
2/4/16 CS161 Spring 2016 1 1

Group Exercises

•  Learning Objectives:
•  Be able to follow threads of execution across domain

crossings
•  Have a clear mental model of the critical data structures and

state you’ll need to maintain in the operating system in order
to implement user-level processes.

Process Cartoons

•  If we ask you to draw “process cartoons,” we mean diagrams like
this one – you may have to draw a sequence of them or come up
with a suitable way to represent animation. You should also include
a bit more detail such as kernel stacks. As you draw the diagrams,
as you discover new things you want to keep track of, think about
what data structures will hold these new “things.”

2/4/16 CS161 Spring 2016 2

Kernel Address Space

User address space

Exercise 0: Warmup

1.  What does OS161 use instead of RUNNABLE for
processes/threads that are not currently running, but
could?

2.  List all the things that you think have to happen to
create a new process.

2/4/16 CS161 Spring 2016 3

Exercise 1: Getting warmer

•  Draw a cartoon of a user process making a system
call (e.g., getpid) that the OS can handle immediately,
returning to the invoking process.
7.  Does this involve a thread switch?
8.  Does this involve a domain crossing?
9.  Does this involve more than one domain crossing?
10.  Must the kernel return to the same process that made this

call?

•  After you have completed your drawing, think about
what your drawing implies for assignment 2. Does it
suggest any particular data structures or standard
functions you’ll need?

2/4/16 CS161 Spring 2016 4

Exercise 2: A bit trickier

•  This time, draw a cartoon of a process making a
system call that is going to block (e.g., read), causing
the kernel to run some other thread.

•  Again, after you’ve completed your drawing, discuss
any implications this sequence of events has on the
design of assignment 2.

2/4/16 CS161 Spring 2016 5

Exercise 3: The Biggie

•  Draw a cartoon of a fork system call.
•  Think carefully about what it means to create a new process.

What structures do you have to conjure up? What data
structures do you need to allocate? Where should those
data structures live?

•  And, once again, after you’ve got a diagram or
sequence of diagrams, think about the implications
for your design and implementation in assignment 2.

2/4/16 CS161 Spring 2016 6

A Note on Error Cleanup
•  Cleanup in the kernel is especially important!

•  Why?
•  Designing constructor/destructor function pairs is typically

a good idea (write them at the same time so you are sure
to free all resources you allocate).

•  Errors during creation often require partial cleanup; there
are two commonly used strategies:
1.  Have a common exit path and branch into it at the proper

place so you free the resources you’ve allocated so far.
2.  Repeat the code that reclaims resources at each error point.

•  Much of the OS161 code uses approach #2, but either is
fine; make a conscious decision which works better for
you.

2/4/16 CS161 Spring 2016 7

Compare and Contrast (discuss)
struct semaphore *
sem_create(const char *name, unsigned initial_count)
{
 struct semaphore *sem;
 sem = kmalloc(sizeof(*sem));
 if (sem == NULL) {
 return NULL;
 }

 sem->sem_name = kstrdup(name);
 if (sem->sem_name == NULL) {
 kfree(sem);
 return NULL;
 }
 sem->sem_wchan = wchan_create(sem->sem_name);
 if (sem->sem_wchan == NULL) {
 kfree(sem->sem_name);
 kfree(sem);
 return NULL;
 }
 spinlock_init(&sem->sem_lock);
 sem->sem_count = initial_count;

 return sem;
}

2/4/16 CS161 Spring 2016 8

struct semaphore *
sem_create(const char *name, unsigned initial_count)
{
 struct semaphore *sem;
 sem = kmalloc(sizeof(*sem));
 if (sem == NULL)
 goto err;

 sem->sem_name = kstrdup(name);
 if (sem->sem_name == NULL)
 goto err;

 sem->sem_wchan = wchan_create(sem->sem_name);
 if (sem->sem_wchan == NULL)
 goto err1;

 spinlock_init(&sem->sem_lock);
 sem->sem_count = initial_count;

 return sem;
err1: kfree(sem_name);
err: if (sem != NULL)
 kfree(sem);
 return NULL;
}

