
Operating System Architectures: 

Past, Present, Future

• Learning objectives:
• Explain how OS functionality is orthogonal to where you place services 

relative to processor modes.

• Describe some alternative ways to structure the operating system.

• Pontificate about the future of operating systems.

• Operating systems evolve over time, but that evolution is frequently 
in terms of their architecture: how they structure functionality 
relative to protection boundaries.

• We’ll review some of the basic architectures:
• Executives

• Monolithic kernels

• Micro kernels

• Exokernels

• Extensible operating systems

• And then brainstorm about what we might expect to see in the 
future.
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OS Executives

• Think MS-DOS: With no hardware protection, the OS 
is simply a set of services:
• Live in memory.

• Applications can invoke them.

• Requires a software trap to invoke them.

• Live in same address space as application.
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Monolithic Operating System
• Traditional architecture

• Applications have own address space.

• OS either has own address space or runs in a reserved part of application’s 
address space.

• Operating system runs in privileged mode; applications run in user mode.
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Microkernels (late 80’s and on)

• Put as little of the OS as possible in privileged mode (the microkernel).

• Implement most core OS services as user-level servers.
• Only microkernel really knows about hardware

• File system, device drivers, virtual memory all implemented in unprivileged servers.

• Must use IPC (interprocess communication) to communicate with servers.
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Microkernels: Past and Present

• Much research and debate in late 80’s early 90’s
• Pioneering effort in Mach (CMU).

• Real goal was a new OS that could run UNIX applications.

• Huge debates over microkernel versus monolithic kernel.

• Windows NT used “modified microkernel”
• Mostly monolithic

• Different APIs are user-level services (DOS, Win3.1, Win32, 
POSIX)

• Mac OS X started as a hybrid architecture, although 
overtime it has become increasingly a traditional, 
monolithic architecture.

• Secure Microkernel Project (seL4)
• Builds on the L4 microkernel to create a small, secure kernel.

• Provides mechanisms to enforce security guarantees at the OS 
and application levels.
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Example: Mach VM

• Two interesting features:
1. Machine independent VM system

2. VM implemented (mostly) at user-level

• Achieving machine independence
• Two different abstractions: HW pages and SW pages

• The VM system is built on SW pages

• HW pages reflect the actual page structure supported by the platform

• The only machine dependent piece of the VM system is the 
pmap module that A) maps between HW and SW pages, and 
B) interfaces with the underlying HW.

• Examples: enter mappings, change page permissions, return a virtual-to-
physical mapping

Machine Independent virtual memory management for paged uniprocessor and 
multiprocessor architectures, Rashid et al, 1987.
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Structure of a Mach pmap

• pmap structure – represents the HW-specific VM 

system (like the sfs_fs struct represents the file 

system specific representation of a file system).

• Implementing a VM functions:

• Machine independent VM system allocates and frees pages 

(and references them in address spaces) in units of SW 

pages.

• The pmap functions have to set PTEs (or TLB entries) in 

units of HW pages.

• Let’s imagine that we have 4 KB HW pages and 8 KB 

software pages.
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Implement: pmap_remove_range

pmap_remove_range(pmap, start_addr, end_addr) {

What might you want to KASSERT?

What is the overall structure of this routine?

}
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Implement: pmap_remove_range

pmap_remove_range(pmap, start_addr, end_addr) {

KASSERT(IS_SW_PAGE_ALIGNED(start_addr));

KASSERT(IS_SW_PAGE_ALIGNED(end_addr));

while (start_addr < end_addr) {

hw_unmap(pmap, start_addr);

start_addr += HW_PAGE_SIZE;

}

}
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VM at User Level

• In Mach, an address space is composed of a collection of 
memory objects (think segments of your MIPS address spaces).
• To a first approximation, a memory object is represented by an element 

in a linked list and the corresponding page table for the object.

• A user-level process, called a pager, is responsible for moving 
the contents of a memory object in and out of memory.

• Kernel communicates with pagers via messages.
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Single-Address Space Operating Systems
• All processes share (and the OS) share a global 64-bit virtual address 

space.
• Enhance sharing

• Simplify integration

• Improve reliability and performance

• Key idea: Separate protection and addressing.
• Argue that address spaces are big, thick walls that make sharing hard (i.e., pointers 

have no meaning outside the program that created it).

• Results in a lot of copying of data.

• The Opal approach:
• Address space composed of segments.

• Once allocated, a segment’s VA never changes.

• Protection domain is the unit of protection; a thread executes in a specific protection 
domain.

• Protection domains implemented by capabilities (256-bit references that grant a thread 
access and rights to a segment via attach)

• Opal implemented as a single server on top of Mach (segments == memory 
objects).

Sharing and Protection in a Single-address Space Operating System, 

Chase et. al, 1994.
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Exokernels (1995-2000)
• Take microkernels to the extreme.

• Rather than export OS abstractions from kernel, export hardware more directly.
• Research addressed designing safe interfaces for exporting hardware.

• Interesting results in safe disk sharing

• OS functionality implemented in “OS libraries” that link directly with applications.
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Extensible operating systems
• Mid to late 90’s: Lots of research in how to add functionality to 

the operating system safely.
• Many fancy mechanisms

• Expose rich interfaces and use transactions to recover (VINO).

• Use a safe language (modula3) for extensions (SPIN).

• Use microkernels and simply write new servers (L4).

• Binary rewriting...

• In practice:
• People just wanted to be able to add stuff.

• Didn’t care too much about protection of “stuff.”

• Loadable kernel modules won.

Extensibility, Safety, and Performance in the SPIN 

Operating System, Bershad et. al., 1995

Dealing with Disaster: Surviving Misbehaved Kernel

Extensions, Seltzer, et. al., 1996
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Virtual Machines

• Re-inventing operating systems all over again!

• In the 1960’s, IBM developed a family of machines (System/360, 
System/370) and an operating system called VM/360.
• Enable multiple users to share a single machine by giving each user 

his/her own machine.

• Real hardware partitioned into per-”machine” components:
• Disk

• Processors

• Memory

• Compared to operating systems, it’s just a different way of sharing 
resources.
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