
These state diagrams assume that a process can only
reach the "Terminated" state from the "Running" state.
How could a process in the "Runnable" or "Waiting"
state transition to the "Terminated" state?

2/2/2015 CS161 Spring 2016 1

Runnabl
e

Running

Waiting

Terminate
d

User could kill process before
the process has called exit()!
 Ex: Control-C a process
 Ex: kill -9 1831

2/2/2015 CS161 Spring 2016 2

Runnabl
e

Running

Waiting

Terminate
d

User could kill process before
the process has called exit()!
 Ex: Control-C a process
 Ex: kill -9 1831

2/2/2015 CS161 Spring 2016 3

Generates
SIGINT

Control-
C

Keyboar
d

Terminal + shell Foreground
process

User could kill process before
the process has called exit()!
 Ex: Control-C a process
 Ex: kill -9 1831

2/2/2015 CS161 Spring 2016 4

Generates
SIGINT Generates
SIGKILL

“kill -9 1831”

Keyboar
d

Terminal + shell Foreground
process

“kill -9
1831”

Define a simple C function that, when invoked, will
eventually cause a stack overflow. Then describe how
the stack overflow might lead to data corruption of
heap objects.

2/2/2015 CS161 Spring 2016 5

	
unsigned	int	factorial(unsigned	int	n){	
				if(n	==	1){	
							return	1;	
				}else{	
							return	n	*	factorial(n-1);	
				}	
}	
factorial(6);	//Works	as	expected.	
factorial(0);	//Disaster	strikes!	

	
unsigned	int	factorial(unsigned	int	n){	
				if(n	==	1){	
							return	1;	
				}else{	
							return	n	*	factorial(n-1);	
				}	
}	

Define a simple C function that, when invoked, will
eventually cause a stack overflow. Then describe how
the stack overflow might lead to data corruption of
heap objects.

2/2/2015 CS161 Spring 2016 6

factorial(6);	//Works	as	expected.	
factorial(0);	//Disaster	strikes!	

On a 32-bit machine,
0-1 = 4294967295

The FML
number Integer

underflow!

Case study: Linux kernel

2/2/2015 CS161 Spring 2016 7

Per-user-thread kernel
stack

(system calls, exceptions)

Per-cpu kernel stack
(hardware interrupts)

thread_info

Stack start
(high addr)

Stack end
(low addr)

4
KB

4
KB

