
These state diagrams assume that a process can only 
reach the "Terminated" state from the "Running" state. 
How could a process in the "Runnable" or "Waiting" 
state transition to the "Terminated" state? 
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User could kill process before 
the process has called exit()! 
    Ex: Control-C a process 
    Ex: kill -9 1831 
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Define a simple C function that, when invoked, will 
eventually cause a stack overflow. Then describe how 
the stack overflow might lead to data corruption of 
heap objects. 
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unsigned	int	factorial(unsigned	int	n){	
				if(n	==	1){	
							return	1;	
				}else{	
							return	n	*	factorial(n-1);	
				}	
}	
factorial(6);	//Works	as	expected.	
factorial(0);	//Disaster	strikes!	
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factorial(6);	//Works	as	expected.	
factorial(0);	//Disaster	strikes!	

On a 32-bit machine,  
0-1 = 4294967295 
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Case study: Linux kernel 
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