
These state diagrams assume that a process can only
reach the "Terminated" state from the "Running" state.
How could a process in the "Runnable" or "Waiting" state
transition to the "Terminated" state?

2/2/2015 CS161 Spring 2016 1

Runnable

Running

Waiting

Terminated

User could kill process before the
process has called exit()!
 Ex: Control-C a process
 Ex: kill -9 1831

2/2/2015 CS161 Spring 2016 2

Runnable

Running

Waiting

Terminated

User could kill process before the
process has called exit()!
 Ex: Control-C a process
 Ex: kill -9 1831

2/2/2015 CS161 Spring 2016 3

Generates SIGINT

Control-C

Keyboard

Terminal + shell Foreground
process

User could kill process before the
process has called exit()!
 Ex: Control-C a process
 Ex: kill -9 1831

2/2/2015 CS161 Spring 2016 4

Generates SIGINT
Generates SIGKILL

“kill -9 1831”

Keyboard

Terminal + shell Foreground
process

“kill -9 1831”

Define a simple C function that, when invoked, will
eventually cause a stack overflow. Then describe how the
stack overflow might lead to data corruption of heap
objects.

2/2/2015 CS161 Spring 2016 5

unsigned int factorial(unsigned int n){
 if(n == 1){
 return 1;
 }else{
 return n * factorial(n-1);
 }
}
factorial(6); //Works as expected.
factorial(0); //Disaster strikes!

unsigned int factorial(unsigned int n){
 if(n == 1){
 return 1;
 }else{
 return n * factorial(n-1);
 }
}

Define a simple C function that, when invoked, will
eventually cause a stack overflow. Then describe how the
stack overflow might lead to data corruption of heap
objects.

2/2/2015 CS161 Spring 2016 6

factorial(6); //Works as expected.
factorial(0); //Disaster strikes!

On a 32-bit machine,
0-1 = 4294967295

The FML number
Integer underflow!

Case study: Linux kernel

2/2/2015 CS161 Spring 2016 7

Stack start
(high addr)

Per-user-thread kernel stack
(system calls, exceptions)

Stack end
(low addr)

4 KB
or

8 KB

4 KB
or

8 KB

Per-cpu kernel stack
(hardware interrupts)

Case study: Linux kernel

2/2/2015 CS161 Spring 2016 8

Stack start
(high addr)

Per-user-thread kernel stack
(system calls, exceptions)

thread_info

Stack end
(low addr)

4 KB
or

8 KB

4 KB
or

8 KB

Linux kernel stack overflow when mounting ISO9660
image: “We use a long chain of unique inode references (100+). Because the
resolution of the chain is implemented via recursive functions, we explode the kernel
stack.” https://code.google.com/p/google-security-research/issues/detail?id=88

Per-cpu kernel stack
(hardware interrupts)

https://code.google.com/p/google-security-research/issues/detail?id=88

Case study: Linux kernel

2/2/2015 CS161 Spring 2016 9

Stack start
(high addr)

Per-user-thread kernel stack
(system calls, exceptions)

thread_info

Stack end
(low addr)

4 KB
or

8 KB

4 KB
or

8 KB

Linux kernel stack overflow when mounting ISO9660
image: “We use a long chain of unique inode references (100+). Because the
resolution of the chain is implemented via recursive functions, we explode the kernel
stack.” https://code.google.com/p/google-security-research/issues/detail?id=88

Per-cpu kernel stack
(hardware interrupts)

stack canary 0x57AC6E9D

https://code.google.com/p/google-security-research/issues/detail?id=88

	These state diagrams assume that a process can only reach the "Terminated" state from the "Running" state. How could a process in the "Runnable" or "Waiting" state transition to the "Terminated" state?
	User could kill process before the process has called exit()!� Ex: Control-C a process� Ex: kill -9 1831
	User could kill process before the process has called exit()!� Ex: Control-C a process� Ex: kill -9 1831
	User could kill process before the process has called exit()!� Ex: Control-C a process� Ex: kill -9 1831
	Define a simple C function that, when invoked, will eventually cause a stack overflow. Then describe how the stack overflow might lead to data corruption of heap objects.
	Define a simple C function that, when invoked, will eventually cause a stack overflow. Then describe how the stack overflow might lead to data corruption of heap objects.
	Case study: Linux kernel
	Case study: Linux kernel
	Case study: Linux kernel

