
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

EbbRT: A Framework for Building Per-Application
Library Operating Systems

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger,
and Jonathan Appavoo, Boston University

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/schatzberg

EbbRT: A Framework for Building Per-Application Library
Operating Systems

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, Jonathan Appavoo
Boston University

Abstract

General purpose operating systems sacrifice per-
application performance in order to preserve general-
ity. On the other hand, substantial effort is required to
customize or construct an operating system to meet the
needs of an application. This paper describes the design
and implementation of the Elastic Building Block Run-
time (EbbRT), a framework for building per-application
library operating systems. EbbRT reduces the effort re-
quired to construct and maintain library operating sys-
tems without hindering the degree of specialization re-
quired for high performance. We combine several tech-
niques in order to achieve this, including a distributed
OS architecture, a low-overhead component model, a
lightweight event-driven runtime, and many language-
level primitives. EbbRT is able to simultaneously enable
performance specialization, support for a broad range of
applications, and ease the burden of systems develop-
ment.

An EbbRT prototype demonstrates the degree of cus-
tomization made possible by our framework approach.
In an evaluation of memcached, EbbRT and is able to at-
tain 2.08× higher throughput than Linux. The node.js
runtime, ported to EbbRT, demonstrates the broad ap-
plicability and ease of development enabled by our ap-
proach.

1 Introduction

Performance is a key concern for modern cloud applica-
tions. Even relatively small performance gains can re-
sult in significant cost savings at scale. The end of Den-
nard scaling and increasingly high-speed I/O devices has
shifted the emphasis of performance to the CPU and, in
turn, the software stack on which an application is de-
ployed.

Existing general purpose operating systems sacrifice
per-application performance in favor of generality. In re-

sponse, there has been a renewed interest in library op-
erating systems [28, 38], hardware virtualization [5, 44],
and kernel bypass techniques [25, 48]. Common to these
approaches is the desire to enable applications to inter-
act with devices with minimal operating system involve-
ment. This allows developers to customize the entire
software stack to meet the needs of their application.

The problem with this approach is that it still requires
significant engineering effort to implement the required
system functionality. The consequence being that past
systems have either targeted a narrow class of applica-
tions (e.g. packet processing) or, in order to be broadly
applicable, constructed general purpose software stacks.

We believe that general purpose software stacks are
subject to the same trade-off between performance and
generality as existing commodity operating systems. In
order to achieve high performance for a broad set of
applications, we must bridge the gap between general
purpose software, on which application development is
easy, and the performance advantages obtained using
customized, per-application software stacks where the
development burden is high.

Our work addresses this gap with the Elastic Build-
ing Block Runtime (EbbRT), a framework for construct-
ing per-application library operating systems. EbbRT
reduces the effort required to construct and maintain li-
brary operating systems without restricting the degree of
specialization required for high performance. We com-
bine several techniques in order to achieve this.

1. EbbRT is comprised of a set of components, called
Elastic Building Blocks (Ebbs), that developers can
extend, replace, or discard in order to construct
and deploy a particular application. This enables
a greater degree of customization than a general
purpose system and promotes the reuse of non-
performance-critical components.

2. EbbRT uses a lightweight execution environment
that allows application logic to directly interact with

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 671

hardware resources, such as memory and devices.

3. EbbRT applications are distributed across both spe-
cialized and general purpose operating systems.
This allows functionality to be offloaded, which re-
duces the engineering effort required to port appli-
cations.

In this paper we describe the design and implementa-
tion of the EbbRT framework, along with several of its
system components (e.g., a scalable network stack and
a high-performance memory allocator). We demonstrate
that library operating systems constructed using EbbRT
outperform Linux on a series of compute and network
intensive workloads. For example, a memcached port to
EbbRT, run on a commodity hypervisor, is able to attain
2.08× greater throughput than memcached run on Linux.
Additionally, we show that, with modest developer ef-
fort, EbbRT is able to support large, complex applica-
tions. In particular, node.js, a managed runtime environ-
ment, was ported in two weeks by a single developer.

The remainder of the paper is structured as follows:
section 2 outlines the objectives of EbbRT, section 3
presents the high-level architecture and design of our
framework, section 4 describes the implementation, sec-
tion 5 presents the evaluation of EbbRT, section 6 dis-
cusses related work, and section 7 concludes.

2 Objectives

The following three objectives guide our design and im-
plementation:

Performance Specialization: To achieve high perfor-
mance we seek to allow applications to efficiently spe-
cialize the system at every level. To facilitate this,
we provide an event-driven execution environment with
minimal abstraction over the hardware; EbbRT applica-
tions can provide event handlers to directly serve hard-
ware interrupts. Also, our Ebb component model has low
enough overhead to be used throughout performance-
sensitive paths, while also enabling compiler optimiza-
tions, such as aggressive inlining.

Broad Applicability: To ensure high utility, a frame-
work should support a broad set of applications. EbbRT
is designed and implemented to support the rich set of ex-
isting libraries and complex managed runtimes on which
applications depend. We adopt a heterogeneous dis-
tributed architecture, called the MultiLibOS [49] model,
wherein EbbRT library operating systems run alongside
general purpose operating systems and offload function-
ality transparently. EbbRT library operating systems can
be integrated with a process of the general purpose OS.

Ease of Development: We strive to make the devel-
opment of application-specific systems easy. EbbRT ex-
ploits modern language techniques to simplify the task of
writing new system software, while the Ebb model pro-
vides an abstraction to encapsulate existing system com-
ponents. The barrier to porting existing applications is
lowered through the use of function offloading between
an EbbRT library OS and a general purpose OS.

Attaining all three of these objectives simultaneously
is a challenging but critical step towards bridging the gap
between general purpose and highly specialized software
stacks.

3 System Design

This section describes the high-level design of EbbRT. In
particular the three elements of the design discussed are:
1. a heterogeneous distributed structure, 2. a modular
system structure, and 3. a non-preemptive event-driven
execution environment.

ramcores nics

ramcores nicsCommodity
OS

VM0 VM1

ramcores nics

VM2

Frontend OS Process linked to Hosted library

Backend privileged protection-domain
linked to Native library OS

Hosted Native Native

Ebb Instance per-VM, per-core Representatives

Figure 1: High Level EbbRT architecture

3.1 Heterogeneous Distributed Structure

Our design is motivated in-part by the common deploy-
ment strategies of cloud applications. Infrastructure as
a Service enables a single application to be deployed
across multiple machines within an isolated network. In
this context, it is not necessary to run general purpose
operating systems on all the machines of a deployment.
Rather, an application can be deployed across a heteroge-
neous mix of specialized library OSs and general purpose
operating systems as illustrated in Figure 1.

To facilitate this deployment model, EbbRT is imple-
mented as both a lightweight bootable runtime and a
user-level library that can be linked into a process of a
general purpose OS [49]. We refer to the bootable library

672 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OS as the native runtime and the user-level library as the
hosted runtime.

The native runtime allows application software to be
written directly to hardware interfaces uninhibited by
legacy interfaces and protection mechanisms of a general
purpose operating system. The native runtime sets up
a single address space, basic system functionality (e.g.
timers, networking, memory allocation) and invokes an
application entry point, all while running at the highest
privilege level. The EbbRT design depends on applica-
tion isolation at the network layer, either through switch
programming or virtualization, making it amenable to
both virtualized and bare-metal environments.

The hosted user-space library allows EbbRT applica-
tions to integrate with legacy software. This frees the
native library OSs from the burden of providing compat-
ibility with legacy interfaces. Rather, functionality can
be offloaded via communication with the hosted environ-
ment.

A common deployment of a EbbRT application con-
sists of a hosted process and one or more native runtime
instances communicating across a local network. A user
is able to interact with the EbbRT application through the
hosted runtime, as they would any other process of the
general purpose OS, while the native runtime supports
the performance-critical portion of the application.

3.2 Modular System Structure

To provide a high degree of customization, EbbRT en-
ables application developers to modify or extend all lev-
els of the software stack. To support this, EbbRT appli-
cations are almost entirely comprised of objects we call
Elastic Building Blocks (Ebbs). As with objects in many
programming languages, Ebbs encapsulate implementa-
tion details behind a well-defined interface.

Ebbs are distributed, multi-core fragmented objects [9,
39, 51], where the namespace of Ebbs is shared across
both the native and hosted runtimes. Figure 1 illustrates
an Ebb spanning both hosted and native runtimes of an
application. An EbbRT application typically consists of
multiple Ebb instances. The framework is composed of
base Ebb types that a developer can use to construct an
EbbRT application.

When an Ebb is invoked, a local representative han-
dles the call. Representatives may communicate with
each other to satisfy the invocation. For example, an
object providing file access might have representatives
on a native instance simply function-ship requests to a
hosted representative which translates these requests into
requests on the local file system. By encapsulating the
distributed nature of the object, optimizations such as
RDMA, caching, using local storage, etc. would all be
hidden from clients of the filesystem Ebb.

Ebb reuse is critical to easing development effort. Ex-
ploiting modularity promotes reuse and evolution of the
EbbRT framework. Developers can build upon the Ebb
structure to provide additional libraries of components
that target specific application use cases.

3.3 Execution Model

Execution in EbbRT is non-preemptive and event-driven.
In the native runtime there is one event loop per core
which dispatches both external (e.g. timer completions,
device interrupts) and software generated events to reg-
istered handlers. This model is in contrast to a more stan-
dard threaded environment where preemptable threads
are multiplexed across one or more cores. Our non-
preemptive event-driven execution model provides a low
overhead abstraction over the hardware. This allows our
implementation to directly map application software to
device interrupts, avoiding the typical costs of schedul-
ing decisions or protection domain switches.

EbbRT provides an analogous environment within the
hosted library by providing an event loop using underly-
ing OS functionality such as poll or select. While
the hosted environment cannot achieve the same effi-
ciency as our native runtime, we provide a compati-
ble environment to allow software libraries to be reused
across both runtimes.

Many cloud applications are driven by external re-
quests such as network traffic so the event-driven pro-
gramming environment provides a natural way to struc-
ture the application. Indeed, many cloud applications use
a user-level library (e.g. libevent [46], libuv [34], Boost
ASIO [29]) to provide such an environment.

However, asynchronous, event-driven programming
may not be a good fit for all applications. To this end, we
provide a simple cooperative threading model on top of
events. This allows for blocking semantics and a concur-
rency model similar to the Go programming language.
We discuss support for long running events further in
Section 4.2.

The non-preemptive event execution, along with sup-
port for cooperative threading, allows the native runtime
to be lightweight yet provides sufficient flexibility for a
wide range of applications. Such qualities are critical in
enabling performance specialization without sacrificing
applicability.

4 Implementation

In this section we provide an overview of the system soft-
ware and then describe details of the implementation.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 673

Primitives External Libraries

Fu
tu

re
s

L
am

bd
as

IO
B

uf
s

st
d

c+
+

B
oo

st

In
te

lT
B

B

ca
pn

pr
ot

o

Description

PageAllocator 3 3 3 Power of two physical page frame allocator
VMemAllocator 3 Allocates virtual address space
SlabAllocator 3 3 Allocates fixed sized objects
GeneralPurposeAllocator 3 General purpose memory allocatorM

em
or

y

EbbAllocator 3 3 Allocates EbbIds
LocalIdMap 3 3 3 Local data store for Ebb data and fault resolution
GlobalIdMap 3 3 3 3 Application-wide data store for Ebb data

EventManager 3 3 3 3 Creates events and manages hardware interrupts

O
bj

ec
ts

Timer 3 3 Delay based scheduling of eventsE
ve

nt

NetworkManager 3 3 3 3 3 Implements TCP/IP stack
SharedPoolAllocator 3 3 Allocates network ports
NodeAllocator 3 3 3 3 Allocates, configures, and releases IAAS resources
Messenger 3 3 3 Cross node Ebb to Ebb communication
VirtioNet 3 3 VirtIO network device driver

I/
O

Table 1: The core Ebbs that make up EbbRT. A gray row indicates that the Ebb has a multi-core implementation (one
representative per core) while the others use a single shared representative.

4.1 Software Structure Overview

EbbRT is comprised of an x86_64 library OS and
toolchain as well as a Linux userspace library. Both
runtimes are written predominately in C++14 totaling
14,577 lines of new code [59]. The native library is pack-
aged with a GNU toolchain (gcc, binutils, libstdc++) and
libc (newlib) modified to support a x86_64-ebbrt build
target. Application code compiled with the toolchain will
produce a bootable ELF binary linked with the library
OS. We provide C and C++ standard library implemen-
tations which make it straightforward to use many third
party software libraries as shown in Table 1. The sup-
port and use of standard software libraries to implement
system-level functionality makes it much easier for li-
brary and application developers to understand and mod-
ify system-level Ebbs.

We chose not to strive for complete Linux or POSIX
compatibility. We feel that enforcing compatibility with
existing OS interfaces would be restrictive and, given the
function offloading enabled by our heterogeneous dis-
tributed structure, unnecessary. Rather, we provide min-
imalist interfaces above the hardware, which allows for a
broad set of software to be developed on top.

EbbRT provides the necessary functionality for events
to execute and Ebbs to be constructed and used. This
entails functionality such as memory management, net-

working, timers, and I/O. This functionality is provided
by the core system Ebbs shown in Table 1

4.2 Events

Both the hosted and native environments provide an
event driven execution model. Within the hosted envi-
ronment we use the Boost ASIO library [29] in order to
interface with the system APIs. Within the native envi-
ronment, our event-driven API is implemented directly
on top of the hardware interfaces. Here, we focus our
description on the implementation of events within the
native environment.

When the native environment boots, an event loop per
core is initialized. Drivers can allocate a hardware inter-
rupt from the EventManager and then bind a handler
to that interrupt. When an event completes and the next
hardware interrupt fires, a corresponding exception han-
dler is invoked. Each exception handler execution be-
gins on the top frame of a per-core stack. The exception
handler checks for an event handler bound to the corre-
sponding interrupt and then invokes it. When the event
handler returns, interrupts are enabled and more events
can be processed. Therefore events are non-preemptive
and typically generated by a hardware interrupt.

Applications can invoke synthetic events on any
core in the system. The Spawn method of the

674 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

EventManager receives an event handler, which is
later invoked from the event loop. Events invoked with
Spawn are only executed once. A handler for a reoccur-
ring event can be installed as an IdleHandler.

In order to prevent interrupt starvation, when an event
completes the EventManager, 1. enables then disables
interrupts, handling any pending interrupts, 2. dispatches
a single synthetic event, 3. invokes all IdleHandlers
and then 4. enables interrupts and halts. If any of these
steps result in an event handler being invoked, then the
process starts again at the beginning. This way, hardware
interrupts and synthetic events are given priority over re-
peatedly invoked IdleHandlers.

While our EventManager implementation is sim-
ple, it provides sufficient functionality to achieve inter-
esting dynamic behavior. For example, our network card
driver implements adaptive polling in the following way:
an interrupt is allocated from the EventManager and
the device is programmed to fire that interrupt when
packets are received. The event handler will process
each received packet to completion before returning con-
trol to the event loop. If the interrupt rate exceeds a
configurable threshold, the driver disables the receive
interrupt and installs an IdleHandler to process re-
ceived packets. The EventManager will repeatedly
call the idle handler from within the event loop, effec-
tively polling the device for more data. When the packet
arrival rate drops below a configurable threshold, the
driver re-enables the receive interrupt and disables the
idle handler, returning to interrupt-driven packet process-
ing.

Given our desire to enable reuse of existing software,
we adopt a cooperative threading model which allows
events to explicitly save and restore control state (e.g.,
stack and volatile register state). At the point where
the block would occur, the current event saves its state
and relinquishes control back to the event loop, where
the processing of pending events is resumed. The orig-
inal event state can be restored, and its execution re-
sumed, when the asynchronous work completes. The
save and restore event mechanisms enable explicit coop-
erative scheduling between events, facilitating familiar
blocking semantics. This has allowed us to quickly port
software libraries that require blocking system calls.

A limitation of non-preemptive execution is the diffi-
culty of mapping long-running threads with no I/O to an
event-driven model. If the processor is not yielded pe-
riodically, event starvation can occur. At present we do
not provide a completely satisfactory solution. Building
a preemptive scheduler on top of events would be possi-
ble, though we fear it would fragment the set of Ebbs into
those that depend on non-preemptive execution and those
that don’t. Alternatively, we have discussed dedicat-
ing processors to executing these long-running threads

and therefore avoiding any starvation issues, similar to
IX [5]. Nonetheless, we have not run into this problem
in practice; most cloud applications rely heavily on I/O,
and concern for starvation is reduced as we only support
the execution of a single process.

4.3 Elastic Building Blocks

Nearly all software in EbbRT is written as elastic build-
ing blocks, which encapsulate both the data and function
of a software component. Ebbs hide from clients the dis-
tributed or parallel nature of objects and can be extended
or replaced for customization. An Ebb provides an in-
terface using a standard C++ class definition. Every in-
stance of an Ebb has a system-wide unique EbbId (32
bits in our current implementation). Software invokes the
Ebb by converting the EbbId into an EbbRef which
can be dereferenced to a per-core representative which is
a reference to an instance of the underlying C++ class.
We use C++ templates to implement the EbbRef gener-
ically for all Ebb classes.

Ebbs may be invoked on any machine or core within
the application. Therefore, it is necessary for initializa-
tion of the per-core representatives to happen on-demand
to mitigate initialization overheads for short-lived Ebbs.
An EbbId provides an offset into a virtual memory re-
gion backed with distinct per-core pages which holds a
pointer to the per-core representative (or NULL if it does
not exist). When a function is called on an EbbRef, it
checks the per-core representative pointer — in the com-
mon case where it is non-null, it is dereferenced and the
call is made on the per-core representative. If the pointer
is null, then a type specific fault handler is invoked which
must return a reference to a representative to be called
or throw a language-level exception. Typically, a fault
handler will construct a representative and store it in the
per-core virtual memory region so future invocations will
take the fast-path. Our hosted implementation of Ebb
dereferences uses per-thread hash-tables to store repre-
sentative pointers.

The construction of a representative may require com-
munication with other representatives either within the
machine or on other machines. EbbRT provides core
Ebbs that support distributed data storage and messaging
services. These facilities span and enable communica-
tion between the EbbRT native and hosted instances and
utilize network communication as needed.

Ebb modularity is both flexible and efficient, making
them suitable for high-performance components. Pre-
vious systems providing a partitioned object model ei-
ther used relatively heavy weight invocation across a dis-
tributed system [56], or more efficient techniques con-
strained to a shared memory system [17, 30]. Ebbs are
unique in their ability to accommodate both use cases.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 675

The fast-path cost of an Ebb invocation is one predictable
conditional branch and one unconditional branch more
than a normal C++ object dereference. Additionally,
our use of static dispatch (EbbRef’s are templated by
the representative’s type) enables compiler optimizations
such as function inlining.

We intentionally avoided using interface definition
languages such as COM [60], CORBA [57], or Protocol
Buffers [21]. Our concern was that these often require se-
rialization and deserialization at all interface boundaries,
which would promote much coarser grained objects than
we desire. Our ability to use native C++ interfaces al-
lows Ebbs to pass complex data structures amongst each
other. This also necessitates that all Ebb invocations be
local. Ebb representative communication is encapsulated
and may internally serialize data structures as needed.

GeneralPurposeAllocator

PageAllocator VMemAllocator

Physical Memory

Identity Mapped Virtual Memory User Allocatable Virtual Memory

malloc() free()

Small allocations
served from
identity mapped
memory

Large allocations
reserve virtual
memory and map
physical pages

SlabAllocatorSlabAllocatorSlabAllocator

Figure 2: Memory Management Ebbs

4.4 Memory Management
Memory allocation is a performance critical facet of
many cloud applications, and our focus on short-lived
events puts increased pressure on the memory alloca-
tor to perform well. Here we present our default na-
tive memory allocator and highlight aspects of it which
demonstrate the synergy of the elements in the EbbRT
design. Figure 2 illustrates EbbRT’s memory manage-
ment infrastructure and the virtual and physical address
space relationships.

The EbbRT memory allocation subsystem is similar
to that of the Linux Kernel. The lowest-level allocator
is the PageAllocator, which allocates power of two
sized pages of memory. Our default PageAllocator
implementation uses buddy-allocators, one per NUMA
node. On top of the PageAllocator are the

SlabAllocator Ebbs, which are used to allocate
fixed size objects. Our default SlabAllocator im-
plementation uses per-core and per-NUMA node repre-
sentatives to store object free-lists and partially allocated
pages. This design is based on the Linux Kernel’s SLQB
allocator [12]. The GeneralPurposeAllocator,
invoked via malloc, is implemented using multi-
ple SlabAllocator instances, each responsible
for allocating objects of a different fixed size. To
serve a request, the GeneralPurposeAllocator
invokes the SlabAllocator with the closest
size greater or equal to the requested size. For
requests exceeding the largest SlabAllocator
size, the GeneralPurposeAllocator will al-
locate a virtual memory region mapped in from the
VMemAllocator and backed by pages mapped in
from the PageAllocator.

By defining the memory allocators as Ebbs, we al-
low any one of the components to be replaced or mod-
ified without impacting the others. In addition, be-
cause our implementation uses C++ templates for static
dispatch, the compiler is able to optimize calls across
Ebb interfaces. For example, calls to malloc that
pass a size known at compile time are optimized to di-
rectly invoke the correct SlabAllocator within the
GeneralPurposeAllocator.

A key property of memory allocations in EbbRT is
that most allocations are serviced from identity mapped
physical memory. This applies to all allocations made by
the GeneralPurposeAllocator that do not exceed
the largest SlabAllocator size (virtual mappings are
used for larger allocations). Identity mapped memory al-
lows application software to perform zero-copy I/O with
standard allocations rather than needing to allocate mem-
ory specifically for DMA.

Another benefit of the EbbRT design is that, due to
the lack of preemption, most allocations can be ser-
viced from a per-core cache without any synchroniza-
tion. Avoiding atomic operations is so important that
high performance allocators like TCMalloc [19] and je-
malloc [14] use per-thread caches to do so. These al-
locators then require complicated algorithms to balance
the caching across a potentially dynamic set of threads.
In contrast, the number of cores is typically static and
generally not too large, simplifying EbbRT’s balancing
algorithm.

While a portion of the virtual address space is reserved
to identity map physical memory and some virtual mem-
ory is used to provide per-core regions for Ebb invo-
cation, the vast majority of the virtual address space is
available for application use. Applications can allocate
virtual regions by invoking the VMemAllocator and
passing in a handler to be invoked on faults to that al-
located region. This allows applications to implement

676 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 // Sends out an IPv4 packet over Ethernet
2 Future<void> EthIpv4Send(uint16_t eth_proto, const Ipv4Header& ip_hdr, IOBuf buf) {
3 Ipv4Address local_dest = Route(ip_hdr.dst);
4 Future<EthAddr> future_macaddr = ArpFind(local_dest); /* asynchronous call */
5 return future_macaddr.Then(
6 // continuation is passed in as an argument
7 [buf = move(buf), eth_proto](Future<EthAddr> f) { /* lambda definition */
8 auto& eth_hdr = buf->Get<EthernetHeader>();
9 eth_hdr.dst = f.Get();

10 eth_hdr.src = Address();
11 eth_hdr.type = htons(eth_proto);
12 Send(move(buf));
13 }); /* end of Then() call */
14 }

Figure 3: Network code path to route and send and Ethernet frame.

arbitrary paging policies.
Our memory management demonstrates some of the

advantages provided by EbbRT’s design. First, we use
Ebbs to create per-core representatives for multi-core
scalability and to provide encapsulation to enable the
different allocators to be replaced. Second, the lack of
preemption enables us to use the per-core representa-
tives without synchronization. Third, the library OS de-
sign enables tighter collaboration between system com-
ponents and application components — as exemplified
by the application’s ability to directly manage virtual
memory regions and achieve zero-copy interactions with
device code.

4.5 Lambdas and Futures
One of the core objectives of our design is mitigating
complexity to ease development. Critics of event-driven
programming point out several properties which place in-
creased burden on the developer.

One concern is that event-driven programming tends
to obfuscate the control flow of the application [58].
For example, a call path that requires the completion of
an asynchronous event will often pass along a callback
function to be invoked when the event completes. The
callback is invoked within a context different than that
of the original call path, so it falls on the programmer to
construct continuations, i.e. control mechanisms used
to save and restore state across invocations. C++ has
recently added support for anonymous inline functions
called lambdas. Lambdas can capture local state that can
be referred to when the lambda is invoked. This removes
the burden of manually saving and restoring state, and
makes code easier to follow. We use lambdas in EbbRT
to alleviate the burden of constructing continuations.

Another concern with event-driven programming is
that error handling is much more complicated. The pre-

dominant mechanism for error handling in C++ is ex-
ceptions. When an error is encountered, an exception is
thrown and the stack unwound to the most recent try/-
catch block, which will handle the error. Because event-
driven programming splits one logical flow of control
across multiple stacks, exceptions must be handled at ev-
ery event boundary. This puts the burden on the devel-
oper to catch exceptions at additional points in the code
and either handle them or forward them to an error han-
dling callback.

Our solution to these problems is our implementation
of monadic futures. Futures are a data type for asyn-
chronously produced values, originally developed for use
in the construction of distributed systems [37]. Figure 3
illustrates a code path in the EbbRT network stack that
utilizes lambdas and futures to route and send an Eth-
ernet frame. The ArpFind function (line 4) translates
an IP address to the corresponding MAC address either
through a lookup into the ARP cache or by sending out
an ARP request to be processed asynchronously. In ei-
ther case, ArpFind returns a Future<EthAddr>,
which represents the future result of the ARP transla-
tion. A future cannot be directly operated on. Instead, a
lambda can be applied to it using the Then method (line
5). This lambda is invoked once the future is fulfilled.
When invoked, the lambda receives the fulfilled future as
a parameter and can use the Get method to retrieve its
underlying value (line 9). In the event that the future is
fulfilled before the Then method is invoked (for exam-
ple, ArpFind retrieves the translation directly from the
ARP cache) the lambda is invoked synchronously.

The Thenmethod of a future returns a new future rep-
resenting the value to be returned by the applied func-
tion, hence the term monadic. This allows other soft-
ware components to chain further functions to be invoked
on completion. In this example, the EthIpv4Send
method returns a Future<void> which merely rep-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 677

resents the completion of some action and provides no
data.

Futures also aid in error processing. Each time Get is
invoked, the future may throw an exception representing
a failure to produce the value. If not explicitly handled,
the future returned by Then will hold this exception in-
stead of a value. The only invocation of Then that must
handle the error is the final one, any intermediate excep-
tions will naturally flow to the first function which at-
tempts to catch the exception. This behavior mirrors the
behavior of exceptions in synchronous code. In this ex-
ample, any error in ARP resolution will be propagated to
the future returned by EthIpv4Send and handled by
higher-level code.

C++ has an implementation of futures in the standard
library. Unlike our implementation, it provides no Then
function, necessary for chaining callbacks. Instead users
are expected to block on a future (using Get). Other
languages such as C# and JavaScript provide monadic
futures similar to ours.

As seen in Table 1, futures are used pervasively in
interface definitions for Ebbs, and lambdas are used in
place of more manual continuation construction. Our ex-
perience using lambdas and futures has been positive.
Initially, some members of our group had reservations
about using these unfamiliar primitives as they hide a
fair amount of potentially performance sensitive behav-
ior. As we have gained more experience with these prim-
itives, it has been clear that the behavior they encapsulate
is common to many cases. Futures in particular encap-
sulate sometimes subtle synchronization code around in-
stalling a callback and providing a value (potentially con-
currently). While this code has not been without bugs,
we have more confidence in its correctness based on its
use across EbbRT.

4.6 Network Stack

We originally looked into porting an existing network
stack to EbbRT. However, we eventually implemented
a new network stack for the native environment, provid-
ing IPv4, UDP/TCP, and DHCP functionality in order to
provide an event-driven interface to applications, min-
imize multi-core synchronization, and enable pervasive
zero-copy. The network stack does not provide a stan-
dard BSD socket interface, but rather enables tighter in-
tegration with the application to manage the resources of
a network connection.

During the development of EbbRT we found it nec-
essary to create a common primitive for managing data
that could be received from or sent to hardware devices.
To support the development of zero-copy software, we
created the IOBuf primitive. An IOBuf is a descrip-
tor which manages ownership of a region of memory

as well as a view of a portion of that memory. Rather
than having applications explicitly invoke read with a
buffer to be populated, they install a handler which is
passed an IOBuf containing network data for their con-
nection. This IOBuf is passed synchronously from the
device driver through the network stack. The network
stack does not provide any buffering, it will invoke the
application as long as data arrives. Likewise, the inter-
face to send data accepts a chain of IOBufs which can
use scatter/gather interfaces.

Most systems have fixed size buffers in the kernel
which are used to pace connections (e.g. manage TCP
window size, cause UDP drops). In contrast, EbbRT al-
lows the application to directly manage its own buffer-
ing. In the case of UDP, an overwhelmed application
may have to drop datagrams. For a TCP connection, an
application can explicitly set the window size to prevent
further sends from the remote host. Applications must
also check that outgoing TCP data fits within the cur-
rently advertised sender window before telling the net-
work stack to send it or buffer it otherwise. This allows
the application to decide whether or not to delay sending
to aggregate multiple sends into a single TCP segment.
Other systems typically accomplish this using Nagle’s al-
gorithm which is often associated with poor latency [41].
An advantage of EbbRT’s approach to networking is the
degree to which an application can tune the behavior of
its connections at runtime. We provide default behaviors
which can be inherited from for those applications which
do not require this degree of customization.

One challenge with high-performance networking is
the need to synchronize when accessing connection
state [47]. EbbRT stores connection state in an RCU [40]
hash table which allows common connection lookup op-
erations to proceed without any atomic operations. Due
to the event-driven execution model of EbbRT, RCU is
a natural primitive to provide. Because we lack preemp-
tion, entering and exiting RCU critical sections are free.
Connection state is only manipulated on a single core
which is chosen by the application when the connection
is established. Therefore, common case network opera-
tions require no synchronization.

The EbbRT network stack is an example of the de-
gree of performance specialization our design enables.
By involving the application in network resource man-
agement, the networking stack avoids significant com-
plexity. Historically, network stack buffering and queu-
ing has been a significant factor in network performance.
EbbRT’s design does not solve these problems, but in-
stead enables applications to more directly control these
properties and customize the system to their characteris-
tics. The zero-copy optimization illustrates the value of
having all physical memory identity mapped, unpaged,
and within a single address space.

678 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

5 Evaluation

Through evaluating EbbRT we aim to affirm that our im-
plementation fulfills the following three objectives dis-
cussed in Section 2: 1. supports high-performance spe-
cialization, 2. provides support for a broad set of appli-
cations, and 3. simplifies the development of applica-
tion-specific systems software.

We run our evaluations on a cluster of servers con-
nected via a 10GbE network and commodity switch.
Each machine contains two 6-core Xeon E5-2630L pro-
cessors (run at 2.4 GHz), 120 GB of RAM, and an Intel
X520 network card (82599 chipset). The machines have
been configured to disable Turbo Boost, hyper-threads,
and dynamic frequency scaling. Additionally, we dis-
able IRQ balancing and explicitly assign NIC IRQ affin-
ity. For the evaluation, we pin each application thread to
a dedicated physical core.

Each machine boots Ubuntu 14.04 (trusty) with Linux
kernel version 3.13. The EbbRT native library OSs
are run as virtual machines, which are deployed using
QEMU (2.5.0) and the KVM kernel module. In addition,
the VMs use a virtio-net paravirtualized network
card with support of the vhost kernel module. We en-
able multiqueue receive flow steering for multicore ex-
periments. Unless otherwise stated, all Linux applica-
tions are run within a similarly configured VM and on
the same OS and kernel version as the host.

The evaluations are broken down as follows: 1. mi-
cro-benchmarks designed to quantify the base over-
heads of the primitives in our native environment and
2. macro-benchmarks that exercise EbbRT in the context
of real applications. While the EbbRT hosted library is a
primary component of our design, it is not intended for
high-performance, but rather to facilitate the integration
of functionality between a general purpose OS process
and native instances of EbbRT. Therefore, we focus our
evaluation on the EbbRT native environment.

5.1 Microbenchmarks

The first micro-benchmark evaluates the memory alloca-
tor and aims to establish that the overheads of our Ebb
mechanism do not preclude the construction of high-
performance components. The second set of micro-
benchmarks evaluate the latencies and throughput of our
network stack and exercise several of the system features
we’ve discussed, including idle event processing, lamb-
das, and the IOBuf mechanism.

5.1.1 Memory Allocation

In K42 [30], we did not define its memory allocator as
a fragmented object because the invocation overheads

(e.g., virtual function dispatch) were thought to be too
expensive. A goal for the design of our Ebb mechanism
is to provide near-zero overhead so that all components
of the system can be defined as Ebbs.

The costs of managing memory is critical to the overall
performance of an application. Indeed, custom memory
allocators have shown substantial improvements in appli-
cation performance [7]. We’ve ported threadtest from the
Hoard [6] benchmark suite to EbbRT in order to compare
the performance of the default EbbRT memory allocator
to that of the glibc 2.2.5 and jemalloc 4.2.1 allocators.

1 2 4 6 8

Threads

2

4

6

8

10

12

14

16

B
ill

io
n
s

o
f

C
y
cl

e
s

I.

1 2 4 6 8

Threads

II.
EbbRT

glibc

jemalloc

Figure 4: Hoard Threadtest. Y-axis represents threads, t.
I.) N=100,000, i=1000; II.) N=100, i=1,000,000.

In threadtest, each thread t allocates and frees N
t 8

byte objects. This task is repeated for i iterations. Fig-
ure 4 shows the cycles required to complete the work-
load across varying amounts of threads. We run thread-
test in two configurations. In configuration I., the num-
ber of objects, N, is large, while the number of iterations
is small. In configuration II. the number of objects is
smaller and the iteration count is increased. The total
number of memory operations is the same across both
configurations.

In the figure we see EbbRT’s memory allocator scales
competitively with the production allocators. Our scala-
bility advantage is in part due to locality enabled by the
per-core Ebb representatives of the memory allocator and
our lack of preemption which remove any synchroniza-
tion requirements between representatives. The jemalloc
allocator achieves similar scalability benefits by avoiding
synchronization through the use of per-thread caches.

This comparison is not intended to establish the
EbbRT memory allocator to be the best in all situations,
nor is it an exhaustive memory allocator study. Rather,
we aim to demonstrate that the overheads of the Ebb
mechanism do not preclude us from the construction of
high-performance components.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 679

5.1.2 Network Stack

To evaluate the performance of our network stack we
ported the NetPIPE [52] and iPerf [54] benchmarks
to EbbRT. NetPIPE is a popular ping-pong benchmark
where a client sends a fixed-size message to the server,
which is then echoed back after being completely re-
ceived. In the iPerf benchmark, a client opens a TCP
stream and sends fixed-size messages which the server
receives and discards. With small message sizes, the
NetPIPE benchmark illustrates the latency of sending
and receiving data over TCP. The iPerf benchmark con-
firms that our run-to-completion network stack doesn’t
preclude high throughput applications. An EbbRT iPerf
server was shown to saturate our 10GbE network with a
stream of 1 kB message sizes.

Figure 5 shows NetPIPE goodput achieved as a func-
tion of message size. Two EbbRT servers achieve a
one-way latency of 24.53 µs for 64 B message sizes and
are able to attain 4 Gbps of goodput with messages as
small as 100 kB. In contrast, two Linux VMs achieve
a one-way latency of 34.27 µs for 64 B message sizes
and required 200 kB sized messages to achieve equiva-
lent goodput.

100k 200k 300k 400k 5000K 600K 700K

Message Size (B)

2000

4000

6000

8000

G
o
o
d
p
u
t

(M
b
p
s)

Linux VM EbbRT

0 2 4 6 8

1

2

3

Figure 5: NetPIPE performance as a function of message
size. Inset shows small message sizes.

With small messages, both systems suffer some ad-
ditional latency due to hypervisor processing involved
in implementing the paravirtualized NIC. However,
EbbRT’s short path from (virtual) hardware to appli-
cation achieves a 40% improvement in latency with
NetPIPE. This result illustrates the benefits of a non-
preemptive event-driven execution model and zero-copy
instruction path. With large messages, both systems must
suffer a copy on packet reception due to the hypervi-
sor, but EbbRT does no further copies, whereas Linux
must copy to user-space and then again on transmission.

25k 50k 75k 100k 125k 150k

Throughput (RPS)

200

400

600

800

La
te

n
cy

 (
u
s)

OSv Linux VM Linux EbbRT

Figure 6: Memcached Single Core Performance

This explains the difference in Netpipe goodput before
the network becomes the bottleneck.

5.2 Memcached

We evaluate memcached [15], an in-memory key-value
store that has become a common benchmark in the ex-
amination and optimization of networked systems. Pre-
vious work has shown that memcached incurs signifi-
cant OS overhead [27], and hence is a natural target for
OS customization. Rather than port the existing mem-
cached and associated event-driven libraries to EbbRT
we re-implemented memcached, writing it directly to the
EbbRT interfaces.

Our memcached implementation is a multi-core ap-
plication that supports the standard memcached binary
protocol. In our implementation, TCP data is received
synchronously from the network card and passed up to
the application. The application parses the client request
and constructs a reply, which is sent out synchronously.
The entire execution path, up to the application and back
again, is run without pre-emption. Key-value pairs are
stored in an RCU hash table to alleviate lock contention,
a common cause for poor scalability in memcached.
Our implementation of memcached totals 361 lines of
code. We lack some features of the standard memcached
(namely authentication and some of per-key commands
such as queue operations), but are otherwise protocol
compatible. Functionality support has been added incre-
mentally as needed by our workloads.

We compare our EbbRT implementation of mem-
cached, run within a VM, to the standard implementation
(v.1.4.22) run within a Linux VM, and as a Linux process
run natively on our machine. We use the mutilate
[31] benchmarking tool to place a particular load on
the server and measure response latency. We configure

680 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Request/sec Inst/cycle Inst/request LLC ref/cycle I-cache miss/cycle
EbbRT 379387 0.81 5557 0.0081 0.0079
Linux VM 137194 0.71 13604 0.0098 0.0339

Table 2: Memcached CPU-efficiency metrics

200k 400k 600k 800k 1000K 1200K

Throughput (RPS)

200

400

600

800

La
te

n
cy

 (
u
s)

Linux VM Linux (thread) Linux (process) EbbRT

Figure 7: Memcached Multicore Performance

mutilate to generate load representative of the Face-
book ETC workload [2], which has 20 B–70 B keys and
most values sized between 1 B–1024 B. All requests are
issued as separate memcached requests (no multiget)
over TCP. The client is configured to pipeline up to four
requests per TCP connection. We dedicate 7 machines to
act as load-generating clients for a total of 664 connec-
tions per server.

Figure 6 presents the 99th percentile latency as a func-
tion of throughput for single core memcached servers.
At a 500 µs 99th percentile Service Level Agreement
(SLA), single core EbbRT is able to attain 1.88× higher
throughput than Linux within a VM. EbbRT outperforms
Linux running natively by 1.15×, even with the hypervi-
sor overheads incurred. Additionally, we evaluated the
performance of OSv [28], a general purpose library OS
that similarly targets cloud applications run in a virtual-
ized environment. OSv differs from EbbRT by providing
a Linux ABI compatible environment, rather than sup-
porting a high-degree of specialization. We found that
the performance of memcached on OSv was not com-
petitive with either Linux or EbbRT with a single core.
Additionally, OSv’s performance degrades when scaled
up to six cores (omitted from figure 7) due to a lack of
multiqueue support in their virtio-net device driver.

Figure 7 presents the evaluation of memcached run-
ning across six cores. At a 500 µs 99th percentile SLA,
six core EbbRT is able to attain a 2.08× higher through-
put than Linux within a VM and 1.50× higher than

Linux native. To eliminate the performance impact of
application-level contention, we also evaluated mem-
cached run natively as six separate processes, rather than
a single multithreaded process (“Linux (process)” in Fig-
ure 7). EbbRT outperforms the multiprocess memcached
by 1.30× at 500 µs 99th percentile SLA.

To gain insight into the source of EbbRT’s perfor-
mance advantages, we examine the CPU-efficiency of
the memcached servers. We use the Linux Kernel perf
utility to gather data across a 10 second duration of a
fully-loaded single core memcached server run within a
VM. Table 2 presents these statistics. We see that the
EbbRT server is processing requests at 2.75× the rate
of Linux. This can be largely attributed to our shorter
non-preemptive instruction path for processing requests.
Observe that the Linux rate of instructions per request
is 2.44× that of EbbRT. The instructions per cycle rate
in EbbRT, a 12.6% increase over Linux, shows that we
are running more efficiently overall. This can be again
observed through our decreased per-cycle rates of last
level cache (LLC) reference and icache misses, which,
on Linux, increase by 1.21× and 4.27×, respectively.

The above efficiency results suggest that our perfor-
mance advantages are largely achieved through the con-
struction of specialized system software to take advan-
tage of properties of the memcached workload. We illus-
trate this in greater detail by examining the per-request
latency for EbbRT and Linux (native) broken down into
time spent processing network ingress, application logic,
and network egress. For Linux, we used the perf tool
to gather stacktrace samples over 30 seconds of a fully
loaded, single core memcached instance and categorized
each trace. For EbbRT, we instrumented the source code
with timestamp counters. Table 3 presents this result. It
should be noted that, for Linux, the “Application” cate-
gory includes time spent scheduling, context switching,
and handling event notification (e.g. epoll). The la-
tency breakdown demonstrates that the performance ad-
vantage comes from specialization across the entire soft-
ware stack, and not just one component.

By writing to our interfaces, memcached is imple-
mented to directly handle memory filled by the device,
and can likewise send replies without copying. A re-
quest is handled synchronously from the device driver
without pre-emption, which enables a significant perfor-
mance advantage. EbbRT primitives, such as IOBufs
and RCU data structures, are used throughout the ap-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 681

Ingress Application Egress Total
EbbRT 0.89 µs 0.86 µs 0.83 µs 2.59 µs
Linux 1.05 µs 1.30 µs 1.46 µs 3.81 µs

Table 3: Memcached Per-Request Latency

plication to simplify the development of the zero-copy,
lock-free code.

In the past, significant effort has gone into improving
the performance of memcached and similar key-value
stores. However, many of these optimizations require
client modifications [35, 43] or the use of custom hard-
ware [26, 36]. By writing memcached as an EbbRT
application, we are able to achieve significant perfor-
mance improvements while maintaining compatibility
with standard clients, protocols, and hardware.

5.3 Node.js

It is often the case that specialized systems can demon-
strate high performance for a particular workload, such
as packet processing, but fail to provide similar benefits
to more full-featured applications. A key objective of
EbbRT is to provide an efficient base set of primitives
on top of which a broad set of applications can be con-
structed.

We evaluate node.js, a popular JavaScript execution
environment for server-side applications. In compari-
son to memcached, node.js uses many more features of
an operating system, including virtual memory mapping,
file I/O, periodic timers, etc. Node.js links with several
C/C++ libraries to provide its event-driven environment.
In particular, the two libraries which involved the most
effort to port were V8 [23], Google’s JavaScript engine,
and libuv [34], which abstracts OS functionality and call-
back based event-driven execution.

Porting V8 was relatively straightforward as EbbRT
supports the C++ standard library, on which V8 de-
pends. Additional OS functionality required such as
clocks, timers, and virtual memory, are provided by the
core Ebbs of the system. Porting libuv required signif-
icantly more effort, as there are over 100 functions of
the libuv interface which require OS specific implemen-
tations. In the end, our approach enables the libuv call-
backs to be invoked directly from a hardware interrupt,
in the same way that our memcached implementation re-
ceives incoming requests.

The effort to port node.js was significantly simpli-
fied by exploiting EbbRT’s model of function offload-
ing. For example, the port included the construction
of an application-specific FileSystem Ebb. Rather
than implement a file system and hard disk driver within
the EbbRT library OS, the Ebb calls are offloaded to

a (hosted) representative running in a Linux process.
Our default implementation of the FileSystem Ebb
is naïve, sending messages and incurring round trip costs
for every access, rather than caching data on local repre-
sentatives. For evaluation purposes we use a modified
version of the FileSystem Ebb which performs no
communication and serves a single static node.js script
as stdin. This implementation allows us to evaluate
the following workloads (which perform no file access)
without also involving a hosted library.

One key observation of the node.js port is the mod-
est development effort required to get a large piece of
software functional, and, more importantly, the ability
to reuse many of the software mechanisms used in our
memcached application. The port was largely completed
by a single developer in two weeks. Concretely, node.js
and its dependencies total over one million lines of code,
the majority of which is the v8 JavaScript engine. We
wrote about 3000 lines of new code in order to support
node.js on EbbRT. A significant factor in simplifying the
port is the fact that EbbRT is distributed with a custom
toolchain. Rather than needing to modify the existing
node.js build system, we specified EbbRT as a target and
built it as we would any other cross compiled binary.
This illustrates EbbRT’s support for a broad class of soft-
ware as well as the manner in which we reduce developer
burden required to develop specialized systems.

5.3.1 V8 JavaScript Benchmark

To compare the performance of our port to that of Linux,
we launch node.js running version 7 of the V8 JavaScript
benchmark suite [22]. This collection of purely compute-
bound benchmarks stresses the core performance of the
V8 JavaScript engine. Figure 8 shows the benchmark
scores. Scores are computed by inverting the running
time of the benchmark and scaling it by the score of a
reference implementation (higher is better). The overall
score is the geometric mean of the 8 individual scores.
The figure normalizes each score to the Linux result.

EbbRT outperforms Linux run within a VM on each
benchmark, with a 5.1% improvement in overall score.
Most prominently, EbbRT is able to attain a 30.3% im-
provement in the memory intensive Splay benchmark.
As we’ve made no modification to the V8 software, just
running it on EbbRT accounts for the improved perfor-
mance.

We further investigate the sources of the performance
advantage by running the Linux perf utility to measure
several CPU efficiency metrics. Table 4 displays these
results. Several interesting aspects of this table deserve
highlighting. First, EbbRT has a slightly better IPC ef-
ficiency (3.76%), which can in part be attributed to its
performance advantage. One reason for decreased effi-

682 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Inst/cycle LLC ref/cycle TLB miss/cycle VM exit Hypervisor time Guest kernel time
EbbRT 2.48 0.0021 1.18e-5 5950 0.33% N/A
Linux VM 2.39 0.0028 9.92e-5 66851 0.74% 1.08%

Table 4: V8 JavaScript Benchmark CPU-efficiency metrics

ciency of the Linux VM is simply having to execute more
instructions, such as additional VM Exits and extraneous
kernel functionality (e.g., scheduling). Second, the ad-
ditional interactions with the hypervisor and kernel on
Linux increase the working set size and cause a 33% in-
crease in LLC accesses. Third, Linux suffers nearly 9×
more TLB misses than EbbRT. We attribute our TLB ef-
ficiency to our use of large pages throughout the system.

Crypto

DeltaBlue

EarleyBoyer

NavierStokes

RayTrace
RegExp

Richards
Splay

Overall
0.9

1.0

1.1

1.2

1.3

N
o
rm

a
liz

e
d
 S

co
re

EbbRT Linux VM

Figure 8: V8 JavaScript Benchmark

5.3.2 Node.js Webserver

Lastly, we evaluate a trivial webserver written for
node.js, which uses the builtin http module and re-
sponds to each GET request with a small static mes-
sage totaling 148 bytes. We use the wrk [20] bench-
mark to place moderate load on the webserver and mea-
sure mean and 99th percentile response-time latencies.
EbbRT achieved 91.1 µs mean and 100.0 µs 99th per-
centile latencies. Linux achieved 103.5 µs mean and
120.6 µs 99th percentile latencies. The node.js webserver
running on Linux has a 13.61% higher mean latency than
the same webserver run on EbbRT. 99th percentile la-
tency is 20.65% higher on Linux over EbbRT.

These results suggest that an entire class of server-
side application written for node.js can achieve immedi-
ate performance advantages by simply running on top of
EbbRT. Similar to our memcached evaluation, the ability
for node.js to serve requests directly from hardware inter-
rupts, without context switching or pre-emption, enables
greater network performance. The non-preemptive run-
to-completion execution model particularly improves tail
latency. Our V8 benchmark results show that the use of
large pages and simplified execution paths increases the
efficiency of CPU and memory intensive workloads.

Finally, our approach opens up the application to fur-
ther optimizations opportunities. For example, one could
modify V8 to directly access the page tables to improve
garbage collection [4]. We expect that greater perfor-
mance can be achieved through continued system spe-
cialization.

6 Related Work

The Exokernel [13] introduced the library operating sys-
tem structure — where system functionality is directly
linked into the application and executes in the same ad-
dress space and protection domain. Library operating
systems have been shown to provide many useful prop-
erties, such as portability [45, 55], security [3, 38], and
efficiency [28]. OSv [28] and Mirage [38] are similar
to EbbRT in that they target virtual machines deployed
in IaaS clouds. OSv constructs a general purpose li-
brary OS and supports the Linux ABI. Mirage uses the
OCaml programming language to construct minimal sys-
tems for security. EbbRT takes a middle ground, sup-
porting source-level portability for existing applications
through rich C++ functionality and standard libraries, but
avoiding general purpose OS interfaces.

CNK [42], Libra [1], Azul [53], and, more recently,
Arrakis [44] and IX [5] have pursued architectures that
enable specialized execution environments for perfor-
mance sensitive data flow. While their approaches vary,
these systems must each make a trade-off between tar-
geting a narrow class of applications (e.g., HPC, Java
web applications, or packet processing) and targeting a
broad class of applications. Rather than supporting a
single specialized execution environment, EbbRT pro-
vides a framework to enable the construction of various
application-specific library operating systems.

Considerable work has been done on system software
customization [8, 11, 17, 30, 50]. Much of this work fo-
cuses on developing general purpose operating that are
customizable, while EbbRT is focused on the construc-
tion of specialized systems.

Choices [10] and OSKit [16] provide operating system
frameworks; in the case of Choices, for maintainability
and extensibility, and in the case of OSKit, to simplify
the construction of new operating systems. EbbRT dif-
fers most significantly in its performance objectives and
its focus on enabling application developers to extend
and customize system software. For example, by pro-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 683

viding EbbRT as a modified toolchain, application-level
software libraries (e.g. boost) can be used in a systems
context with little to no modification.

Others have considered the interaction of an object-
oriented framework with the goal of enabling high per-
formance. CHAOSarc [18] and TinyOS [32] have both
explored the use of a fine grain object framework in
the resource limited setting of embedded systems. Like
TinyOS, EbbRT combines language support for event
driven execution and method dispatch mechanisms that
are friendly to compiler optimization. In a recent retro-
spective [33], the authors recognized that their develop-
ment and use of the nesC programming language lim-
ited TinyOS from even broader, long-term use. EbbRT,
however, focuses on integration with existing software
tooling, development patterns, and libraries to encourage
continued applicability.

7 Concluding Remarks

We have presented EbbRT, a framework for constructing
specialized systems for cloud applications. Through our
evaluation we have established that EbbRT applications
achieve their performance advantages through system-
wide specialization rather than one particular technique.
In addition, we have shown that existing applications can
be ported to EbbRT with modest effort and achieve a no-
ticeable performance gain. Throughout this paper we
have conveyed how our primary design elements, i.e.,
elastic building blocks, an event-driven execution envi-
ronment, and a heterogeneous deployment model work-
ing alongside advanced language constructs and new sys-
tem primitives, have proven to be a novel, effective ap-
proach to achieving our stated objectives.

By encapsulating system components with minimal
dispatch overhead, we enable application-specific per-
formance specialization throughout all parts of our sys-
tem. Furthermore, we have shown that our default Ebb
implementations provide a foundation for achieving per-
formance advantages. For example, our results illustrate
the combined benefits of using a non-preemptive event-
driven execution model, identity mapped memory, and
zero-copy paths.

As we gained experience with the system the issue of
easing development efforts arose naturally. An early fo-
cus on enabling use of standard libraries, including the
addition of blocking primitives, greatly simplified devel-
opment. Our monadic futures implementation addressed
concrete concerns we had with event-driven program-
ming. Futures are now used throughout our implemen-
tation. IOBufs came about as a solution for us to enable
pervasive zero-copy with little added complexity or over-
head.

EbbRT’s long-term utility hinges on its ability to be

used for a broad range of applications, while continuing
to enable a high degree of per-application specialization.
Our previous work on fragmented objects gives us con-
fidence that various specialized implementations of our
existing Ebbs can be introduced, as needed, without di-
minishing the overall value and integrity of the frame-
work.

Future work involves further exploration of system
specialization. Our focus has primarily revolved around
networked applications, however, data storage applica-
tions should equally benefit from specialization. Addi-
tionally, EbbRT can be used to accelerate existing appli-
cations in a fine-grained fashion. We believe the hosted
library can be used not just for compatibility for new ap-
plications, but as a way to offload performance critical
functionality to one or more library operating systems.

The EbbRT framework is open source and actively
used in ongoing systems research. We invite develop-
ers and researchers alike to visit our online codebase at
https://github.com/sesa/ebbrt/

Acknowledgments: We owe a great deal of gratitude
to the Massachusetts Open Cloud (MOC) team for their
help and support in getting EbbRT running and debugged
on HIL [24]. We would like to thank Michael Stumm,
Larry Rudolph and Frank Bellosa for feedback on early
drafts of this paper. Thanks to Tommy Unger, Kyle
Hogan and David Yeung for helping us get the nits out.
We would also like to thank our shepherd, Andrew Bau-
mann, for his help in preparing the final version. This
work was supported by the National Science Foundation
under award IDs CNS-1012798, CNS-1254029, CCF-
1533663 and CNS-1414119. Early work was supported
by by the Department of Energy under Award Number
DE-SC0005365.

684 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/sesa/ebbrt/

References

[1] Glenn Ammons, Jonathan Appavoo, Maria
Butrico, Dilma Da Silva, David Grove, Kiyokuni
Kawachiya, Orran Krieger, Bryan Rosenburg,
Eric Van Hensbergen, and Robert W. Wisniewski.
Libra: A Library Operating System for a Jvm in a
Virtualized Execution Environment. In Proceed-
ings of the 3rd International Conference on Virtual
Execution Environments, VEE ’07, pages 44–54.
ACM, 2007.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg,
Song Jiang, and Mike Paleczny. Workload Anal-
ysis of a Large-scale Key-value Store. In Pro-
ceedings of the 12th ACM SIGMETRICS/PERFOR-
MANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIG-
METRICS ’12, pages 53–64. ACM, 2012.

[3] Andrew Baumann, Marcus Peinado, and Galen
Hunt. Shielding Applications from an Untrusted
Cloud with Haven. ACM Trans. Comput. Syst.,
33(3):8:1–8:26, August 2015.

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh,
David Terei, David Mazières, and Christos
Kozyrakis. Dune: Safe User-level Access to Priv-
ileged CPU Features. In Proceedings of the 10th
USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 335–
348. USENIX Association, 2012.

[5] Adam Belay, George Prekas, Ana Klimovic,
Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. IX: A Protected Dataplane
Operating System for High Throughput and Low
Latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14),
pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[6] Emery D. Berger, Kathryn S. McKinley, Robert D.
Blumofe, and Paul R. Wilson. Hoard: A Scal-
able Memory Allocator for Multithreaded Appli-
cations. In Proceedings of the Ninth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS
IX, pages 117–128. ACM, 2000.

[7] Emery D. Berger, Benjamin G. Zorn, and
Kathryn S. McKinley. Composing High-
performance Memory Allocators. In Proceedings
of the ACM SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation,
PLDI ’01, pages 114–124. ACM, 2001.

[8] Brian N. Bershad, Craig Chambers, Susan Eg-
gers, Chris Maeda, Dylan McNamee, Przemysław
Pardyak, Stefan Savage, and Emin Gün Sirer.
SPIN - an Extensible Microkernel for Application-
specific Operating System Services. SIGOPS Oper.
Syst. Rev., 29(1):74–77, January 1995.

[9] Georges Brun-Cottan and Mesaac Makpangou.
Adaptable Replicated Objects in Distributed Envi-
ronments. Research Report RR-2593, 1995. Project
SOR.

[10] Roy H. Campbell, Nayeem Islam, and Peter
Madany. Choices, frameworks and refinement.
Computing Systems, 5(3):217–257, 1992.

[11] David R. Cheriton and Kenneth J. Duda. A Caching
Model of Operating System Kernel Functional-
ity. In Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation,
OSDI ’94. USENIX Association, 1994.

[12] Jonathan Corbet. SLQB - and then there were four.
http://lwn.net/Articles/311502, Dec.
2008.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In Pro-
ceedings of the Fifteenth ACM Symposium on Op-
erating Systems Principles, SOSP ’95, pages 251–
266. ACM, 1995.

[14] Jason Evans. Scalable memory allocation us-
ing jemalloc. http://www.canonware.com/
jemalloc/, 2011.

[15] Brad Fitzpatrick. Distributed Caching with Mem-
cached. Linux Journal, 2004(124):5, August 2004.

[16] Bryan Ford, Godmar Back, Greg Benson, Jay Lep-
reau, Albert Lin, and Olin Shivers. The Flux OSKit:
A Substrate for Kernel and Language Research.
In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, SOSP ’97, pages
38–51. ACM, 1997.

[17] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximizing Locality
and Concurrency in a Shared Memory Multiproces-
sor Operating System. In Proceedings of the Third
Symposium on Operating Systems Design and Im-
plementation, OSDI ’99, pages 87–100. USENIX
Association, 1999.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 685

http://lwn.net/Articles/311502
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/

[18] Ahmed Gheith and Karsten Schwan. CHAOSarc:
Kernel Support for Multiweight Objects, Invoca-
tions, and Atomicity in Real-time Multiproces-
sor Applications. ACM Trans. Comput. Syst.,
11(1):33–72, February 1993.

[19] Sanjay Ghemawat and Paul Menage. Tc-
malloc: Thread-caching malloc. http:
//goog-perftools.sourceforge.net/
doc/tcmalloc.html, 2009.

[20] Will Glozer. wrk: Modern HTTP benchmarking
tool. https://github.com/wg/wrk, 2014.

[21] Google. Protocol Buffers: Google’s Data In-
terchange Format. https://developers.
google.com/protocol-buffers.

[22] Google. V8 Benchmark Suit - Version 7.
https://v8.googlecode.com/svn/
data/benchmarks/v7/.

[23] Google. V8 JavaScript Engine. http://code.
google.com/p/v8/.

[24] Jason Hennessey, Sahil Tikale, Ata Turk, Em-
ine Ugur Kaynar, Chris Hill, Peter Desnoyers, and
Orran Krieger. HIL: Designing an Exokernel for
the Data Center. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, pages 155–
168. ACM, 2016.

[25] Intel Corporation. Intel DPDK: Data Plane Devel-
opment Kit. http://dpdk.org.

[26] Jithin Jose, Hari Subramoni, Miao Luo, Min-
jia Zhang, Jian Huang, Md. Wasi-ur Rahman,
Nusrat S. Islam, Xiangyong Ouyang, Hao Wang,
Sayantan Sur, and Dhabaleswar K. Panda. Mem-
cached Design on High Performance RDMA Capa-
ble Interconnects. In Proceedings of the 2011 Inter-
national Conference on Parallel Processing, ICPP
’11, pages 743–752. IEEE Computer Society, 2011.

[27] Rishi Kapoor, George Porter, Malveeka Tewari,
Geoffrey M. Voelker, and Amin Vahdat. Chronos:
Predictable Low Latency for Data Center Applica-
tions. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 9:1–9:14.
ACM, 2012.

[28] Avi Kivity, Dor Laor, Glauber Costa, Pekka
Enberg, Nadav Har’El, Don Marti, and Vlad
Zolotarov. OSv—Optimizing the Operating Sys-
tem for Virtual Machines. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages
61–72. USENIX Association, June 2014.

[29] Kohlhoff, Christopher. Boost.Asio. http:
//www.boost.org/doc/libs/1_55_0/
doc/html/boost_asio.html.

[30] Orran Krieger, Marc Auslander, Bryan Rosen-
burg, Robert W. Wisniewski, Jimi Xenidis, Dilma
Da Silva, Michal Ostrowski, Jonathan Appavoo,
Maria Butrico, Mark Mergen, Amos Waterland,
and Volkmar Uhlig. K42: Building a Complete
Operating System. In Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, EuroSys ’06, pages 133–145.
ACM, 2006.

[31] Jacob Leverich. Mutilate: High-Performance
Memcached Load Generator. https:
//github.com/leverich/mutilate,
2014.

[32] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. TinyOS: An Operat-
ing System for Sensor Networks, pages 115–148.
Ambient Intelligence. Springer Berlin Heidelberg,
2005.

[33] Philip Levis. Experiences from a Decade of
TinyOS Development. In Proceedings of the 10th
USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 207–
220. USENIX Association, 2012.

[34] libuv. http://libuv.org.

[35] Hyeontaek Lim, Dongsu Han, David G. Andersen,
and Michael Kaminsky. MICA: A Holistic Ap-
proach to Fast In-Memory Key-Value Storage. In
11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 429–
444. USENIX Association, April 2014.

[36] Kevin Lim, David Meisner, Ali G. Saidi,
Parthasarathy Ranganathan, and Thomas F.
Wenisch. Thin Servers with Smart Pipes: De-
signing SoC Accelerators for Memcached. In
Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13,
pages 36–47. ACM, 2013.

[37] Barbara Liskov and Liuba Shrira. Promises: Lin-
guistic Support for Efficient Asynchronous Proce-
dure Calls in Distributed Systems. In Proceedings
of the ACM SIGPLAN 1988 Conference on Pro-
gramming Language Design and Implementation,
PLDI ’88, pages 260–267. ACM, 1988.

686 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://github.com/wg/wrk
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://v8.googlecode.com/svn/data/benchmarks/v7/
https://v8.googlecode.com/svn/data/benchmarks/v7/
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://dpdk.org
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate
http://libuv.org

[38] Anil Madhavapeddy, Richard Mortier, Charalam-
pos Rotsos, David Scott, Balraj Singh, Thomas
Gazagnaire, Steven Smith, Steven Hand, and Jon
Crowcroft. Unikernels: Library Operating Sys-
tems for the Cloud. SIGPLAN Not., 48(4):461–472,
March 2013.

[39] Mesaac Makpangou, Yvon Gourhant, and Jean
pierre Le Narzul. Fragmented Objects for Dis-
tributed Abstractions. In Readings in Distributed
Computing Systems, pages 170–186. IEEE Com-
puter Society Press, 1992.

[40] Paul E. McKenney, Jonathan Appavoo, Andi
Kleen, Orran Krieger, Rusty Russell, Dipankar
Sarma, and Maneesh Soni. Read-Copy Update. In
Ottawa Linux Symposium, July 2001.

[41] Greg Minshall, Yasushi Saito, Jeffrey C. Mogul,
and Ben Verghese. Application Performance Pit-
falls and TCP’s Nagle Algorithm. SIGMETRICS
Perform. Eval. Rev., 27(4):36–44, March 2000.

[42] José Moreira, Michael Brutman, José Castaños,
Thomas Engelsiepen, Mark Giampapa, Tom Good-
ing, Roger Haskin, Todd Inglett, Derek Lieber, Pat
McCarthy, Mike Mundy, Jeff Parker, and Brian
Wallenfelt. Designing a Highly-Scalable Operating
System: The Blue Gene/L story. In Proceedings of
the 2006 ACM/IEEE conference on Supercomput-
ing, SC ’06. ACM, 2006.

[43] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan
McElroy, Mike Paleczny, Daniel Peek, Paul Saab,
David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling Memcache at Facebook.
In Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’13, pages 385–398. USENIX Association,
2013.

[44] Simon Peter, Jialin Li, Irene Zhang, Dan R. K.
Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The
Operating System is the Control Plane. In 11th
USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14), pages 1–16.
USENIX Association, October 2014.

[45] Donald E. Porter, Silas Boyd-Wickizer, Jon How-
ell, Reuben Olinsky, and Galen C. Hunt. Rethink-
ing the Library OS from the Top Down. In Proceed-
ings of the Sixteenth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 291–
304. ACM, 2011.

[46] Niels Provos and Nick Mathewson. libevent - an
event notification library. http://libevent.
org/, 2003.

[47] Injong Rhee, Nallathambi Balaguru, and George N.
Rouskas. MTCP: Scalable TCP-like Congestion
Control for Reliable Multicast. Comput. Netw.,
38(5):553–575, April 2002.

[48] Luigi Rizzo. Netmap: A Novel Framework for
Fast Packet I/O. In Proceedings of the 2012
USENIX Conference on Annual Technical Confer-
ence, USENIX ATC’12, page 9. USENIX Associa-
tion, 2012.

[49] Dan Schatzberg, James Cadden, Orran Krieger, and
Jonathan Appavoo. A Way Forward: Enabling Op-
erating System Innovation in the Cloud. In 6th
USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 14). USENIX Association, June
2014.

[50] Margo I. Seltzer, Yasuhiro Endo, Christopher
Small, and Keith A. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. In Pro-
ceedings of the Second USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI
’96, pages 213–227, New York, NY, USA, 1996.
ACM.

[51] Marc Shapiro, Yvon Gourhant, Sabine Habert,
Laurence Mosseri, Michel Ruffin, and Céline Valot.
SOS: An Object-Oriented Operating System - As-
sessment and Perspectives. Computing Systems,
2:287–337, 1991.

[52] Quinn O Snell, Armin R Mikler, and John L
Gustafson. Netpipe: A Network Protocol Indepen-
dent Performance Evaluator. In IASTED Interna-
tional Conference on Intelligent Information Man-
agement and Systems, 1996.

[53] Gil Tene, Balaji Iyengar, and Michael Wolf. C4:
The Continuously Concurrent Compacting Collec-
tor. In Proceedings of the International Symposium
on Memory Management, ISMM ’11, pages 79–88.
ACM, 2011.

[54] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Fer-
guson, and Kevin Gibbs. Iperf: The TCP/UDP
bandwidth measurement tool. https://iperf.
fr/.

[55] Chia-Che Tsai, Kumar Saurabh Arora, Nehal
Bandi, Bhushan Jain, William Jannen, Jitin John,
Harry A. Kalodner, Vrushali Kulkarni, Daniela
Oliveira, and Donald E. Porter. Cooperation

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 687

http://libevent.org/
http://libevent.org/
https://iperf.fr/
https://iperf.fr/

and Security Isolation of Library OSes for Multi-
process Applications. In Proceedings of the Ninth
European Conference on Computer Systems, Eu-
roSys ’14, pages 9:1–9:14. ACM, 2014.

[56] Maarten van Steen, Philip Homburg, and An-
drew S. Tanenbaum. Globe: A Wide-Area Dis-
tributed System. IEEE Concurrency, 7(1):70–78,
January 1999.

[57] S. Vinoski. CORBA: Integrating Diverse Appli-
cations Within Distributed Heterogeneous Environ-
ments. Comm. Mag., 35(2):46–55, February 1997.

[58] Rob von Behren, Jeremy Condit, and Eric Brewer.
Why Events Are a Bad Idea (for High-concurrency
Servers). In Proceedings of the 9th Conference on
Hot Topics in Operating Systems - Volume 9, HO-
TOS’03, page 4. USENIX Association, 2003.

[59] David A Wheeler. SLOCCount. http://www.
dwheeler.com/sloccount/.

[60] Sara Williams and Charlie Kindel. The Component
Object Model: A Technical Overview. Dr. Dobbs
Journal, 356:356–375, 1994.

688 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

	Introduction
	Objectives
	System Design
	Heterogeneous Distributed Structure
	Modular System Structure
	Execution Model

	Implementation
	Software Structure Overview
	Events
	Elastic Building Blocks
	Memory Management
	Lambdas and Futures
	Network Stack

	Evaluation
	Microbenchmarks
	Memory Allocation
	Network Stack

	Memcached
	Node.js
	V8 JavaScript Benchmark
	Node.js Webserver

	Related Work
	Concluding Remarks

