
FFS: The Fast File System
-and-

The Magical World of SSDs

The Original, Not-Fast Unix Filesystem

Superblock

Inodes

Data

Directory

Name

i-number

Inode

Metadata

Direct ptr

Indirect ptr

2-indirect ptr

Data

. . .
. . .

. . .

Disk

Superblock

Data

• Design: Disk is treated like a linear array of

bytes

• Problem: Data access incurs mechanical

delays!

• Accessing a file’s inode and then a data

block requires two seeks

• Block allocation wasn’t clever, so files in

the same directory were often far apart

• Block size was 512 bytes, increasing

penalty for poor block allocation (more

disk seeks!)

• Result: File system only provided 4% of the

sequential disk bandwidth!

The Original, Not-Fast Unix Filesystem

Inode for file X

Inodes

DirEntry:

“X” --> inode#

Data block for X

Disk

FFS: The Fast File System
• Goal: Keep the same file system abstractions (e.g., open(), read()),

but improve the performance of the implementation

• First idea: Increase block size from 512 bytes to 4096 bytes

• Increases min(bytes_returned_per_seek) --> decreases number

of seeks

• 8x as much data covered by direct blocks --> fewer indirect

block accesses --> decreases number of seeks

• Second idea: Disk-aware file layout

• Consider disk geometry and mechanical delays when deciding

where to put files

• Keep related things next to each other to reduce seeks

3/29/2016 CS161 Spring 2016 4

FFS: Data Layout

Platter

R/W heads Spindle

FFS: Data Layout
Cylinder

Cylinder
group

Track

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

Request 0

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

Request 0

Return 0

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

Request 1

The disk head is out of

position for block 1 :-(.

So, a sequential file

scan incurs rotational

latency for each block!

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

To solve this problem,

FFS determines the

number of skip blocks

by empirically

measuring disk

characteristics

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

Request 0

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

Request 0

Return 0

FFS: Data Layout

OS wants to

read 0 and 1,

but disk only

allows one

outstanding

request . . .

Request 1

Due to the skip

block, the disk head

is now in position to

handle the request!

Block Placement Tricks: Still A Good Idea?
• Modern disks are more powerful than FFS-era disks

• Use hardware-based track buffer to cache entire track during

the read of a single sector

• Buffer writes, and batch multiple sequential writes into single one

• Keep a small reserve of “extra” physical sectors so that bad

sectors can be avoided (disk implements a virtual-to-physical

mapping!)

• Modern disks don’t expose many details about geometry

• Only guarantee that sectors with similar sector numbers are

probably “close” to each other w.r.t. access time

• So, modern file systems use “block groups” instead of “cylinder

groups”

.

CG #0 CG #1

. . .

CG #2

Ensuring Consistency After Crashes

• Q: What happens to on-disk structures after an OS crash, a

hard reboot, or a power outage?

• A: What would Gallant do? He would ensure that the file

system recovers to a reasonable state.

• Some data loss is usually ok . . .

• . . . but it’s NOT ok to have an unmountable file system!

• There’s a trade-off between performance and data loss

3/29/2016 CS161 Spring 2016 16

Crash Consistency: Creating a New File
• To create a new file “foo”, you need to:

1. Update inode bitmap to allocate a new inode

2. Write the new inode for “foo” to disk

3. Write an updated version of the directory that points to the new inode

• The order of the writes makes a difference! Suppose (1) has

completed . . . how should we order (2) and (3)?

Directory
“bar”

Inode #X

Directory

“bar”
Inode #X

“foo”
Inode #Y Crash!

Directory

“bar”
Inode #X

“foo”
Inode #Y

Points to

sadness

Directory
“bar”

Inode #X

Inode #Y

Metadata
DataPtrs=NULL

Directory
“bar”

Inode #X

Crash!
Inode #Y

Metadata
DataPtrs=NULL

Directory
“bar”

Inode #X

Not referenced by a dirent . . . but no dirents point to junk/old stuff! After

crash, run fsck to find unreferenced inodes and mark them as unused.

Crash Consistency Using Synchronous Writes
• For a file system operation that requires multiple ordered writes,

wait for each write to hit the disk before issuing the next one

• Ex: On file create(), issue write to the inode, wait for it to

complete, then issue write to the directory

• Good: File system will be left in a consistent state after crash

• Bad: Synchronous writes make the file

system slow

• We’d like to be able to issue IOs

immediately, and have multiple IOs

in-flight at any given time: provides

the disk with maximum ability to

reorder writes for performance

• However, reordering for performance

may violate the desired consistency

semantics

• Bad: fsck is slow (it has to make multiple passes over metadata)

MARGO WILL SLAY THE CONSISTENCY

DRAGON

Solid-state Storage Devices (SSDs)

• Unlike hard drives, SSDs have no mechanical parts

• SSDs use transistors (just like DRAM), but SSD data

persists when the power goes out

• NAND-based flash is the most popular technology,

so we’ll focus on it

• High-level takeaways

1. SSDs have a higher $/bit than hard drives, but

better performance (no mechanical delays!)

2. SSDs handle writes in a strange way; this has

implications for file system design

3/29/2016 CS161 Spring 2016 21

Solid-state Storage Devices (SSDs)

• An SSD contains blocks made of pages

• A page is a few KB in size (e.g., 4 KB)

• A block contains several pages, is usually 128 KB or 256 KB

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

• To write a single page, YOU MUST

ERASE THE ENTIRE BLOCK FIRST

• A block is likely to fail after a

certain number of erases (~1000

for slowest-but-highest-density

flash, ~100,000 for fastest-but-

lowest-density flash)

SSD Operations (Latency)

• Read a page: Retrieve contents of entire page (e.g., 4 KB)

• Cost is 25—75 microseconds

• Cost is independent of page number, prior request offsets

• Erase a block: Resets each page in the block to all 1s

• Cost is 1.5—4.5 milliseconds

• Much more expensive than reading!

• Allows each page to be written

• Program (i.e., write) a page: Change selected 1s to 0s

• Cost is 200—1400 microseconds

• Faster than erasing a block, but slower than reading a page

Hard disk: 4—10ms avg. seek latency

2—7ms avg. rotational latency

10011110 00100010 01101101 11010011

Block

Page

11111111 11111111 11111111 11111111

00110011 11111111 11111111 11111111

To write the first page, we must

first erase the entire block

Now we can write the first page . . .

. . . but what if we needed the data in

the other three pages?

Flash Translation Layer (FTL)

• Goal 1: Translate reads/writes to logical blocks into

reads/erases/programs on physical pages+blocks

• Allows SSDs to export the simple “block interface” that

hard disks have traditionally exported

• Hides write-induced copying and garbage collection

from applications

• Goal 2: Reduce write amplification (i.e., the amount of

extra copying needed to deal with block-level erases)

• Goal 3: Implement wear leveling (i.e., distribute writes

equally to all blocks, to avoid fast failures of a “hot” block)

• FTL is typically implemented in hardware in the SSD, but is

implemented in software for some SSDs

3/29/2016 CS161 Spring 2016 25

FTL Approach #1: Direct Mapping

• Have a 1-1 correspondence between logical pages and

physical pages

• Reading a page is straightforward

• Writing a page is trickier:

• Read the entire physical block into memory

• Update the relevant page in the in-memory block

• Erase the entire physical block

• Program the entire physical block using the new block value

Logical
pages

Physical
pages

Sadness #1: Write amplification

• Writing a single page

requires reading and

writing an entire block

Sadness #2: Poor reliability

• If the same logical block is

repeatedly written, its

physical block will quickly

fail

• Particularly unfortunate

for logical metadata

blocks

FTL Approach #2: Log-based mapping

• Basic idea: Treat the physical blocks like a log

• Send data in each page-to-write to the end of the log

• Maintain a mapping between logical pages and the

corresponding physical pages in the SSD

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

Logical
pages 0 1 2 3 4 5 6 7 8 9 10 11

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

Uninitialized

Valid

Log head

Logical-to-physical map

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w0) Logical-to-physical map

92 --> 0

Uninitialized

Valid

erase(block0)

logHead++

program(page0, w0)

1* 1* 1*w0

Log head

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w0) Logical-to-physical map

92 --> 0

17 --> 1

Uninitialized

Valid

erase(block0)

logHead++

program(page0, w0)

1* 1*w0

write(page=17, data=w1)

program(page1, w1)

logHead++

w1

Log head

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w0) Logical-to-physical map

92 --> 0

17 --> 1

Uninitialized

Valid

erase(block0)

logHead++

program(page0, w0)

1* 1*w0

write(page=17, data=w1)

program(page1, w1)

logHead++

w1

Log head

Advantages w.r.t. direct mapping

• Avoids expensive read-modify-

write behavior

• Better wear levelling: writes get

spread across pages, even if

there is spatial locality in writes

at logical level

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

write(page=92, data=w4) Logical-to-physical map

92 --> 0

17 --> 1

33 --> 2

68 --> 3

Uninitialized

Valid

erase(block1)

logHead++

program(page4, w4)

w2 w3w0 w1 1* 1* 1*

Log head

w4

92 --> 4

Garbage version of

logical block 92!

. . .

Page 0 1 2 3 4 5 6 7 8 9 10 11

Block 0 1 2

Logical-to-physical map

92 --> 0

17 --> 1

33 --> 2

68 --> 3

Uninitialized

Valid w2 w3w0 w1 1* 1* 1*

Log head

w4

92 --> 4

Garbage version of

logical block 92!

At some point, FTL must:
• Read all pages in physical block 0

• Write out the second, third, and

fourth pages to the end of the log
• Update logical-to-physical map

Trash Day Is The Worst Day
• Garbage collection requires extra read+write

traffic

• Overprovisioning makes GC less painful

• SSD exposes a logical page space that is

smaller than the physical page space

• By keeping extra, “hidden” pages around,

the SSD tries to defer GC to a background

task (thus removing GC from critical path

of a write)

• SSD will occasionally shuffle live (i.e., non-

garbage) blocks that never get overwritten

• Enforces wear levelling

SSDs versus Hard Drives (Throughput)

Source: “Flash-based SSDs” chapter of “Operating Systems: Three

Easy Pieces” by the Arpaci-Dusseaus.

Device

Random

Reads Writes
(MB/s) (MB/s)

Sequential

Reads Writes
(MB/s) (MB/s)

Samsung 840 Pro SSD

Seagate 600 SSD

Intel 335 SSD

Seagate Savio 15K.3 HD

103 287 421 384

84 252 424 374

39 222 344 354

2 2 223 223

Dollars per storage bit: Hard drives are 10x cheaper!

