);

}

if(!c){//c==0, no good tasks!
struct task_struct *p;
spin_unlock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
for_each_task(p){
p->counter = (p->counter >> 1) + 

NICE_TO_TICKS(p->nice);
}//Counters for next epoch now set
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
goto repeat_schedule;

}

repeat_schedule:

Boost priority of 
interactive tasks which 
sleep often!



Summary: Linux O(n) Scheduler

• “Real-time” tasks have high, unchanging static priority

• Regular tasks have low static priority, and low, 

dynamically changing priority

• Dynamic priority (time slice) set at epoch start

• Time slice decremented as task uses CPU

• When scheduler must pick a task:

• Search runnable queue for task with best goodness

• If all runnable tasks have goodness == 0, recalculate 

all time slices, then search runnable queue again

• Once a task has a counter of 0, it cannot run again 

until the new epoch arrives!
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O(n)

O(n)



Another problem . . .
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Why Was The O(n) Scheduler 

Tolerated?

DRAKE IS ANGRY



The O(n) Scheduler Isn’t That Bad!

DRAKE IS HAPPY



PREMATURE OPTIMIZATION 

IS THE ROOT OF ALL EVIL.

Simple is better unless 

proven otherwise.

Thy shall profile before 

thy shall optimize.



Linux O(1) Scheduler
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• Goal 1: Get sublinear scheduling overhead

• Goal 2: Remove contention on a single, global lock

struct task_struct{
unsigned long rt_priority;  //For “real-time” tasks
int static_prio;            //The task’s nice value
unsigned int time_slice;    //CPU time left in epoch
int prio;                   //The task’s “goodness”
unsigned long sleep_avg;    //Estimate of how long

//task spends blocked on
//IO versus executing on
//CPU; goes up when task
//sleeps, goes down when
//task runs on CPU

...
}



Linux O(1) Scheduler
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• Goal 1: Get sublinear scheduling overhead

• Goal 2: Remove contention on a single, global lock

struct prio_array{
unsigned int nr_active;
struct list_head queue[MAX_PRIO];
unsigned long bitmap[BITMAP_SIZE];

};

struct runqueue{
spinlock_t lock;
struct task_struct *curr;
prio_array_t *active;
prio_array_t *expired;
...

}

Per-cpu

Think of 

queue as 

being 

indexed by 

“goodness”
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nr_active: 3
bitmap:    01001
queue[5]:  

Goodness0 1 2 3 4

t0 t2

nr_active: 0
bitmap:    00000
queue[5]:  

Goodness0 1 2 3 4

t1

schedule()

• Find the first non-empty queue

• Run the first task in the list



void scheduler_tick(){ //Called by the timer interrupt.
runqueue_t *rq = this_rq();
task_t *p = current;

spin_lock(&rq->lock);
if(!--p->time_slice){

dequeue_task(p, rq->active);
p->prio = effective_prio(p);
p->time_slice = task_timeslice(p);
if(!TASK_INTERACTIVE(p) || 

EXPIRED_STARVING(rq)){
enqueue_task(p, rq->expired);

}else{ //Add to end of queue.
enqueue_task(p, rq->active);

}
}else{ //p->time_slice > 0

if(TASK_INTERACTIVE(p)){
//Probably won’t need the CPU
//for a while.
dequeue_task(p, rq->active);
enqueue_task(p, rq->active); //Adds to end.

}
}
spin_unlock(&rq->lock); //Later, interrupt handler calls schedule().

}

//Calculate “goodness”.
int effective_prio(task_t *p){
if(rt_task(p))

return p->prio;
bonus = CURRENT_BONUS(p);

//Bonus higher if
//p->sleep_avg is big

return p->static_prio –
bonus;
//static_prio is p’s
//nice value

}

//Time slices calculated 
//incrementally, unlike 
//O(n) scheduler! High
//priority tasks get 
//longer time slices.



THIS IS NOT A PORSCHE
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nr_active: 3
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Timer interrupt fires, scheduler runs t
0
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nr_active: 2
bitmap:    01001
queue[5]:  

Goodness0 1 2 3 4

t1 t2

nr_active: 1
bitmap:    00100
queue[5]:  

Goodness0 1 2 3 4

t0

Timer interrupt fires, scheduler 

moves t   to expired list, runs t0 1
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nr_active: 1
bitmap:    00001
queue[5]:  
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Timer interrupt fires, scheduler 

moves t   to expired list, runs t1 2
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nr_active: 0
bitmap:    00000
queue[5]:  

Goodness0 1 2 3 4

t1

nr_active: 3
bitmap:    00110
queue[5]:  

Goodness0 1 2 3 4

t0

Later, scheduler moves t   to the expired list2

t2
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nr_active: 0
bitmap:    00000
queue[5]:  

Goodness0 1 2 3 4

t1

nr_active: 3
bitmap:    00110
queue[5]:  

Goodness0 1 2 3 4

t0

Scheduler notices that nr_active is 0, and swaps 

the “active” and “expired” pointers:

O(1) running time!

t2



Summary: Linux O(1) Scheduler
• Per-processor scheduling data structures (eliminate global lock!)

• Active array of queues (1 queue per priority level)

• Expired array of queues (1 queue per priority level)

• Task priority: (“real-time” priority) or (nice value + bonus)

• Scheduler picks first task from highest priority non-empty active 

queue

• Finding that queue is O(1): find first 1 bit via hardware instruction

• Timer interrupt decrements time slice for current task

• If time slice is 0, move task to queue in expired array . . .

• . . . unless task is interactive: maybe keep it active!

• Eventually force even high priority interactive tasks into expired 

array (avoids starvation)

• When active array queues are empty, flip array pointers: O(1)
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Multi-level Feedback Queuing
• Goal: Use static priorities and history to find the right 

scheduling strategy for a task

• Scheduler uses task history to guess whether task is 

interactive (IO-bound, should get CPU when 

runnable) or CPU-bound

• Static priorities are hints that programmers give to 

scheduler

• Rule 1: If Priority(A) > Priority(B), schedule A

• Rule 2: A task that sleeps a lot is likely to be interactive 

(and should receive a high priority)

• Rule 3: A task that uses its full time slice is probably 

demoted (but see Rule 2)

• Rule 4: No starvation (every task eventually runs!)

2/16/2015 CS161 Spring 2016 29



Linux’s “Completely Fair Scheduler” (CFS)
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• The O(1) scheduler is fast, but hackish

• Heuristics (e.g., TASK_INTERACTIVE(p) and 

EXPIRED_STARVING(rq)) are complex, seem gross, 

have corner cases that are unfair

• CFS invented to provide a more “elegant” solution



• For now, make these simplifying assumptions:

• There is only one CPU

• All tasks have the same priority

• There are always T tasks ready to run at any moment

• Basic idea in CFS: each task gets 1/T of the CPU’s resources

• Ideal CPU: Runs each task simultaneously, but at 1/T the 

CPU’s clock speed

• Real CPU: Can only run a single task at once!

• CFS tracks how long each task has actually run; during a 

scheduling decision (e.g., timer interrupt), picks the task 

with lowest runtime so far
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Linux’s “Completely Fair Scheduler” (CFS)



• Self-balancing: Insertions 

and deletions ensure that 

longest tree path is at 

most twice the length of 

any other path

• Guaranteed logarithmic 

time: Insertions, deletions, 

and searches all run in 

O(log N) time
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Red-black binary tree
• Associate each task with its 

elapsed runtime (nanosecond 

granularity)

• Keep all runnable tasks in a 

red-black tree

• Next task to run is just the 

left-most task in tree!

CFS scheduler
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• Associate each task with its 

elapsed runtime (nanosecond 

granularity)

• Keep all runnable tasks in a 

red-black tree

• Next task to run is just the 

left-most task in tree!

CFS scheduler
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Scheduler picks this task 

to run, removes it from 

tree
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23
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15 42

t0

t1

5

t2

t3

t4

t5

Runs for 20 

time units
25

t2

Timer interrupt fires, 

scheduler runs
• Now, t   no longer has the 

smallest elapsed runtime

• So, scheduler reinserts t  

into the tree and runs t  !

2

2

0



Classic CFS Example

• Suppose there are two tasks:

• Video rendering application (CPU-intensive, long 

running, non-interactive)

• Word processor (interactive, only uses CPU for bursts)

• Both tasks start with an elapsed runtime of 0

• Video rendering task quickly accumulates runtime . . .

• . . . but word processor’s runtime stays low (task is 

mainly blocked on IO)

• So, whenever word processor receives keyboard/mouse 

input and wakes up, it will be the left-most task, and 

immediately get scheduled
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Task Priorities in CFS
/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU-bound task
* that remained on nice 0.
*
* The "10% effect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
static const int prio_to_weight[40] = {
/* -20 */     88761,     71755,     56483,     46273,     36291,
/* -15 */     29154,     23254,     18705,     14949,     11916,
/* -10 */      9548,      7620,      6100,      4904,      3906,
/*  -5 */      3121,      2501,      1991,      1586,      1277,
/*   0 */      1024,       820,       655,       526,       423,
/*   5 */       335,       272,       215,       172,       137,
/*  10 */       110,        87,        70,        56,        45,
/*  15 */        36,        29,        23,        18,        15,

};



• CFS incorporates static priorities by scaling task’s elapsed runtime

• The end result is that:

• [nice=0] Virtual execution time equals physical execution time

• [nice<0] Virtual execution time less than physical execution time

• [nice>0] Virtual execution time greater than physical execution 

time

• curr->vruntime is used as a task’s key in the RB tree

delta_exec = now – curr->exec_start;
delta_exec_weighed = delta_exec * 

(NICE_0_LOAD / t->load.weight);
curr->vruntime += delta_exec_weighted;

Task Priorities in CFS



Summary: Linux CFS Scheduler
• Scheduler associates each task with elapsed runtime (not timeslice!)

• Nanosecond-granularity tracking instead of jiffy granularity

• Growth rate is modulated by task priority

• Scheduler maintains a per-core red-black tree

• Tasks inserted using elapsed runtimes as keys

• Left-most task is the task to run next!

• Scheduling operations take O(log n) time

• Is CFS actually better than the O(1) scheduler? Hmmm . . .

• Nanosecond-granularity elapsed runtimes seems better than 

jiffy-granularity timeslices . . .

• . . . but O(1) seems faster than O(log n)?

• vruntime values do seem fairer than timeslices/goodness/etc . . .

• . . . but CFS has janky heuristics, just like the O(1) scheduler         

(Ex: “Usually run left-most task, unless we want to run the most 

recently preempted task to preserve cache locality”)



CPU Affinity
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struct task_struct{
volatile long state;//-1 unrunnable,

// 0 runnable,
// >0 stopped

int exit_code;
struct mm_struct *mm;
unsigned long cpus_allowed;

//bitmask representing which
//cpus the task can run on

...
};



CPU Affinity
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CPU Affinity
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CPU Affinity
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CPU Affinity

2/16/2015 CS161 Spring 2016 43

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0 

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1 

RAM

INVALIDATE



CPU Affinity
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CPU Affinity
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Your Machine is a Distributed System!

• Components are connected by a network

• Some components talk directly (e.g., core/registers)

• Others require multiple hops to communicate (e.g., 

core and L3 cache; two cores on different sockets)

• More hops = more communication latency!

• OS scheduler tries to:

• Avoid network latencies in the first place (e.g., using 

CPU affinity to reduce cache misses+invalidations)

• Do something useful while waiting on unavoidable 

latencies (e.g., give high priority to IO-bound tasks, so 

that they can issue IOs, then sleep, allowing CPU-

bound tasks to run while IOs complete)
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