
From RIG to Accent to Mach: The Evolution of 
A Network Operating System 

Richard F. Rashid 

Computer Science Department 
Carnegie-Mellon University 

Pittsburgh, Pa. 15213 

Abstract 

This paper describes experiences gained during the design, 
implementation and use of the CMU Accent Network Operating 
System, its. predecessor, the University of Rochester RIG system 
and its successor CMU’s Mach multiprocessor operating system. 
It outlines the major design decisions on which the Accent kernel 
was based, how those decisions evolved from the RIG 
experiences and how?hey had to be modified to properly handle 
general purpose multiprocessors in Mach. Also discussed are 
some of the major issues in the implementation of message-based 
systems, the usage patterns observed with Accent over a three 
year period of extensive use at CMU and a timing analysis of 
various Accent functions. 

1. Background 
Mach is a multiprocessor operating system kernel currently 

under development at Carnegie-Mellon University. In addition to 
binary compatibility with Berkeley’s current UNIX 4.3 bsd release, 
Mach provides a number of new facilities not available in 4.3, 
including: 

l Support for tightly coupled and loosely coupled 
general purpose multiprocessors. 

. An internal symbolic kernel debugger. 

l Support for transparent remote file -access between 
autonomous systems. 

l Support for large, sparse virtual address spaces, 
copy-on-write virtual copy operations, and rpemory 
mapped files. 

l Provisions for user-provided memory objects and 
pagers. 

l Multiple threads of control within a single address 
space. 

l A capability-based interprocess communication 
facility-integrated with virtual memory management to 
allowrtransfer of large amounts of data (up to the size 
of a process address space) via copy-on-write 
techniques. 

l Transparent network interprocess communication 
with preservation of capability protection across 
network boundaries. 

As of May 1986, Mach runs on most uniprocessor VAX 
architecture machines: VAX 11/750, 111780, 111785, 8200, 8600, 
8650, MicroVAX I, and MicroVAX II. Mach also runs on two 
multiprocessor VAX machines, the four (1 l/780 or 111785) 
processor VAX 1 l/784 with 8 MB of shared memory the VAX 8300 
(with up to 4 processors). Mach has already been ported to the 
IBM RT/PC and work has begun on ports to the uniprocessor SUN 
3 and multiprocessor Encore MultiMax. The current version of the 
system, Mach-l, includes all of the features listed above and is in 
production use by CMU researchers on a number of projects 
including a multiprocessor speech recognition system called 
Agora [5] and a project to build parallel production systems. 

Mach is the logical successor to CMU’s Accent [16,17] kernel .. 
an operating system designed to support a large network of 
uniprocessor scientific personal computers. The design and 
implementation of Accent was in turn based on experiences 
gained during the development of the University of Rochester’s 
RIG system [3,14], a message-based network access machine. 
Both RIG and Accent have seen considerable use over the years. 
RIG provided a variety of functions including terminal support and 
remote file access within the Rochester environment until early 
this year when the last RIG machine was decommissioned. 
Accent continues in use at CMU as the basic operating system for 
a network of 150 PERQ workstations and has seen commercial 
use in printing and publishing workstations as well as engineering 
design systems. As a third generation network operating system 
Mach, benefits from the lessons learned in over ten years of 
design, implementation and use of RIG and Accent. This paper 
summarizes the lessons of those systems and their impact on the 
design and implementation of Mach. 

2. The Evolution of Accent from RIG 
Implementation of RIG began in 1975 on an early version of the 

Data General Eclipse mini-computer. The first usable version of 
the system came on-line in the fall of 1976. Eventually the 
Rochester network included several RIG Eclipse nodes as network 
servers and a number of Xerox Altos acting as RIG client hosts. 
RIG provided clients network file services, ARPANET access, 
printing services and a variety of other functions. Active 
development continued well into the 1980’s but obsolescence of 
its Data General Eclipse and Xerox Alto hardware base eventually 
dictated its demise in the Spring of 1986. 

2.1. The RIG Design 
The basic system structliring tool in RIG was an interprocess 

communication (IPC) lacility which allowed RIG processes to 
communicate by sending packets of information between 
themselves. RIG’s IPC facility was defined in ?erms of two basic 
abstractions: messages and ports. 
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A RIG port was defined to be a kernel-provided queue for 
messages and was referenced by a global identifier consisting of a 
dotted pair of integers <process number.port number>. A RIG port 
was protected in the sense that it could only be tnanipulated 
directly by the RIG kernel, but it was unprotected in the sense that 
any process could send a message to a port. A RIG port was tied 
directly to the RIG abstraction of a process _- a protected address 
space with a single thread of program control. 

A RIG message was composed of a header followed by data. 
Messages were of limited size and could contain at most two 
scalar data items or two array objects. The type tagging of data in 
messages was limited to a small set of simple scalar and array data 
types. Port identifiers could be sent in messages only as simple 
integers which would then be interpreted by the destination 
process. 

Due largely to the hardware on which it was implemented, RIG 
did not allow either a paged virtual memory or an address space 
larger than 2t16 bytes. RIG did, however, use simple memory 
mapping techniques to move data 131. The largest amount of data 
which could be transferred at a time was 2K bytes. 

2.;. Problems with RIG 
The RIG message passing architecture was originally intended 

more as a means for achieving modular decomposition (much like 
Brinch-Hansen’s RC4000) rather than as the basis for a distributed 
system. It was discovered early on, though, that RIG’s message 
passing facility could be adapted as the communication base for a 
network operating system. Unfortunately, as RIG became heavily 
used for networking work at Rochester a number of problems with 
the original design became apparent: 

l Protection 

The fact that ports were represented as global 
identifiers which could be constructed and used by 
any process implied that a process could not limit the 
set of processes which could send it a message. To 
function correctly, each process had to be prepared 
to accept any possible message sent to it from any 
potential source. A single: errant process could 
conceivably flood a process or even the entire system 
with incoherent messages. 

. Failure notification 

Another difficulty with global identifiers was that they 
could be passed in messages as simple integers. It 
was therefore impossible to determine whether a 
given process was potentially dependent on another 
process. In principle any process could store in its 
data space a reference to any other process. The 
failure of a machine or a process could therefore not 
be signaled back to dependent processes 
automatically. Instead, a special process was 
invented which ran on each machine and was notified 
of process death events. Processes had to explicitly 
register their dependencies on other processes with 
this special “grim reaper” process in order to receive 
event-driven notifications. 

l Transparency of service 

Because ports were tied explicitly to processes, a port 
defined service could not be moved from one process 
to another without notifying all parties. Transparent 
network communication was also compromised by 
this naming scheme. A port identifier was required to 
explicitly contain the network host identifier as part of 
its process number field. As the system expanded 
from one machine to one network to multiple 
interconnected networks this caused the port 
identifier to expand in size -- usually resulting in 
considerable reimplementation work. 

l Maximum message size 

The limited size of messages in RIG resulted in a style 
of interprocess interaction in which large data objects 
(such as files) had to be broken up into chunks of 2K 
bytes or less. This constraint impacted on the 
efficiency of the system (by increasing the amount of 
message communication) and on the complexity of 
client/server interactions (e.g., by forcing servers to 
maintain state information about open files). 

2.3. The evolution of RIG 
CMU’s Spice [8] distributed personal workstatbn project 

provided an oportunity to effectively “redo” a RIG-like system 
taking into account that system’s limitations. The result was the 
Accent operating system kernel for the PERQ Systems 
Corporation PERO computer. 

The Accent solution to the problems present in the RIG design 
was based on two basic ideas: 

. Define ports to be capabilities as well as 
communication objects. 

By providing processes with capabilities to ports 
rather than a global identifier for them, it was possible 
to solve at one time the problems of protection, failure 
notification and transparency: 

. Protection in Accent is provided by allowing 
processes access only to those ports for which 
they have been given capabilities. 

. Processes can be notified automatically when a 
port disappears on which those processes are 
dependent because the kernel now has 
complete knowledge of which processes have 
access to each port in the system. There is no 
hidden communication between processes. 

l Transparency is complete because the ultimate 
destination of a message sent to a port is 
unknown by the sender. Thus transparent 
intermediary processes can be constructed 
which forward messages between gioups of 
processes without their knowledge (either for 
the purpose of debugging and monitoring or for 
the purpose of transparent network 
communication). 
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2. Use virtual memory to overcome limitations in 
the handling of large objects. 

The use of a large address space (a luxury not 
possible in the design of RIG) and copy-on-write 
memory mapping techniques permits processes to 
transmit objects as large as they can directly access 
themselves. This allows processes such as file 
servers to provide access to large objects (e.g., files) 
through a single message exchange -- drastically 
reducing the number of messages sent in the 
system [Q]. 

The first line of Accent code was written in April 1981. Today 
Accent is used at CVU in a network of 150 PERQ workstations. In 
addition to network operating system functions such as distributed 
process and file management, window management and mail 
systems, several applications have been built using Accent. These 
include research systems for distributed signal processing [IO], 
distributed speech understanding [5] and distributed transaction 
processing [18]. Four separate programming environments have 
been built -- CommonLisp, Pascal, C and Ada -. including 
language support for an object-oriented remote procedure caH 
facility [12]. 

3. The Accent Design 
Accent is organized around the notion of a protected, message- 

based interprocess communication facility integrated with copy- 
on-write virtual memory management. Access to all services and 
resources, including the process management and memory 
management services of the operating system kernel itself, are 
provided through Accent’s communication facility. This allows 
completely uniform access to such resources throughout the 
network. It also implies that access to kernel provided services is 
indistinguishable from access to process provided resources (with 
the exception of the interprocess communication facility itself). 

3.1. Interprocess communication 
The Accent interprocess communication facility is defined in 

terms of abstractions which, as in RIG, are called ports and 
messages. 

The port is the basic transport abstraction provided by Accent. 
A port is a protected kernel object into which messages may be 
placed by processes and from which messages may be removed. 
A port is logically a finite length queue of messages sent by a 
process. Ports may have any number of senders but only one 
receiver. Access to a port is granted by receiving a message 
containing a port capability (to either send or receive). 

Ports are used by processes to represent services or data 
structures. For example, the Accent window manager uses a port 
to represent a window on a bitmap display. Operations on a 
window are requested by a client process by sending a message 
to the port representing that window. The window manager 
process then receives that message and handles the request. 
Ports used in this way can be thought of as though they were 
capabilities to objects in a object oriented system(Jones78). The 
act of sending a message (and perhaps receiving a reply) 
corresponds to a cross-domain procedure catl in a capability 
based system such as Hydra [2] or StarOS [l 11. 

.A message consists Of a fixed length header and a variable size 
collect&&f typed data objects. Messages may contain both port 
capabilities and/or imbedded pointers as long as both are 
properly typed. A single message may transfer up to 2t32 bytes of 
bymlue data. 

Messages may be sent and received either synchronously or 
asynchronously. A software interrupt mechanism allows a 
process to handle incoming messages outside the flow of normal 
program execution. 

Figure 3-1 shows a typical message interaction. A process A 

sends a message to a port P2. Process A has send rights to ~2 

and receive rights to a port PI. At some later time, process a 
which has receive rights to port ~2 receives that message which 
may in turn contain send rights to port PI (for the purposes of 
sending a reply message back to process A). Process B then 
(optionalty) replies by sending a message to PI. 

Tim9 t0 

0 A 0 

FF- PI 
III 

P2 

Figure 3- 1: Typical 

Time t1 

I 

TIH t3 

message exchange 

Should port ~2 have been full, process A would have had the 
option at the point of sending the message to: (1) be suspended 
until the port was no longer full, (2) have the message send 
operation return a port full error code, or (33) have- the kernel 
accept the message for future transmission to port ~2 with the 
proviso that no further message can be sent by that process to ~2 

until the kernel sends a message to A telling it the current 
message has been posted. 

3.2. Virtual memory support 
Accent provides a 2732 byte paged address space for each 

process in the system and a 2732 byte paged address space for 
the operating system kernel. Disk pages and physical memory can 
be addressed by the kernel as a portion of its 2t32 byte address 
space. Accent maintains a virtual memory table for each user 
process and for the operating system kernel. The kernel’s 
address space is paged and all user process maps are kept in 
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paged kernel memory. Only the kernel virtual memory table, a 
small kernel stack, the PERQ screen, I/O memory and those 
PASCAL modules required for handling the simplest form of page 
fault need be locked in physical memory, although in practice 
parts of the kernel debugger and symbol tables for locked 
modules are also locked to allow analysis of system errors. The 
total amount of kernel code and symbol table information locked is 
64K bytes [9]. 

Whenever large amounts of data (the threshold is a system 
compile-time constant normally set at 1K bytes) are transmitted in 
a message, Accent uses memory mapping techniques rather than 
data copying to move information from one process to another 
within the same machine. The seman?ics of message passing in 
Accent imply that all data sent in a message are logically copied 
from one address space to another. This can be optimized by the 
kernel by mapping the sent data copy-on-write in both the sending 
and receiving processes. 

Figure 3-2 shows a process A sending a large (for example 24 
megabyte) message to a port PI. At the point the message is 
posted to PI, the part of A’S address space containing the 
message is marked copy-on-write -- meaning any page referenced 
for writing will be copied and the copy placed instead into A’S 

virtual memory table. The copy-on-write data then resides in the 
address space of the kernel until process a receives the message. 
At that point the data is removed from the address space of the 
kernel. By default, the operating system kernel determines where 
in the address space of B the newly received message data is 
placed. This allows the kernel to minimize memory mapping 
overhead. Any attempt by either A or B to change a 512 byte page 
of this copy-on-write data results in a copy of that page being 
made and placed into that process’ address space. 

Send OpWatiOn 
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Figure 3-2: Mapping operations during message transfer 

3.3. Network communication 
The abstraction of communication through ports permits the 

distinction between access to local and remote resources to be 
completely invisible to a client process. In addition, Accent 
exploits the integration of memory management and IPC to 
provide a number of options in the handling of virtual memory, 
including the ability to allow memory to be sent copy-on-reference 
across,a network. Each entry of an Accent virtual memory table 
maps a contiguous region of process virtual memory to a 
contiguous portion of an Accent memory object. A memory object 
is the basic unit of secondary storage in Accent. Memory objects 
can be contiguous physical memory (as used for the PER0 screen 
or I/O buffers) or a randomly addressed disk file. A memory 

object can also be backed not by disk or main memory, but by a 
Process through a port. initial references to a page of data 
mapped to a port are trapped by the kernel and a request for the 
necessary data is forwarded in a message on that port, This 
feature allows processes to provide the system with virtual 
memory that they themselves maintain (either locally or over a 
network connection to another machine). In this way network 
communication servers can provide copy-on-reference network 
transmission of pages in a large message. 

4. Key Implementation Issues in Accent 
Many of the implementation decisions made in Accent were 

based on experiences with RIG. Nevertheless, the addition of 
virtual memory and capability management to the RIG design 
made it unclear how the RIG experiences would extrapolate to the 
Accent environment. 

4.1. IPC Implementation 
The actual implementation of the message mechanism relied on 

several assumptions about the use of messages: 

. the average number of messages outstanding at any 
given time per process would be small, 

. the number of port capabilities needed by a process 
could vary from two to several hundred, and 

. the use of simple messages (meaning messages 
which contained port capabilities only in their header 
and which contained tess than a few kilobytes) would 
so dominate complex messages that simple messages 
would be an important special case. 

Each of these assumptions had held true for RIG [4,14]. It was 
hoped that although Accent provided a substantially different 
application environment than RIG, the RIG experiences would 
provide a reasonable prediction of Accent performance. 

Given these expectations, the implementation was optimized for 
anticipated common cases, including: 

. The assumption that there would seldom be more 
than one message waiting for a process at a time led 
to an implementation in which messages are queued 
in per-process rather than per-port queues. 

. To allow large numbers of ports per process and fast 
lookup, port capabilities are represented as indexes’ 
into a global port record array stored in kernel virtual 
memory. Port access is protected through the use of 
a bitmap of process access rights kept per port (the 
number of processes is much less than the number of 
ports). 

. The assumption that simple messages would be an 
important special case led to the addition of a field to 
the message header so that user processes can 
indicate whether or not a message is simple and thus 
allow special handling by the kernel. 

These usage assumptions did in fact prove true for Accent. 
Table 4-l demonstrates the properties of Accent message passing 
as measured during an active day of use. 
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1.01 Average probes to requested message 

33.42 Average port rights held per process 

14.38 Average ports owned per process 

0.094 Ratio of complex to simple messages 

- ~~- 
Table 4- 1: Message use statistics 

4.2. Virtual Memory Implementation 
The lack of sophisticated virtual memory management in RIG 

(and in fact in nearly all message-based systems of that era) meant 
that Accent could not benefit from previous experience with virtual 
memory use resulting from message operations. Instead, the 
design of Accents virtual memory implementation grew out of 
simple assumptions based purely on intuition. These initial 
assumptions influenced the design of the Accent virtual memory 
implementation: 

l process maps had to be compact, easy to manipulate 
and support sparse use of a process address space, 

l the number of contiguously mapped regions of the 
address space would be reasonably small, and 

l large amounts of memory would frequently be passed 
copy-on-write in messages. 

The Accent process virtual memory map is maintained as a two- 
level indirect table terminating in linked lists of entries (see Figure 
4-l). Each entry on the linked list maps a contiguous portion of 
process virtual memory into contiguous regions of Accent memory 
objects. The map is organized so that large portions can be 
validated, invalidated or copied without having to modify the 
linked lists of map entries. This is accomplished by having valid, 
copy-on-write and write-protect bits at each level of the table. 
During lookup, these bits are “ored” together. Thus all of memory 
can be efficiently made copy-on-write by just setting the copy-on- 
write bits of valid entries in level one of the process map table. 
Figure 4-1 illustrates the translation of a virtual address to an 
offset within a memory object. 

Physical memory in Accent is used as a cache of secondary 
storage. There are no special disk buffers. Access to all 
information (e.g., files) is through message passing (and 
subsequent page faulting if necessary). 

This scheme is flexible enough to be used internally by the 
kernel to remap portions of its own address space. An entire 
process virtual memory map, for example, is copied in a fork 

operation without physically copying the map by using Accent’s 
copy-on-write facility. To reduce map manipulation overheads, 
changes caused by copy-on-write updates are recorded first in a 
virtual to physical address translation table (kept in physical 
memory) and are not incorporated into a process map until the 
relevant page must be writlen out to secondary storage. 

Copy-on-write access to memory objects is provided through the 
use of shadow memory objects which reflect page differences 
between a copied object and the object it shadows (which could in 
turn be a shadow). Disk space for newly created pages or pages 
written copy-on-write is allocated on an as-needed basis from a 
special paging area. No disk space is ever allocated to back up a 
process address space unless the paging algorithms need to flush 
a dirty page. See figure 4-2. 

Shadow ObJIct Shadow Object M.mory Obj.ct 

Figure 4-2: An example of memory object shadowing 

Most shadow memory objects are small (under 32 pages). Most 
large shadows contain only a few pages of data different from the 
objects they shadow. These facts led to an allocation scheme in 
which small shadows are allocated contiguously from the paging 
store and larger shadows use a page map and are allocated as 
needed. 

Overall, the basic assumptions about the use of process address 
space in Accent appear to hold true. The typical user process 
table: 

l is between 1024 and 2048 bytes in size, 

l contains 34-70 mapping entries, and 

l maps a region of virtual memory approximately eight 
megabytes in extent (in PERQ PASCAL each 
separately compiled module occupies a distinct 128K 
byte region of memory) and about one to two 
megabytes in size. 

Although all memory is passed copy-on-write from one process 
to another, the number of copy-on-write faults is typically small. A 
typical PASCAL compile/link/load cycle, for example, requires 
only slightly more than one copy-on-write fault per second. 
Clearly most of the data passed by copy in Accent is read and not 
written. The result is that the logical advantages of copy-on-write 
are obtained with costs similar to that of mapped shared memory 

M- 

4.3. Programming issues 
One of the problems with message based systems has 

traditionally been the fact that existing programming languages do 
not support.their message semantics. In RIG, a special remote 

Figure 4- 1: Mapping a virtual address In Accent 
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procedure call function was provided called “Call” [13] which 
took as its arguments a message identifier, a process-port 
identifier, and operation arguments along with their type 
information. One of the early decisions in the implementation of 
Accent was to define all interprocess message interfaces in terms 
of a high-level specification language. The properties of ports 
allow them to be viewed as object references. The’interprocess 
specification language is defined in terms of operations on 
objects. Subsystem specifications in this language are compiled 
by a program called Matchmaker into remote procedure call stubs 
for the various programming languages used in the system -- 
currently C, PASCAL, ADA and Common LISP. The result is that 
all interprocess interfaces look to the programmer as though they 
were procedural interfaces in each of these languages. In 
PASCAL, for example, the interface procedure for writing a string 
to a window of the screen would look like: 

WriteString(window,string-to-be-written) 

All Matchmaker specified calls take as their first argument the 
port object on which the operation is to be performed. The remote 
procedure call stub then packages the request in a message, 
sends it to the port, and waits for a reply message ‘(if necessary), 

Initial access to server ports is accomplished either through 
inheritance (by having the parent process send port rights to its 
children) or by accessing a name server process (a port for which, 
is typically passed to a process by inheritance). A complete 
description and specification of Matchmaker can be found in 1121. 

Matchmaker’s specification language allows both synchronous 
and asynchronous calts as well as the specification of timeouts 
and exception handling behavior. It supports both by-value and 
by-value-result parameters. It allows types to be defined as well as 
the specification of their bit packing characteristics in the 
message. For the server process, Matchmaker produces routines 
which allow incoming messages to be decoded and server 
subroutines automatically invoked with the proper arguments. 

The support provided by Matchmaker is similar to some of the 
features which have been introduced in modern languages for 
managing multiple tasks such as the ADA rendezvous mechanism 
[l]. Matchmaker, however, supports a number of different 
programming languages and provides a much greater range of 
options for synchronous and asynchronous behavior in a 
distributed environment. 

Despite the obvious simplicity of simple “remote procedure call” 
style interfaces, a suprisingly high percentage of network 
operating system interfaces take advantage of the asynchronous 
form of Matchmaker interfaces. Of 225 system interfaces: 

l 170 (approximately 77 percent) are synchronous, 

l 45 (approximately 19 percent) are asynchronous and 

l 10 (approximately 4 percent) represent exceptions. 

Runtime statistics show that over 50 percent of messages actually 
sent during normal system execution are sent as part of 
asynchronous Matchmaker specified operations .- normally due to 
the behaviour of I/O subsystems (such as handlers for the PERQ 
keyboard and display) or basic system servers (such as network 
protocol servers). 

Matchmaker server interfaces account for approximately 10 
percent of the total network operating system code .- roughly 
75.5k bytes out of 757k bytes. For the Accent kernel itself, the 
Matchmaker interface is 10280 bytes out of approximately 115k 
bytes. Runtime costs are considerably less. During a PASCAL 
compilation, for example, less than 2 percent of CPU time is due to 
Matchmaker interface overheads. 

4.4. Key Statistics 

4.4.1. Hardware and basic system performance of Accent 
Table 4-2 compares the relative performance of PER0 and 

VAX-111780 CPUs. Timings were performed in PASCAL on the 
PERQ and in C on a VAX running UNIX 4.1 bsd. 

PASCAL programs written for the PERQ range in overall speed 
from l/5 to l/3 the speed of comparable programs on the VAX 
111780, depending on whether 16.bit or 32.bit operations 
predominate. In fairness to the PER0 hardware, the underlying 
microengine is much faster than the PASCAL timings in table 4-2 
would indicate. Microcoded operations often run as fast as or 
faster than equivalent VAX 1 l/780 assembly language. Note, for 
example, the relative speeds of the microcoded context switch 
and kernel trap operations. Moreover, instruction sets better 
tuned to the PERQ hardware, such as the Accent CommonLisp 
instruction set, run at speeds closer to 50 percent of the VAX. 
Nevertheless, for the purpose of gauging the performance of the 
Accent kernel code, which is written in PASCAL and makes heavy 
use of 32.bit arithmetic, pointer chasing and packed field 
accessing, the CPU speed of a PERQ is about l/5 that of a VAX 
11/780. 

Pe rq Vax Ratio Operation 

23001‘1s 7201-1s .31 Tick (32.bit stack local) 
12us 4us .25 Simple loop (l&bit inleger) 
2ous 3us .I7 Simple loop (32.bit inleger) 
3sus 20us .57 Null procedure call/return 
75us 25~s 33 Procedure call with 2 arguments 
GOUS 4oous 5.00 Context switch 

132~s 2t4us 2.00 Null kernel trap 
30s 9s .30 Baskett Puzzle Program d&bit) 
SOS 10s .20 Easkett Puzzle Program (32.bil) 

Table 4-2: Comparison of Perq and Vax-1 l/780 operation times 

4.4.2. LPC Costs 
Table 4-3 shows the costs of various forms of message passing 

in Accent. As was previously described, Accent distinguishes 
between simple and complex messages to improve performance 
of common message operations. Simple messages are defined to 
be those with less than 960 bytes of in-fine data that contain no 
pointers or port references (other than those in the message 
header). Other messages are considered complex. The times for 
complex messages listed in the table were measured for 
messages containing one pointer.to 1024 bytes of data. The 
observed ratio of simple to complex messages in Accent is 
approximately 12.to-l. 
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Time IPC Operation 

1 .I5 Simple message send 
1.35 Simple message receive 

10. Complex message send (1024 bytes) 
10. Complex message receive (1024 bytes) 

Table 4-3: IPC operation times in milliseconds 

The average number of messages per second observed during 
periods of heavy standard version use (e.g., compilation) is less 
than 30. There were 67378 simple messages and 4279 complex 
messages sent during one measurement of three hours of editing, 
network file access, and text formatting, an average of less than 
eight per second [9]. 

4.4.3. Accessing file data 
One of the reasons for the relatively low message rate of 

message exchange in Accent is the heavy reliance on virtual 
memory mapping techniques for transferring large amounts of 
data in messages. A process making a request for a large file 
b;pically receives the entire file in a single message sent back from 
a file server process. As a result, all file access in Accent is 
mediated through the memory management system. There are no 
separate file buffers maintained by the system or special 
operations required for file access versus access to other forms of 
process mapped memory. By contrast, in RIG the same operation 
would have required as many message exchanges between client 
and server as there were pages in the file. 

Table 4-4 shows the costs associated with reading a 56K byte 
file under UNIX 4.1 bsd on a VAX 11/780 with a 30 millisecond 
average access time Fujitsu disk and under the standard version 
of Accent with a 30 millisecond average access time MAXSTORE 
drive. 

The measured cost of a file access in Accent as shown in table 
4-4 is due, in part, to the cost of a disk write to update the file 
access time. This disk write is unbuffered in Accent and thus is 
included in the file request time. The Unix disk write associated 
with an open is buffered and is excluded from the open/close 
time. 

Accent file access speed is limited by the basic fault time of 
about four milliseconds (see table 4-5), the average number of 
consecutive file pages on a disk track and the cost of making new 

System Time Operation 

Accent 66 Request file from server 
UNIX 4.1 5-10 Open/close 
Accent 6-10 Read a page (512 bytes) 

UNIX 4.1 16-18 Read a page (1024 bytes) 
UNIX 4.2 16-18 Read a page (4096 bytes) 

Once mapped, file access in Accent ranges from somewhat 
faster than 4.1 bsd to slightly slower, depending on the locality of 
file pages. 4.2bsd file access [15] is considerably faster than 
either 4.1 bsd or Accent. This increase in speed appears to be due 
atmost entirely to the larger (typically 4096 byte) file page size. 
The actual number of disk I/O operations per second under 4.2 is 
almost identical to 4.1, about 50-60 per second, and appears to be 
bounded by the rotational speed of the disk (60 revolutions per 
second). 

4.4.4. Fault handling and copy-on-write 
Table 4-5 summarizes the results from test programs that caused 

100,000 instances of a variety of memory fault types. It shows the 
average total times required to handle single faults. 

Total Type of fault 

0.623 Null fault 
3.355 Read fault, zero fill 
3.704 Write fault. zero fill 
3.760 Read fault, memory fill, small file 
4.504 Read fault, memory fill, large file 
3.633 Write fault, CopyOnWrite copy 

Table 4-5: Fault handling times in milliseconds 

Overall, the costs of copy-on-write memory management are 
nearly identical to that of by-reference memory mapping. Less 
than 0.01 percent of the total time associated with an entire 
rebuilding of the operating system and user programs from source 
is used to handle copy-on-write faults [9]. 

5. Mach: Adapting Accent to 
Multiprocessors 

Accent went beyond demonstrating the feasibility of the 
message passing approach to building a distributed system. 
Experience with Accent showed that a message based network 
operating system, properly designed, can compe?e with more 
traditional operating system organizations. The advantages of this 
approach are system extensibility, protection and network 
transparency. 

By the fall of 1984, however, it became apparent that, without a 
new hardware base, Accent would eventually follow RIG into 
oblivion. Hastening this process of electronic decay was Accent’s 
inability to completely absorb the ever burgening body of UNlX 
developed software both at CMU and elsewhere -- despite the 
existence of a “UNIX compatibility” package. 

Mach was conceived as an Accent-like operating system which 
would provide complete UNlX compatibility. It was also designed 
to better accommodate the kind of general purpose shared- 
memory multiprocessors which appear to be on their way to 
becoming the successors to traditional general purpose 
uniprocessor workstations and timesharing systems. 

Table 4-4: File access times ih milliseconds 

VP entries. Its page size is only 512 bytes, in contrast to 1024 bytes 
for 4. l-bsd and 4096 or 8192 for 4.2bsd. 
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5.1. The design of h4ach 
The design of Mach differs 

\I,Zl”P. 
from that of Accent in several crucial 

. The Accent notion of a process, which like RIG is an 
address space and single program counter, was split 
into two new concepts: 

1. a task, which is the basic unit of resource 
allocation including a paged address space, 
protected access to system resources (such as 
processors, ports and memory), and 

2. a thread, which is the basic unit of CPU 
utilization. 

. A facility for handfing a form of structured sharing of 
read/write memory between tasks in the same family 
tree was added to allow finer granularity 
synchronization than could be achieved ‘with a kernel 
provided mechanism. 

*The Mach IPC facility was further simplified. This 
came about as the logical result of using thread 
mechanisms to handle some forms of asynchrony and 

error handling’(much as was done in the V Kernel [7]). 

. The notion of memory object was generalized to allow 
general purpose user-state external pager tasks to be 
built. 

These design modifications are a consequence of handling 
shared-memory multiprocessor architectures. Accent provided no 
tool for fine grain synchronization or lightweight processes. Both 
are important for effective use of multiprocessor cycles in a variety 
of applications. 

Despite these changes, the basic features which allowed Accent 
to provide uniform access to both local and network resources are 
still in place. This allows networks of multiprocessors or of 
multiprocessors and uniprocessors to be built using the same 
basic system abstractions. As in Accent, operations on all Mach 
objects other than messages are performed by sending messages 
to ports which are used to represent them. For example, the act of 
creating a task or thread returns access rights to the port which 
represents the new object and which can be used to manipulate it. 
A thread can suspend another thread by sending a suspend 
message to that thread’s thread port, even across a network 
boundary. 

Tasks are re!ated to each other in a tree structure by task 
creation operations. Virtual memory may be marked as inheritable 
to a tasks children. Memory regions may be inherited read-write, 
copy-on-write or not at all. A standard UNIX fork operation, for 
example, takes the form of a task with one thread creating a child 
task with a similar single thread of control and all its memory 
shared copy-on-write. 

The notions of multiple threads of control within a task and 
limited sharing between task allows Mach to provide three levels 
of synchronization and communication: fine grain, intra- 
application interprocess communication and inter-application 
interprocess communication. 

Fine grain communication is performed on memory shared 
either within a task or between related tasks. Mach provides a 
library to support synchronization on shared memory to avoid the 
cost of kernel trap operations on short-term locks. Network 

read/write shared memory is not provided by the kernel, but is 
potentially implementable by a user-state process acting as an 
external object pager (see discussion of object pagers below). 

lntra-application inter-thread communication is performed Using 
the standard Send and Receive ports primitives but Can be . 
implemented more efficiently in the presence of shared libraries 
and memory. By the nature of the abstractions, threads can 
ignore the difference between intra-application communication 
and inter-application communication. 

Inter-application communication requires the intervention of the 
Mach kernel to provide protection. As in Accent, large amounts of 
data in messages may be mapped copy-on-write from one address 
space to another rather than copied. Data forwarded in messages 
over the network can be transmitted on reference rather than all at 
once at the discretion of the network server. 

5.2. Implementation 

52.1. Virtual memory modifications 
While system analysis indicated that the basic Accent virtual 

memory scheme worked well, it also demonstrated that the data 
structure used to represent an Accent process map -. a two-level 
indirect table terminated in linked lists of mapping descriptors -- 
was unnecessarily complicated. Because nearly all operations on 
maps are sequential and maps seldom get very large, Mach 
implements task address maps as simple ordered lists of mapping 
descriptors. Each descriptor maps a range of virtual addresses to 
a range of bytes in a memory object. The only non-sequential 
operation .- lookup events due primarily to memory faults -- is 
sped by the use of hints based on previous lookup requests. 

Another innovation of Mach over Accent is in the.use of sharing 
maps to represent read/write shared regions between tasks A 
Mach mapping descriptor may point either directly to a memory 
object (which can then only be shared copy-on-write) or indirectly 
to memory objects through a sharing map. A sharing map is 
simply an address map .which maps a range of virtual addresses 
shared by at least two task address maps. All operations on tasks 
maps in a shared range of addresses are performed through 
indirection on sharing maps. 

Overall, the Mach data structures are simpler, more compact 
and more expressive than those of Accent. A Mach address map 
can be thought of as a simple run-length encoding of a process 
address space. A typical UNIX-style process can be expressed in 
less than 100 bytes. 

5.2.2. Mach IPC 
The introduction of the notion of tasks and threads into Mach 

necessitated some changes to Accent’s basic IPC facility. Port 
access rights in Mach are owned by a task. All threads within a 
task may therefore send or receive messages on that tasks ports. 
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,-he availability of threads to manage asynchronous activities 
simplified handling of software interrupts. Moreover, several 

message options, such as message priorities and the ability to 
preview the contents of a message before it had to be received, 
had been found to be largely unused for their intended purpose in 
Accent and have been removed. 

5.2.3. Managing hardware diversity 
Mach was intended from the outset to handle a wide diversity of 

both uniprocessor and multiprocessor hardware. For example, 
Mach provides a task memory sharing and a thread memory 
sharing model for multiprocessor memory synchronization. This 
allows Mach to support both muttiprocessors which support full 
memory sharing with cache consistency as well as machines with 
only partial sharing or explicit memory caching. In practice, the 
system already is configured to handle a wide range of 
uniprocessor and multiprocessor VAX configurations. The same 
binary kernel image is used on both uniprocessor and 
multiprocessor systems. 

Mach also handles another form of diversity. Messages, because 
they contain tagged data, are transformed from one machine data 
format to another by network servers. Properly typed Matchmaker 
interfaces allow programs written on an FIT PC to communicate 
with VAX applications despite different byte ordering, data 
packing and data format conventions. There are, however, limits 
on this form of machine independence. For example, no attempt is 
made to preserve precision of floating point numbers converted 
from one form to another. 

5.2.4. Confronting UNIX 
One mechanism for ensuring Mach’s survival in the face of a 

flood of UNIX based software is to make certain that it is 
compatible with an existing UNIX environment. This was achieved 
by building Mach to allow UNIX 4.3bsd system calls to be handled 
in much the same way they would be handled in a completely 
native system. The Mach kernel effectively supplants the basic 
system interface functions of the UNIX 4.3bsd kernel: trap 
handling, scheduling, multiprocessor synchronization, virtual 
memory management and interprocess communication. 4.3bsd 
functions are provided by kernel-state processes which are 
scheduled by the Mach kernel, and share communication queues 
with it. Work is now underway to remove non-Mach UNIX 
functionality from kernel-state and provide these services through 
user-state processes. 

6. Conclusions 
The evolution of network operating systems from RIG through 

Mach was, in a sense, driven by the evolution of distributed 
computer systems from small networks of minicomputers in the 
middle 1970s to large networks of personal workstations and 
mainframes in the early 1960s to networks of uniprocessor and 
multiprocessor systems today. Not suprisingly, the basic software 
primitives of Mach .- task, thread. port, message and memory 
object .- parallel the hardware abstractions which characterize 
modern distributed systems -- nodes, processors, network 
channels, packets and primary and secondary memory. 
Experiences, both good and bad, with RIG and Accent have 
played an important role in determining the exact definition of the 
Mach mechanisms and their implementation. 

7. Acknowledgements 
ln addition to anything the author may have done, the heroes of 

the RIG kernel development were Gene Ball and llya Gertner. 
Jerry Feldman was in large part responsible for the initial RIG 
design and the system’s name. The Accent development team 
included George Robertson and Gene Ball as well as the author. 
Keith Lantz and Sam Harbison made notable contributions to the 
design. Mary Shaw contributed the name. Others contributed 
greatly to Accent’s evolution: particularly Doug Philips, Jeff 
Eppinger, Robert Sansom, Robert Fitzgerald, David Golub, Mike 
Jones and Mary Thompson. Matchmaker could not have come 
into existence without the aid of Mary Thompson, Mike Jones, Rob 
MacLachlin and Keith Wright. Mach was the brainchild of many 
including Avie Tevanian, Mike Young and Bob Baron. Dario Giuse 
came up with the name. 

This research was sponsored by the Defense Advanced 
Research Projects Agency (DOD), ARPA Order No. 3597, 
monitored by the Air Force Avionics Laboratory Under Contract 
F33615-81-K-1539. 

The views and conclusions contained in this document are those 
of the author and should not be interpreted as representing official 
pol/cies, either expressed or implied, of the Defense Advanced 
Research Projects Agency or the U.S. Government. 

1136 



111 Department of Defense. 
Preliminary Ada Reference Manual PhD thesis, Department of Computer Science, Carnegie- 

1979. Mellon University, November, 1984. 

PI Almes, G. and G. Robertson. 
An Extensible File System for Hydra. 
In Proc. 3rd International Conference on Software 

Engineering. IEEE, May, 1978. 

t31 Ball, J.E., J.A. Feldman, J.R. Low, R.F. Rashid, and P.D. 
Rovner. 
RIG, Rochester’s Intelligent Gateway: System overview. 
/EEE Transactions on Software Engineering 2(4):321-328, 

December, 1976. 

[41 Ball, J.E., E. Burke, I. Gertner, K.A. Lantz and RF. Rashid. 
Perspectives on Message-Based Distributed Computing. 
In Proc. 7979 Networking Symposium, pages 46-51. IEEE, 

December, 1979. 

El Bisiani, R., Alleva, F., Forin, A. and R. Lerner. 
Agora: A Distributed System Architecture for Speech 

Recognition, 
In International Conference on Acousffcs, Speech and 

Signal Processing. IEEE, April, 1986. 

Bobrow, D.G., Burchfiel, J.D., Murphy, D.L. and Tomfinson, 
R.S. 
TENEX, apaged time sharing system for the PDP-10. 
Communications of the ACM 15(3):135-l 43, March, 1972. 

171 

181 

191 

Cheriton, D.R. and W. Zwaenepoel. 
The Distributed V Kernel and its Performance for Diskless 

Workstations. 
In Proc. 9th Symposium on Operating Systems Principles, 

pages.128.139. ACM, October, 1983. 

Spice Project. 
Proposal for a joint effort in personal scientific computing. 
Technical Report, Computer Science Department, 

Carnegie.Mellon University, August, 1979. 

Fitzgerald, R. and R. F. Rashid. 
The integration of Virtual Memory Management and 

Interprocess Communication in Accent. 
ACM Transactions on Computer Systems 4(2):, May, 1986. 

References [lOI Hornig, D.A. 
Automatic Partitioning and Scheduling on a Networh of 

Personal Computers. 

[Ill Jones, A.K., R.J. Chansler, I.E. Durham, K. Schwans and 
S. Vegdahl. 
StarOS, a Multiprocessor Operating System for the 

Support of Task Forces. 
In Proc. 7th Symposium on Operating Systems Principles, 

pages 117-l 29. ACM, December, 1979. 

t121 Jones, MB., R.F.,Rashid and M. Thompson. 
MatchMaker: An Interprocess Specification Language. 
In ACM Conference on Principles of Programming 

Languages. ACM, January, 1985. 

1131 Lantz, K.A. 
Uniform Interfaces for Distributed Systems. 
PhD thesis, University of Rochester, May, 1980. 

[I41 Lantz, K.A., K.D. Gradischnig, J.A. Feldman and R.F. 
Rashid. 
Rochester’s Intelligent Gateway. 
Computer 15(10):54-68, October, 1982. 

1151 .McKusick, f&K., W.N. Joy, S.L. Leach and R.S. Fabry. 
A Fast File System for UNIX. 
ACM Transactions on Computer Systems 2(3):181-197, 

August, 1984. 

WI Rashid, RF. and G. Robertson. 
Accent: A Communication Oriented Network Operating 

System Kernel. 
In Proc. 8th Symposium on Operating Systems Principles, 

pages 64-75. ACM, December, 1981. 

iI71 R.F. Rashid. 
The Accent Kernel Interface Manual. 
Technical Report, Department of Computer Science, 

Carnegie-Mellon University, January, 1983. 

1181 Spector, AZ. et al. 
Support for Distributed Transactions in the TABS 

Prototype. 
In Proceedings of the Fourth Symposium on Reliability in 

Distributed Software and Database Systems, pages 
186-206. October, 1984. 

1137 


