
A3: What You Always Wanted To Know
But Were Afraid To Ask

3/8/2016 CS161 Spring 2016 1

But first . . .

• Unconfusing Three Confusions
• Where does the kernel live?
• Does every kind of processor use a two-

level page table?
• Does a pointer have to refer to

dynamically-allocated memory?

3/8/2016 CS161 Spring 2016 2

Where is the Kernel’s Address Space?
• Each process has a virtual address space, but where is the kernel’s

virtual address space?
• Separate virtual address space: change page tables on entry

into privileged mode; change them again on the way out
• Physical space: disable automatic hardware translation of

virtual addresses on entry into privileged mode; re-enable on
exit

• Privileged region in each process’s virtual address space: Use
page table or segment protections to protect kernel virtual
memory from user-mode accesses

• Third approach used by Linux, Windows, OS161, 64-bit Mac OS X
• Makes it easy for kernel to examine arguments in system calls,

and return values to user-level
• 32-bit Mac OS uses a separate virtual address space for kernel

• I don’t want to talk about it

OK LET’S TALK ABOUT IT CALM DOWN

32-bit Mac OS X (pre-10.4)
• Kernel has 32-bit virtual address space, just like a regular process

• Page table protections prevent a regular process from
modifying the address space of the kernel (or any other
regular process!)

• Good: Entire 4GB address space available to user processes
• Bad: context switches are more expensive (TLB flushes—the

kernel is never “already there”!)
• Bad: copyin()/copyout() are trickier—can’t just do a paranoid

memcpy()
• OS X solution: In kernel address space, reserve 0XE0000000—

0xFFFFFFFF for “user memory window”
• On system call, after context switch to kernel address space,

use PTE trickeration to map kernel’s user memory window to
the memory region of user process that contains system call
arguments (and will eventually contain the return value)

Q: Does every processor use N-level
page tables?

A: No! With software-defined page
tables, designs can be arbitrarily
interesting. Even with hardware-
defined page tables, N-level page
tables are not the only option.

Case study: Page Tables on 32-bit PowerPC
Segment index Page index Offset

0 11 12 27 28 31
4 bits

Segment
registers

Virtual segment id Page index Offset
0 11 12 27 28 51

24 bits

40-bit virtual page number

HTab register 32 bits
(Contains phys addr of hash table)

Hash function Page table
entry group

VSID Pg idx Phys pg #

16 bits 12 bits

32-bit phys addr sent to RAM

12 bits
20 bits

Everything In Memory Has An Address!

3/8/2016 CS161 Spring 2016 8

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]){
 printf(“Location of code: %p\n”, (void *) main);
 printf(“Location of heap: %p\n”, (void *) malloc(1));
 int x = 3;
 printf(“Location of stack: %p\n”, (void *) &x);
 return 0;
}

Location of code : 0x40057d
Location of heap : 0x12f9010
Location of stack : 0x7ffca580a02c

Deep-dive on Assignment 3

• Review of MIPS memory model
• Overview of your tasks in Assignment 3
• Case study: Swapping on Linux
• Case study: Inside the heap created by dlmalloc

3/8/2016 CS161 Spring 2016 9

kseg0: Only accessible in privileged
mode; cacheable; direct-mapped

MIPS: The Memory Model

0x0

0xffffffff

kuseg: Accessible in user-mode and
kernel-mode; cacheable; TLB-mapped

0x80000000

Virtual address
space

0xc0000000

0xa0000000

Physical
memory

kseg1: Only accessible in privileged
mode; uncacheable; direct-mapped

kseg2: Only accessible in privileged
mode; cacheable; TLB-mapped

First
512 MB

TLB-
mapped

data
(user
and

kernel)

2 GB

512 MB

512 MB

1 GB

kseg0: Only accessible in privileged
mode; cacheable; direct-mapped

MIPS: The Memory Model

kuseg: Accessible in user-mode and
kernel-mode; cacheable; TLB-mapped

Virtual address
space

Physical
memory

kseg1: Only accessible in privileged
mode; uncacheable; direct-mapped

kseg2: Only accessible in privileged
mode; cacheable; TLB-mapped

First
512 MB

TLB-
mapped

data
(user
and

kernel)
Managed
by your

VM system!

Device memory
(uncacheable
part isn’t
emulated by
SYS161)

Pageable kernel
data (you don’t
need to implement
this!)

Kernel code
+ data

Assignment 3: Your Mission

• Handle TLB faults
• Implement paging

• Per-process data structures (e.g., page tables)
• Global data structures (e.g., core map: physical page

number -> virtual page info)
• Page eviction + backing store support
• Background writing of dirty pages to disk

• sbrk()

3/8/2016 CS161 Spring 2016 12

The Lifecycle of a Memory Reference on MIPS
Virtual address and %TLBHI::ASID

TLB lookup

Access ok? Yes

Calculate phys
addr, send to

L1/L2/L3/RAM

Check
“writeable” bit

Yes

HW sets BADVADDR,
raises exception;

OS161 sees
VM_FAULT_READONLY

No

HW sets BADVADDR,
raises exception; OS161
sees VM_FAULT_READ
or VM_FAULT_WRITE

No TLB hit?

YOUR IMAGINATION
CREATES A MIRACLE

TLB Handling
• For an additional reference on the MIPS TLB architecture,

see the Vahalia reference on the CS161 “Resources” page
• Start with a simple replacement algorithm first!
• We provide four C-level functions to interact with the TLB:

• TLB_Write(): Write to a specified TLB entry
• TLB_Read(): Read a specified TLB entry
• TLB_Probe(): Search TLB to see if it contains a match for

a given virtual frame number
• TLB_Random(): Write to a random TLB entry

• Note that TLB_Random() never selects 8 of the 64 TLB
entries, so you may want to use TLB_Write() and random()

• Suggestion: Ignore ASIDs and “G” bit for now; just clear the
entire TLB on a context switch (less efficient, but correct!)

3/8/2016 CS161 Spring 2016 14

Paging and Virtual Memory
• Bootstrapping is tricky

• You cannot kmalloc() until you set up your memory system . . .
• . . . but you cannot set up your memory system without

allocating kernel memory
• Hint: Look at how ram_stealmem() works

• Key data structures for paging:
• Per-process virtual-to-physical mappings
• Global mapping from physical pages to a process and an

address space
• Think carefully about the page tables!

• How much memory do they consume?
• Do they require linear searches? (The answer should be “no”!)

 3/8/2016 CS161 Spring 2016 15

Handling a Page Fault for Page P
• Check page table, confirm that P exists
• If so, decide where to put P

• If there’s free memory, use it! (Hint: consult the core map)
• If there isn’t free memory:

• Select a frame to evict
• Write it to the backing store if necessary
• Update page tables

• Read P into memory
• Update page tables
• Update TLB

3/8/2016 CS161 Spring 2016 16

Synchronization

Address Space Manipulations
• Operations on address spaces

• as_create()
• as_destroy()
• as_copy() //For fork()
• as_activate() //For context switching

• Code isn’t too bad—the main challenges are data
structures and synchronization
• Often best to have data structures synchronize

themselves . . .
int foo_manipulator(){
 lock foo;
 manipulate foo;
 unlock foo;
}

//Somewhere else
ret = foo_manipulator();

int foo_manipulator(){
 manipulate foo;
}

//Somewhere else
lock foo;
ret = foo_manipulator();
unlock foo;

Kernel Allocations

• Hint: Don’t try to implement pageable kernel memory!
• So, when you allocate a page to the kernel, it stays

allocated unless the kernel gives it back
• When the kernel asks for N pages of contiguous

virtual address space, you need to find N pages of
contiguous physical memory!

3/8/2016 CS161 Spring 2016 18

Backing Store

• You need a pager thread that proactively writes dirty
pages to disk (making them clean)

• Hint: You should never sleep while holding a spinlock!
• Hint: Every page can have its own place on disk

• You can make your disk quite large
• OS161 already provides bitmap functionality (useful

for determining which disk blocks are free)
• Use vfs_open() on “lhd0raw:” and use the vnode you

get back for swapping

3/8/2016 CS161 Spring 2016 19

Linux Case Study: Swapping
• Linux page cache lives in physical RAM, and has a

bunch of stuff, including:
• Disk/SSD data that has been read/written
• Code pages from user process’s virtual address

space
• Stack and heap pages from user process’s virtual

address space
• When memory pressure is low, kernel is lazy about

removing data—why spend the effort if somebody
might need the data in the future?

• Kernel must evict pages from RAM when memory
pressure is high
• Dirty mapped pages written to backing files
• Dirty anonymous pages written to swap space

“Anonymous”

“Mapped”

Linux Case Study: Swapping
• Linux has a kswapd thread for each processor

• Allows for parallel memory reclamation
• Useful for NUMA machines in which some RAM is

“close” to one core and “far” from others (kswapd
thread will focus on pages in “close” RAM)

• Each kswapd thread sleeps on a wait queue
• When the kernel allocates memory, it checks

whether the memory pressure is high
• If so, it awakens the kswapd thread!

Allocated
Unallocated

After reboot

kswapd awoken

kswapd finishes

Watermark
FreeMem
threshold

Linux Case Study: Swapping
• Linux uses LRU to determine which pages to remove

• For each process, kernel maintains two page lists:
active and inactive

• On x86, leverages the “Accessed” PTE bit that’s
automatically updated by hardware

• When memory pressure is high, kernel evicts pages
from the inactive list

• Q: What if all the disk buffers are evicted and swap
space is filled, but there’s still memory pressure?

• A: The OOM killer uses heuristics to kill processes and
reclaim their memory + swap space
• Hate processes w/lots of allocated virtual memory
• Hate processes w/low static priority
• DO NOT HATE KERNEL TASKS LIKE INIT
• Do not hate processes w/direct access to hardware

Synchronization in your OS161 VM
Subsystem

• Things to consider
• SPL synchronization doesn’t work with IO!
• Don’t create a lock per page, since this would consume

too much space; consider a busy bit
• How does locking work when handling a page fault?
• How does locking work when evicting a page?
• What if a page that I want to modify/evict is in the

middle of being evicted by someone else?
• What happens in fork() if a page to copy is not resident?

• Holland’s hint: It is easier to debug a VM system with
deadlocks than with race conditions

• Think carefully about synchronization in your design doc!
3/8/2016 CS161 Spring 2016 23

malloc() and sbrk()

3/8/2016 CS161 Spring 2016 24
0x0

0x80000000

Code

Data

BSS

Stack

Break

• The “break” refers to the end of a
process’s heap memory

• Before a process has dynamically
allocated memory, the break is
after the static code+data

• As the application calls malloc(),
the break pointer moves upward

• . . . but what exactly is in the
heap?

Break
Heap

THE HEAP IS
FILLED WITH

REVERSE
CENTAURS

THE HEAP IS
FILLED WITH

OCAML

THE HEAP IS FILLED WITH DATA
STRUCTURES

• malloc()/free() implementations track which parts of the heap
are allocated, and which are unallocated

• Ex: dlmalloc

• OS161’s malloc()/free() is much simpler, but you must understand
it for Assignment 3; read it before implementing sbrk()!

. . .
Free block

size
16 24 32 40 48 248

Exact bins

. . .

Sorted bins

256 384 8 MB
. . .

Size of prev chunk
Ptr to next chunk
Ptr to prev chunk

Size of chunk
…0+ bytes unused…

Subtleties: Coalescing adjacent small chunks?
 Splitting big chunks?
Beware: Don’t corrupt these data structures!

In allocated block,
overwritten w/app data.

VM Statistics

• Statistics will help with debugging and performance
debugging!

• Real-life virtual memory managers collect many stats, e.g.,:
• Total number of physical pages available
• Total number of physical pages allocated
• Number of clean in-memory pages
• Number of dirty in-memory pages
• Number of kernel pages
• Number of swapped-out pages
• Your brilliant statistic goes here

3/8/2016 CS161 Spring 2016 28

Things That You Don’t Have To Do
• Copy-on-write memory (e.g., for use by fork())
• Pageable kernel memory (using kseg2)
• Memory-mapped files (e.g., to minimize read()/write()

overheads)
• 22-disk swap partitions (e.g., to support hilariously high

levels of memory pressure)

3/8/2016 CS161 Spring 2016 29

James’s Mantra:
LISTEN TO
MARGO.

Margo’s Mantra:
Get something simple
working first! Only
consider fancier stuff
afterwards.

In-class Exercises
• Where does OS161 provide bitmap functionality? Find the location

and familiarize yourself with the code—it will come in handy during
Assignment 3!

• When an sbrk() happens, what per-process data structure(s) must
be updated? When the stack grows, what per-process data
structure(s) must be updated? Does anything need to happen when
the stack *shrinks* due to user-mode function calls returning?

• Think about how a multicore architecture interacts with virtual
memory management. For example:
• Do you need to do anything special with page tables and TLB

entries if a process executes on core X, is context-switched off,
and later resumed on core Y?

• Suppose that core R discovers that it must evict a page from
memory. What implications does this have for the TLB on core
R? What implications does this have for the TLBs on other
cores?

• Suppose that, while fork() executes on one core, the other core
is running the kernel thread which asynchronously writes dirty
pages to disk. What synchronization strategies can ensure that
both operations proceed safely?

	A3: What You Always Wanted To Know But Were Afraid To Ask
	But first . . .
	Where is the Kernel’s Address Space?
	OK LET’S TALK ABOUT IT CALM DOWN
	32-bit Mac OS X (pre-10.4)
	Q: Does every processor use N-level page tables?
	Case study: Page Tables on 32-bit PowerPC
	Everything In Memory Has An Address!
	Deep-dive on Assignment 3
	MIPS: The Memory Model
	MIPS: The Memory Model
	Assignment 3: Your Mission
	The Lifecycle of a Memory Reference on MIPS
	TLB Handling
	Paging and Virtual Memory
	Handling a Page Fault for Page P
	Address Space Manipulations
	Kernel Allocations
	Backing Store
	Linux Case Study: Swapping
	Linux Case Study: Swapping
	Linux Case Study: Swapping
	Synchronization in your OS161 VM Subsystem
	malloc() and sbrk()
	THE HEAP IS FILLED WITH�REVERSE CENTAURS
	THE HEAP IS FILLED WITH�OCAML
	THE HEAP IS FILLED WITH DATA STRUCTURES
	VM Statistics
	Things That You Don’t Have To Do
	In-class Exercises

