
A3: What You Always Wanted To Know 
But Were Afraid To Ask 
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But first . . . 

• Unconfusing Three Confusions 
• Where does the kernel live? 
• Does every kind of processor use a two-

level page table? 
• Does a pointer have to refer to 

dynamically-allocated memory? 
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Where is the Kernel’s Address Space? 
• Each process has a virtual address space, but where is the kernel’s 

virtual address space? 
• Separate virtual address space: change page tables on entry 

into privileged mode; change them again on the way out 
• Physical space: disable automatic hardware translation of 

virtual addresses on entry into privileged mode; re-enable on 
exit 

• Privileged region in each process’s virtual address space: Use 
page table or segment protections to protect kernel virtual 
memory from user-mode accesses 

• Third approach used by Linux, Windows, OS161, 64-bit Mac OS X 
• Makes it easy for kernel to examine arguments in system calls, 

and return values to user-level 
• 32-bit Mac OS uses a separate virtual address space for kernel 

• I don’t want to talk about it 
 
 



OK LET’S TALK ABOUT IT CALM DOWN 



32-bit Mac OS X (pre-10.4) 
• Kernel has 32-bit virtual address space, just like a regular process 

• Page table protections prevent a regular process from 
modifying the address space of the kernel (or any other 
regular process!) 

• Good: Entire 4GB address space available to user processes 
• Bad: context switches are more expensive (TLB flushes—the 

kernel is never “already there”!) 
• Bad: copyin()/copyout() are trickier—can’t just do a paranoid 

memcpy() 
• OS X solution: In kernel address space, reserve 0XE0000000—

0xFFFFFFFF for “user memory window” 
• On system call, after context switch to kernel address space, 

use PTE trickeration to map kernel’s user memory window to 
the memory region of user process that contains system call 
arguments (and will eventually contain the return value) 
 



Q: Does every processor use N-level 
page tables? 

A: No! With software-defined page 
tables, designs can be arbitrarily 
interesting. Even with hardware-
defined page tables, N-level page 
tables are not the only option. 



Case study: Page Tables on 32-bit PowerPC 
Segment index Page index Offset 

0 11 12 27 28 31 
4 bits 

Segment 
registers 

Virtual segment id Page index Offset 
0 11 12 27 28 51 

24 bits 

40-bit virtual page number 

HTab register 32 bits 
(Contains phys addr of hash table) 

Hash function Page table 
entry group 

VSID Pg idx Phys pg # 

16 bits 12 bits 

32-bit phys addr sent to RAM 

12 bits 
20 bits 



Everything In Memory Has An Address! 
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#include <stdio.h> 
#include <stdlib.h> 
int main(int argc, char *argv[]){ 
    printf(“Location of code: %p\n”, (void *) main); 
    printf(“Location of heap: %p\n”, (void *) malloc(1)); 
    int x = 3; 
    printf(“Location of stack: %p\n”, (void *) &x); 
    return 0; 
} 

Location of code :        0x40057d 
Location of heap :       0x12f9010 
Location of stack : 0x7ffca580a02c 



Deep-dive on Assignment 3 

• Review of MIPS memory model 
• Overview of your tasks in Assignment 3 
• Case study: Swapping on Linux 
• Case study: Inside the heap created by dlmalloc 
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kseg0: Only accessible in privileged 
mode; cacheable; direct-mapped 

MIPS: The Memory Model 

0x0 

0xffffffff 

kuseg: Accessible in user-mode and 
kernel-mode; cacheable; TLB-mapped 

0x80000000 

Virtual address 
space 

0xc0000000 

0xa0000000 

Physical 
memory 

kseg1: Only accessible in privileged 
mode; uncacheable; direct-mapped 

kseg2: Only accessible in privileged 
mode; cacheable; TLB-mapped 

First 
512 MB 

TLB-
mapped 

data 
(user 
and 

kernel) 

2 GB 

512 MB 

512 MB 

1 GB 



kseg0: Only accessible in privileged 
mode; cacheable; direct-mapped 

MIPS: The Memory Model 

kuseg: Accessible in user-mode and 
kernel-mode; cacheable; TLB-mapped 

Virtual address 
space 

Physical 
memory 

kseg1: Only accessible in privileged 
mode; uncacheable; direct-mapped 

kseg2: Only accessible in privileged 
mode; cacheable; TLB-mapped 

First 
512 MB 

TLB-
mapped 

data 
(user 
and 

kernel) 
Managed 
by your 

VM system! 

Device memory 
(uncacheable 
part isn’t 
emulated by 
SYS161) 

Pageable kernel 
data (you don’t 
need to implement 
this!) 

Kernel code 
+ data 



Assignment 3: Your Mission 

• Handle TLB faults 
• Implement paging 

• Per-process data structures (e.g., page tables) 
• Global data structures (e.g., core map: physical page 

number -> virtual page info) 
• Page eviction + backing store support 
• Background writing of dirty pages to disk 

• sbrk() 
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The Lifecycle of a Memory Reference on MIPS 
Virtual address and %TLBHI::ASID 

TLB lookup 

Access ok? Yes 

Calculate phys 
addr, send to 

L1/L2/L3/RAM 

Check 
“writeable” bit 

Yes 

HW sets BADVADDR, 
raises exception; 

OS161 sees 
VM_FAULT_READONLY 

No 

HW sets BADVADDR, 
raises exception; OS161 
sees VM_FAULT_READ 
or VM_FAULT_WRITE 

No TLB hit? 

YOUR IMAGINATION 
CREATES A MIRACLE 



TLB Handling 
• For an additional reference on the MIPS TLB architecture, 

see the Vahalia reference on the CS161 “Resources” page 
• Start with a simple replacement algorithm first! 
• We provide four C-level functions to interact with the TLB: 

• TLB_Write(): Write to a specified TLB entry 
• TLB_Read(): Read a specified TLB entry 
• TLB_Probe(): Search TLB to see if it contains a match for 

a given virtual frame number 
• TLB_Random(): Write to a random TLB entry 

• Note that TLB_Random() never selects 8 of the 64 TLB 
entries, so you may want to use TLB_Write() and random() 

• Suggestion: Ignore ASIDs and “G” bit for now; just clear the 
entire TLB on a context switch (less efficient, but correct!) 
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Paging and Virtual Memory 
• Bootstrapping is tricky 

• You cannot kmalloc() until you set up your memory system . . . 
• . . . but you cannot set up your memory system without 

allocating kernel memory 
• Hint: Look at how ram_stealmem() works 

• Key data structures for paging: 
• Per-process virtual-to-physical mappings 
• Global mapping from physical pages to a process and an 

address space 
• Think carefully about the page tables! 

• How much memory do they consume? 
• Do they require linear searches? (The answer should be “no”!) 

 3/8/2016 CS161 Spring 2016 15 



Handling a Page Fault for Page P 
• Check page table, confirm that P exists 
• If so, decide where to put P 

• If there’s free memory, use it! (Hint: consult the core map) 
• If there isn’t free memory: 

• Select a frame to evict 
• Write it to the backing store if necessary 
• Update page tables 

• Read P into memory 
• Update page tables 
• Update TLB 
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Synchronization 



Address Space Manipulations 
• Operations on address spaces 

• as_create() 
• as_destroy() 
• as_copy()      //For fork() 
• as_activate()  //For context switching 

• Code isn’t too bad—the main challenges are data 
structures and synchronization 
• Often best to have data structures synchronize 

themselves . . . 
int foo_manipulator(){ 
    lock foo; 
    manipulate foo; 
    unlock foo; 
} 
 
//Somewhere else 
ret = foo_manipulator(); 

int foo_manipulator(){ 
    manipulate foo; 
} 
 
//Somewhere else 
lock foo; 
ret = foo_manipulator(); 
unlock foo; 



Kernel Allocations 

• Hint: Don’t try to implement pageable kernel memory! 
• So, when you allocate a page to the kernel, it stays 

allocated unless the kernel gives it back 
• When the kernel asks for N pages of contiguous 

virtual address space, you need to find N pages of 
contiguous physical memory! 
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Backing Store 

• You need a pager thread that proactively writes dirty 
pages to disk (making them clean) 

• Hint: You should never sleep while holding a spinlock! 
• Hint: Every page can have its own place on disk 

• You can make your disk quite large 
• OS161 already provides bitmap functionality (useful 

for determining which disk blocks are free) 
• Use vfs_open() on “lhd0raw:” and use the vnode you 

get back for swapping 
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Linux Case Study: Swapping 
• Linux page cache lives in physical RAM, and has a 

bunch of stuff, including: 
• Disk/SSD data that has been read/written 
• Code pages from user process’s virtual address 

space 
• Stack and heap pages from user process’s virtual 

address space 
• When memory pressure is low, kernel is lazy about 

removing data—why spend the effort if somebody 
might need the data in the future? 

• Kernel must evict pages from RAM when memory 
pressure is high 
• Dirty mapped pages written to backing files 
• Dirty anonymous pages written to swap space 

 
 
 
 

      
 

“Anonymous” 

“Mapped” 



Linux Case Study: Swapping 
• Linux has a kswapd thread for each processor 

• Allows for parallel memory reclamation 
• Useful for NUMA machines in which some RAM is 

“close” to one core and “far” from others (kswapd 
thread will focus on pages in “close” RAM) 

• Each kswapd thread sleeps on a wait queue 
• When the kernel allocates memory, it checks 

whether the memory pressure is high 
• If so, it awakens the kswapd thread! 

 
Allocated 
Unallocated 

After reboot 

kswapd awoken 

kswapd finishes 

Watermark 
FreeMem 
threshold 



Linux Case Study: Swapping 
• Linux uses LRU to determine which pages to remove 

• For each process, kernel maintains two page lists: 
active and inactive 

• On x86, leverages the “Accessed” PTE bit that’s 
automatically updated by hardware 

• When memory pressure is high, kernel evicts pages 
from the inactive list 

• Q: What if all the disk buffers are evicted and swap 
space is filled, but there’s still memory pressure? 

• A: The OOM killer uses heuristics to kill processes and 
reclaim their memory + swap space 
• Hate processes w/lots of allocated virtual memory 
• Hate processes w/low static priority 
• DO NOT HATE KERNEL TASKS LIKE INIT 
• Do not hate processes w/direct access to hardware 

 
 
 



Synchronization in your OS161 VM 
Subsystem 

• Things to consider 
• SPL synchronization doesn’t work with IO! 
• Don’t create a lock per page, since this would consume 

too much space; consider a busy bit 
• How does locking work when handling a page fault? 
• How does locking work when evicting a page? 
• What if a page that I want to modify/evict is in the 

middle of being evicted by someone else? 
• What happens in fork() if a page to copy is not resident? 

• Holland’s hint: It is easier to debug a VM system with 
deadlocks than with race conditions 

• Think carefully about synchronization in your design doc! 
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malloc() and sbrk() 
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0x0 

0x80000000 

Code 

Data 

BSS 

Stack 

Break 

• The “break” refers to the end of a 
process’s heap memory 

• Before a process has dynamically 
allocated memory, the break is 
after the static code+data 

• As the application calls malloc(), 
the break pointer moves upward 

• . . . but what exactly is in the 
heap? 

Break 
Heap 



THE HEAP IS 
FILLED WITH 

REVERSE 
CENTAURS 



THE HEAP IS 
FILLED WITH 

OCAML 



THE HEAP IS FILLED WITH DATA 
STRUCTURES 

• malloc()/free() implementations track which parts of the heap 
are allocated, and which are unallocated 

• Ex: dlmalloc 

• OS161’s malloc()/free() is much simpler, but you must understand 
it for Assignment 3; read it before implementing sbrk()! 

. . . 
Free block 

size 
16 24 32 40 48 248 

Exact bins 

. . . 

Sorted bins 

256 384 8 MB 
. . . 

Size of prev chunk 
Ptr to next chunk 
Ptr to prev chunk 

Size of chunk 
…0+ bytes unused… 

Subtleties: Coalescing adjacent small chunks?  
                 Splitting big chunks? 
Beware: Don’t corrupt these data structures! 

In allocated block, 
overwritten w/app data. 



VM Statistics 

• Statistics will help with debugging and performance 
debugging! 

• Real-life virtual memory managers collect many stats, e.g.,: 
• Total number of physical pages available 
• Total number of physical pages allocated 
• Number of clean in-memory pages 
• Number of dirty in-memory pages 
• Number of kernel pages 
• Number of swapped-out pages 
• Your brilliant statistic goes here 
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Things That You Don’t Have To Do 
• Copy-on-write memory (e.g., for use by fork()) 
• Pageable kernel memory (using kseg2) 
• Memory-mapped files (e.g., to minimize read()/write() 

overheads) 
• 22-disk swap partitions (e.g., to support hilariously high 

levels of memory pressure) 
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James’s Mantra: 
LISTEN TO 
MARGO. 

Margo’s Mantra: 
Get something simple 
working first! Only 
consider fancier stuff 
afterwards. 



In-class Exercises 
• Where does OS161 provide bitmap functionality? Find the location 

and familiarize yourself with the code—it will come in handy during 
Assignment 3! 

• When an sbrk() happens, what per-process data structure(s) must 
be updated? When the stack grows, what per-process data 
structure(s) must be updated? Does anything need to happen when 
the stack *shrinks* due to user-mode function calls returning? 

• Think about how a multicore architecture interacts with virtual 
memory management. For example: 
• Do you need to do anything special with page tables and TLB 

entries if a process executes on core X, is context-switched off, 
and later resumed on core Y? 

• Suppose that core R discovers that it must evict a page from 
memory. What implications does this have for the TLB on core 
R? What implications does this have for the TLBs on other 
cores? 

• Suppose that, while fork() executes on one core, the other core 
is running the kernel thread which asynchronously writes dirty 
pages to disk. What synchronization strategies can ensure that 
both operations proceed safely? 
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