
From RIG to Accent to Mach: The Evolution of
A Network Operating System

Richard F. Rashid

Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pa. 15213

Abstract

This paper describes experiences gained during the design,
implementation and use of the CMU Accent Network Operating
System, its. predecessor, the University of Rochester RIG system
and its successor CMU’s Mach multiprocessor operating system.
It outlines the major design decisions on which the Accent kernel
was based, how those decisions evolved from the RIG
experiences and how?hey had to be modified to properly handle
general purpose multiprocessors in Mach. Also discussed are
some of the major issues in the implementation of message-based
systems, the usage patterns observed with Accent over a three
year period of extensive use at CMU and a timing analysis of
various Accent functions.

1. Background
Mach is a multiprocessor operating system kernel currently

under development at Carnegie-Mellon University. In addition to
binary compatibility with Berkeley’s current UNIX 4.3 bsd release,
Mach provides a number of new facilities not available in 4.3,
including:

l Support for tightly coupled and loosely coupled
general purpose multiprocessors.

. An internal symbolic kernel debugger.

l Support for transparent remote file -access between
autonomous systems.

l Support for large, sparse virtual address spaces,
copy-on-write virtual copy operations, and rpemory
mapped files.

l Provisions for user-provided memory objects and
pagers.

l Multiple threads of control within a single address
space.

l A capability-based interprocess communication
facility-integrated with virtual memory management to
allowrtransfer of large amounts of data (up to the size
of a process address space) via copy-on-write
techniques.

l Transparent network interprocess communication
with preservation of capability protection across
network boundaries.

As of May 1986, Mach runs on most uniprocessor VAX
architecture machines: VAX 11/750, 111780, 111785, 8200, 8600,
8650, MicroVAX I, and MicroVAX II. Mach also runs on two
multiprocessor VAX machines, the four (1 l/780 or 111785)
processor VAX 1 l/784 with 8 MB of shared memory the VAX 8300
(with up to 4 processors). Mach has already been ported to the
IBM RT/PC and work has begun on ports to the uniprocessor SUN
3 and multiprocessor Encore MultiMax. The current version of the
system, Mach-l, includes all of the features listed above and is in
production use by CMU researchers on a number of projects
including a multiprocessor speech recognition system called
Agora [5] and a project to build parallel production systems.

Mach is the logical successor to CMU’s Accent [16,17] kernel ..
an operating system designed to support a large network of
uniprocessor scientific personal computers. The design and
implementation of Accent was in turn based on experiences
gained during the development of the University of Rochester’s
RIG system [3,14], a message-based network access machine.
Both RIG and Accent have seen considerable use over the years.
RIG provided a variety of functions including terminal support and
remote file access within the Rochester environment until early
this year when the last RIG machine was decommissioned.
Accent continues in use at CMU as the basic operating system for
a network of 150 PERQ workstations and has seen commercial
use in printing and publishing workstations as well as engineering
design systems. As a third generation network operating system
Mach, benefits from the lessons learned in over ten years of
design, implementation and use of RIG and Accent. This paper
summarizes the lessons of those systems and their impact on the
design and implementation of Mach.

2. The Evolution of Accent from RIG
Implementation of RIG began in 1975 on an early version of the

Data General Eclipse mini-computer. The first usable version of
the system came on-line in the fall of 1976. Eventually the
Rochester network included several RIG Eclipse nodes as network
servers and a number of Xerox Altos acting as RIG client hosts.
RIG provided clients network file services, ARPANET access,
printing services and a variety of other functions. Active
development continued well into the 1980’s but obsolescence of
its Data General Eclipse and Xerox Alto hardware base eventually
dictated its demise in the Spring of 1986.

2.1. The RIG Design
The basic system structliring tool in RIG was an interprocess

communication (IPC) lacility which allowed RIG processes to
communicate by sending packets of information between
themselves. RIG’s IPC facility was defined in ?erms of two basic
abstractions: messages and ports.

CH2345-7/86/0000/1128$01.00@ 1986 IEEE
1128

A RIG port was defined to be a kernel-provided queue for
messages and was referenced by a global identifier consisting of a
dotted pair of integers <process number.port number>. A RIG port
was protected in the sense that it could only be tnanipulated
directly by the RIG kernel, but it was unprotected in the sense that
any process could send a message to a port. A RIG port was tied
directly to the RIG abstraction of a process _- a protected address
space with a single thread of program control.

A RIG message was composed of a header followed by data.
Messages were of limited size and could contain at most two
scalar data items or two array objects. The type tagging of data in
messages was limited to a small set of simple scalar and array data
types. Port identifiers could be sent in messages only as simple
integers which would then be interpreted by the destination
process.

Due largely to the hardware on which it was implemented, RIG
did not allow either a paged virtual memory or an address space
larger than 2t16 bytes. RIG did, however, use simple memory
mapping techniques to move data 131. The largest amount of data
which could be transferred at a time was 2K bytes.

2.;. Problems with RIG
The RIG message passing architecture was originally intended

more as a means for achieving modular decomposition (much like
Brinch-Hansen’s RC4000) rather than as the basis for a distributed
system. It was discovered early on, though, that RIG’s message
passing facility could be adapted as the communication base for a
network operating system. Unfortunately, as RIG became heavily
used for networking work at Rochester a number of problems with
the original design became apparent:

l Protection

The fact that ports were represented as global
identifiers which could be constructed and used by
any process implied that a process could not limit the
set of processes which could send it a message. To
function correctly, each process had to be prepared
to accept any possible message sent to it from any
potential source. A single: errant process could
conceivably flood a process or even the entire system
with incoherent messages.

. Failure notification

Another difficulty with global identifiers was that they
could be passed in messages as simple integers. It
was therefore impossible to determine whether a
given process was potentially dependent on another
process. In principle any process could store in its
data space a reference to any other process. The
failure of a machine or a process could therefore not
be signaled back to dependent processes
automatically. Instead, a special process was
invented which ran on each machine and was notified
of process death events. Processes had to explicitly
register their dependencies on other processes with
this special “grim reaper” process in order to receive
event-driven notifications.

l Transparency of service

Because ports were tied explicitly to processes, a port
defined service could not be moved from one process
to another without notifying all parties. Transparent
network communication was also compromised by
this naming scheme. A port identifier was required to
explicitly contain the network host identifier as part of
its process number field. As the system expanded
from one machine to one network to multiple
interconnected networks this caused the port
identifier to expand in size -- usually resulting in
considerable reimplementation work.

l Maximum message size

The limited size of messages in RIG resulted in a style
of interprocess interaction in which large data objects
(such as files) had to be broken up into chunks of 2K
bytes or less. This constraint impacted on the
efficiency of the system (by increasing the amount of
message communication) and on the complexity of
client/server interactions (e.g., by forcing servers to
maintain state information about open files).

2.3. The evolution of RIG
CMU’s Spice [8] distributed personal workstatbn project

provided an oportunity to effectively “redo” a RIG-like system
taking into account that system’s limitations. The result was the
Accent operating system kernel for the PERQ Systems
Corporation PERO computer.

The Accent solution to the problems present in the RIG design
was based on two basic ideas:

. Define ports to be capabilities as well as
communication objects.

By providing processes with capabilities to ports
rather than a global identifier for them, it was possible
to solve at one time the problems of protection, failure
notification and transparency:

. Protection in Accent is provided by allowing
processes access only to those ports for which
they have been given capabilities.

. Processes can be notified automatically when a
port disappears on which those processes are
dependent because the kernel now has
complete knowledge of which processes have
access to each port in the system. There is no
hidden communication between processes.

l Transparency is complete because the ultimate
destination of a message sent to a port is
unknown by the sender. Thus transparent
intermediary processes can be constructed
which forward messages between gioups of
processes without their knowledge (either for
the purpose of debugging and monitoring or for
the purpose of transparent network
communication).

1129

2. Use virtual memory to overcome limitations in
the handling of large objects.

The use of a large address space (a luxury not
possible in the design of RIG) and copy-on-write
memory mapping techniques permits processes to
transmit objects as large as they can directly access
themselves. This allows processes such as file
servers to provide access to large objects (e.g., files)
through a single message exchange -- drastically
reducing the number of messages sent in the
system [Q].

The first line of Accent code was written in April 1981. Today
Accent is used at CVU in a network of 150 PERQ workstations. In
addition to network operating system functions such as distributed
process and file management, window management and mail
systems, several applications have been built using Accent. These
include research systems for distributed signal processing [IO],
distributed speech understanding [5] and distributed transaction
processing [18]. Four separate programming environments have
been built -- CommonLisp, Pascal, C and Ada -. including
language support for an object-oriented remote procedure caH
facility [12].

3. The Accent Design
Accent is organized around the notion of a protected, message-

based interprocess communication facility integrated with copy-
on-write virtual memory management. Access to all services and
resources, including the process management and memory
management services of the operating system kernel itself, are
provided through Accent’s communication facility. This allows
completely uniform access to such resources throughout the
network. It also implies that access to kernel provided services is
indistinguishable from access to process provided resources (with
the exception of the interprocess communication facility itself).

3.1. Interprocess communication
The Accent interprocess communication facility is defined in

terms of abstractions which, as in RIG, are called ports and
messages.

The port is the basic transport abstraction provided by Accent.
A port is a protected kernel object into which messages may be
placed by processes and from which messages may be removed.
A port is logically a finite length queue of messages sent by a
process. Ports may have any number of senders but only one
receiver. Access to a port is granted by receiving a message
containing a port capability (to either send or receive).

Ports are used by processes to represent services or data
structures. For example, the Accent window manager uses a port
to represent a window on a bitmap display. Operations on a
window are requested by a client process by sending a message
to the port representing that window. The window manager
process then receives that message and handles the request.
Ports used in this way can be thought of as though they were
capabilities to objects in a object oriented system(Jones78). The
act of sending a message (and perhaps receiving a reply)
corresponds to a cross-domain procedure catl in a capability
based system such as Hydra [2] or StarOS [l 11.

.A message consists Of a fixed length header and a variable size
collect&&f typed data objects. Messages may contain both port
capabilities and/or imbedded pointers as long as both are
properly typed. A single message may transfer up to 2t32 bytes of
bymlue data.

Messages may be sent and received either synchronously or
asynchronously. A software interrupt mechanism allows a
process to handle incoming messages outside the flow of normal
program execution.

Figure 3-1 shows a typical message interaction. A process A

sends a message to a port P2. Process A has send rights to ~2

and receive rights to a port PI. At some later time, process a
which has receive rights to port ~2 receives that message which
may in turn contain send rights to port PI (for the purposes of
sending a reply message back to process A). Process B then
(optionalty) replies by sending a message to PI.

Tim9 t0

0 A 0

FF- PI
III

P2

Figure 3- 1: Typical

Time t1

I

TIH t3

message exchange

Should port ~2 have been full, process A would have had the
option at the point of sending the message to: (1) be suspended
until the port was no longer full, (2) have the message send
operation return a port full error code, or (33) have- the kernel
accept the message for future transmission to port ~2 with the
proviso that no further message can be sent by that process to ~2

until the kernel sends a message to A telling it the current
message has been posted.

3.2. Virtual memory support
Accent provides a 2732 byte paged address space for each

process in the system and a 2732 byte paged address space for
the operating system kernel. Disk pages and physical memory can
be addressed by the kernel as a portion of its 2t32 byte address
space. Accent maintains a virtual memory table for each user
process and for the operating system kernel. The kernel’s
address space is paged and all user process maps are kept in

1130

paged kernel memory. Only the kernel virtual memory table, a
small kernel stack, the PERQ screen, I/O memory and those
PASCAL modules required for handling the simplest form of page
fault need be locked in physical memory, although in practice
parts of the kernel debugger and symbol tables for locked
modules are also locked to allow analysis of system errors. The
total amount of kernel code and symbol table information locked is
64K bytes [9].

Whenever large amounts of data (the threshold is a system
compile-time constant normally set at 1K bytes) are transmitted in
a message, Accent uses memory mapping techniques rather than
data copying to move information from one process to another
within the same machine. The seman?ics of message passing in
Accent imply that all data sent in a message are logically copied
from one address space to another. This can be optimized by the
kernel by mapping the sent data copy-on-write in both the sending
and receiving processes.

Figure 3-2 shows a process A sending a large (for example 24
megabyte) message to a port PI. At the point the message is
posted to PI, the part of A’S address space containing the
message is marked copy-on-write -- meaning any page referenced
for writing will be copied and the copy placed instead into A’S

virtual memory table. The copy-on-write data then resides in the
address space of the kernel until process a receives the message.
At that point the data is removed from the address space of the
kernel. By default, the operating system kernel determines where
in the address space of B the newly received message data is
placed. This allows the kernel to minimize memory mapping
overhead. Any attempt by either A or B to change a 512 byte page
of this copy-on-write data results in a copy of that page being
made and placed into that process’ address space.

Send OpWatiOn

L nap A r&p

a

El
: :
: :
:.:

Kerns1 Map B Map

0 a

[;:;A

:..: : :
..+
. . . :.:

Figure 3-2: Mapping operations during message transfer

3.3. Network communication
The abstraction of communication through ports permits the

distinction between access to local and remote resources to be
completely invisible to a client process. In addition, Accent
exploits the integration of memory management and IPC to
provide a number of options in the handling of virtual memory,
including the ability to allow memory to be sent copy-on-reference
across,a network. Each entry of an Accent virtual memory table
maps a contiguous region of process virtual memory to a
contiguous portion of an Accent memory object. A memory object
is the basic unit of secondary storage in Accent. Memory objects
can be contiguous physical memory (as used for the PER0 screen
or I/O buffers) or a randomly addressed disk file. A memory

object can also be backed not by disk or main memory, but by a
Process through a port. initial references to a page of data
mapped to a port are trapped by the kernel and a request for the
necessary data is forwarded in a message on that port, This
feature allows processes to provide the system with virtual
memory that they themselves maintain (either locally or over a
network connection to another machine). In this way network
communication servers can provide copy-on-reference network
transmission of pages in a large message.

4. Key Implementation Issues in Accent
Many of the implementation decisions made in Accent were

based on experiences with RIG. Nevertheless, the addition of
virtual memory and capability management to the RIG design
made it unclear how the RIG experiences would extrapolate to the
Accent environment.

4.1. IPC Implementation
The actual implementation of the message mechanism relied on

several assumptions about the use of messages:

. the average number of messages outstanding at any
given time per process would be small,

. the number of port capabilities needed by a process
could vary from two to several hundred, and

. the use of simple messages (meaning messages
which contained port capabilities only in their header
and which contained tess than a few kilobytes) would
so dominate complex messages that simple messages
would be an important special case.

Each of these assumptions had held true for RIG [4,14]. It was
hoped that although Accent provided a substantially different
application environment than RIG, the RIG experiences would
provide a reasonable prediction of Accent performance.

Given these expectations, the implementation was optimized for
anticipated common cases, including:

. The assumption that there would seldom be more
than one message waiting for a process at a time led
to an implementation in which messages are queued
in per-process rather than per-port queues.

. To allow large numbers of ports per process and fast
lookup, port capabilities are represented as indexes’
into a global port record array stored in kernel virtual
memory. Port access is protected through the use of
a bitmap of process access rights kept per port (the
number of processes is much less than the number of
ports).

. The assumption that simple messages would be an
important special case led to the addition of a field to
the message header so that user processes can
indicate whether or not a message is simple and thus
allow special handling by the kernel.

These usage assumptions did in fact prove true for Accent.
Table 4-l demonstrates the properties of Accent message passing
as measured during an active day of use.

1131

1.01 Average probes to requested message

33.42 Average port rights held per process

14.38 Average ports owned per process

0.094 Ratio of complex to simple messages

- ~~-
Table 4- 1: Message use statistics

4.2. Virtual Memory Implementation
The lack of sophisticated virtual memory management in RIG

(and in fact in nearly all message-based systems of that era) meant
that Accent could not benefit from previous experience with virtual
memory use resulting from message operations. Instead, the
design of Accents virtual memory implementation grew out of
simple assumptions based purely on intuition. These initial
assumptions influenced the design of the Accent virtual memory
implementation:

l process maps had to be compact, easy to manipulate
and support sparse use of a process address space,

l the number of contiguously mapped regions of the
address space would be reasonably small, and

l large amounts of memory would frequently be passed
copy-on-write in messages.

The Accent process virtual memory map is maintained as a two-
level indirect table terminating in linked lists of entries (see Figure
4-l). Each entry on the linked list maps a contiguous portion of
process virtual memory into contiguous regions of Accent memory
objects. The map is organized so that large portions can be
validated, invalidated or copied without having to modify the
linked lists of map entries. This is accomplished by having valid,
copy-on-write and write-protect bits at each level of the table.
During lookup, these bits are “ored” together. Thus all of memory
can be efficiently made copy-on-write by just setting the copy-on-
write bits of valid entries in level one of the process map table.
Figure 4-1 illustrates the translation of a virtual address to an
offset within a memory object.

Physical memory in Accent is used as a cache of secondary
storage. There are no special disk buffers. Access to all
information (e.g., files) is through message passing (and
subsequent page faulting if necessary).

This scheme is flexible enough to be used internally by the
kernel to remap portions of its own address space. An entire
process virtual memory map, for example, is copied in a fork

operation without physically copying the map by using Accent’s
copy-on-write facility. To reduce map manipulation overheads,
changes caused by copy-on-write updates are recorded first in a
virtual to physical address translation table (kept in physical
memory) and are not incorporated into a process map until the
relevant page must be writlen out to secondary storage.

Copy-on-write access to memory objects is provided through the
use of shadow memory objects which reflect page differences
between a copied object and the object it shadows (which could in
turn be a shadow). Disk space for newly created pages or pages
written copy-on-write is allocated on an as-needed basis from a
special paging area. No disk space is ever allocated to back up a
process address space unless the paging algorithms need to flush
a dirty page. See figure 4-2.

Shadow ObJIct Shadow Object M.mory Obj.ct

Figure 4-2: An example of memory object shadowing

Most shadow memory objects are small (under 32 pages). Most
large shadows contain only a few pages of data different from the
objects they shadow. These facts led to an allocation scheme in
which small shadows are allocated contiguously from the paging
store and larger shadows use a page map and are allocated as
needed.

Overall, the basic assumptions about the use of process address
space in Accent appear to hold true. The typical user process
table:

l is between 1024 and 2048 bytes in size,

l contains 34-70 mapping entries, and

l maps a region of virtual memory approximately eight
megabytes in extent (in PERQ PASCAL each
separately compiled module occupies a distinct 128K
byte region of memory) and about one to two
megabytes in size.

Although all memory is passed copy-on-write from one process
to another, the number of copy-on-write faults is typically small. A
typical PASCAL compile/link/load cycle, for example, requires
only slightly more than one copy-on-write fault per second.
Clearly most of the data passed by copy in Accent is read and not
written. The result is that the logical advantages of copy-on-write
are obtained with costs similar to that of mapped shared memory

M-

4.3. Programming issues
One of the problems with message based systems has

traditionally been the fact that existing programming languages do
not support.their message semantics. In RIG, a special remote

Figure 4- 1: Mapping a virtual address In Accent

1132

procedure call function was provided called “Call” [13] which
took as its arguments a message identifier, a process-port
identifier, and operation arguments along with their type
information. One of the early decisions in the implementation of
Accent was to define all interprocess message interfaces in terms
of a high-level specification language. The properties of ports
allow them to be viewed as object references. The’interprocess
specification language is defined in terms of operations on
objects. Subsystem specifications in this language are compiled
by a program called Matchmaker into remote procedure call stubs
for the various programming languages used in the system --
currently C, PASCAL, ADA and Common LISP. The result is that
all interprocess interfaces look to the programmer as though they
were procedural interfaces in each of these languages. In
PASCAL, for example, the interface procedure for writing a string
to a window of the screen would look like:

WriteString(window,string-to-be-written)

All Matchmaker specified calls take as their first argument the
port object on which the operation is to be performed. The remote
procedure call stub then packages the request in a message,
sends it to the port, and waits for a reply message ‘(if necessary),

Initial access to server ports is accomplished either through
inheritance (by having the parent process send port rights to its
children) or by accessing a name server process (a port for which,
is typically passed to a process by inheritance). A complete
description and specification of Matchmaker can be found in 1121.

Matchmaker’s specification language allows both synchronous
and asynchronous calts as well as the specification of timeouts
and exception handling behavior. It supports both by-value and
by-value-result parameters. It allows types to be defined as well as
the specification of their bit packing characteristics in the
message. For the server process, Matchmaker produces routines
which allow incoming messages to be decoded and server
subroutines automatically invoked with the proper arguments.

The support provided by Matchmaker is similar to some of the
features which have been introduced in modern languages for
managing multiple tasks such as the ADA rendezvous mechanism
[l]. Matchmaker, however, supports a number of different
programming languages and provides a much greater range of
options for synchronous and asynchronous behavior in a
distributed environment.

Despite the obvious simplicity of simple “remote procedure call”
style interfaces, a suprisingly high percentage of network
operating system interfaces take advantage of the asynchronous
form of Matchmaker interfaces. Of 225 system interfaces:

l 170 (approximately 77 percent) are synchronous,

l 45 (approximately 19 percent) are asynchronous and

l 10 (approximately 4 percent) represent exceptions.

Runtime statistics show that over 50 percent of messages actually
sent during normal system execution are sent as part of
asynchronous Matchmaker specified operations .- normally due to
the behaviour of I/O subsystems (such as handlers for the PERQ
keyboard and display) or basic system servers (such as network
protocol servers).

Matchmaker server interfaces account for approximately 10
percent of the total network operating system code .- roughly
75.5k bytes out of 757k bytes. For the Accent kernel itself, the
Matchmaker interface is 10280 bytes out of approximately 115k
bytes. Runtime costs are considerably less. During a PASCAL
compilation, for example, less than 2 percent of CPU time is due to
Matchmaker interface overheads.

4.4. Key Statistics

4.4.1. Hardware and basic system performance of Accent
Table 4-2 compares the relative performance of PER0 and

VAX-111780 CPUs. Timings were performed in PASCAL on the
PERQ and in C on a VAX running UNIX 4.1 bsd.

PASCAL programs written for the PERQ range in overall speed
from l/5 to l/3 the speed of comparable programs on the VAX
111780, depending on whether 16.bit or 32.bit operations
predominate. In fairness to the PER0 hardware, the underlying
microengine is much faster than the PASCAL timings in table 4-2
would indicate. Microcoded operations often run as fast as or
faster than equivalent VAX 1 l/780 assembly language. Note, for
example, the relative speeds of the microcoded context switch
and kernel trap operations. Moreover, instruction sets better
tuned to the PERQ hardware, such as the Accent CommonLisp
instruction set, run at speeds closer to 50 percent of the VAX.
Nevertheless, for the purpose of gauging the performance of the
Accent kernel code, which is written in PASCAL and makes heavy
use of 32.bit arithmetic, pointer chasing and packed field
accessing, the CPU speed of a PERQ is about l/5 that of a VAX
11/780.

Pe rq Vax Ratio Operation

23001‘1s 7201-1s .31 Tick (32.bit stack local)
12us 4us .25 Simple loop (l&bit inleger)
2ous 3us .I7 Simple loop (32.bit inleger)
3sus 20us .57 Null procedure call/return
75us 25~s 33 Procedure call with 2 arguments
GOUS 4oous 5.00 Context switch

132~s 2t4us 2.00 Null kernel trap
30s 9s .30 Baskett Puzzle Program d&bit)
SOS 10s .20 Easkett Puzzle Program (32.bil)

Table 4-2: Comparison of Perq and Vax-1 l/780 operation times

4.4.2. LPC Costs
Table 4-3 shows the costs of various forms of message passing

in Accent. As was previously described, Accent distinguishes
between simple and complex messages to improve performance
of common message operations. Simple messages are defined to
be those with less than 960 bytes of in-fine data that contain no
pointers or port references (other than those in the message
header). Other messages are considered complex. The times for
complex messages listed in the table were measured for
messages containing one pointer.to 1024 bytes of data. The
observed ratio of simple to complex messages in Accent is
approximately 12.to-l.

1133

Time IPC Operation

1 .I5 Simple message send
1.35 Simple message receive

10. Complex message send (1024 bytes)
10. Complex message receive (1024 bytes)

Table 4-3: IPC operation times in milliseconds

The average number of messages per second observed during
periods of heavy standard version use (e.g., compilation) is less
than 30. There were 67378 simple messages and 4279 complex
messages sent during one measurement of three hours of editing,
network file access, and text formatting, an average of less than
eight per second [9].

4.4.3. Accessing file data
One of the reasons for the relatively low message rate of

message exchange in Accent is the heavy reliance on virtual
memory mapping techniques for transferring large amounts of
data in messages. A process making a request for a large file
b;pically receives the entire file in a single message sent back from
a file server process. As a result, all file access in Accent is
mediated through the memory management system. There are no
separate file buffers maintained by the system or special
operations required for file access versus access to other forms of
process mapped memory. By contrast, in RIG the same operation
would have required as many message exchanges between client
and server as there were pages in the file.

Table 4-4 shows the costs associated with reading a 56K byte
file under UNIX 4.1 bsd on a VAX 11/780 with a 30 millisecond
average access time Fujitsu disk and under the standard version
of Accent with a 30 millisecond average access time MAXSTORE
drive.

The measured cost of a file access in Accent as shown in table
4-4 is due, in part, to the cost of a disk write to update the file
access time. This disk write is unbuffered in Accent and thus is
included in the file request time. The Unix disk write associated
with an open is buffered and is excluded from the open/close
time.

Accent file access speed is limited by the basic fault time of
about four milliseconds (see table 4-5), the average number of
consecutive file pages on a disk track and the cost of making new

System Time Operation

Accent 66 Request file from server
UNIX 4.1 5-10 Open/close
Accent 6-10 Read a page (512 bytes)

UNIX 4.1 16-18 Read a page (1024 bytes)
UNIX 4.2 16-18 Read a page (4096 bytes)

Once mapped, file access in Accent ranges from somewhat
faster than 4.1 bsd to slightly slower, depending on the locality of
file pages. 4.2bsd file access [15] is considerably faster than
either 4.1 bsd or Accent. This increase in speed appears to be due
atmost entirely to the larger (typically 4096 byte) file page size.
The actual number of disk I/O operations per second under 4.2 is
almost identical to 4.1, about 50-60 per second, and appears to be
bounded by the rotational speed of the disk (60 revolutions per
second).

4.4.4. Fault handling and copy-on-write
Table 4-5 summarizes the results from test programs that caused

100,000 instances of a variety of memory fault types. It shows the
average total times required to handle single faults.

Total Type of fault

0.623 Null fault
3.355 Read fault, zero fill
3.704 Write fault. zero fill
3.760 Read fault, memory fill, small file
4.504 Read fault, memory fill, large file
3.633 Write fault, CopyOnWrite copy

Table 4-5: Fault handling times in milliseconds

Overall, the costs of copy-on-write memory management are
nearly identical to that of by-reference memory mapping. Less
than 0.01 percent of the total time associated with an entire
rebuilding of the operating system and user programs from source
is used to handle copy-on-write faults [9].

5. Mach: Adapting Accent to
Multiprocessors

Accent went beyond demonstrating the feasibility of the
message passing approach to building a distributed system.
Experience with Accent showed that a message based network
operating system, properly designed, can compe?e with more
traditional operating system organizations. The advantages of this
approach are system extensibility, protection and network
transparency.

By the fall of 1984, however, it became apparent that, without a
new hardware base, Accent would eventually follow RIG into
oblivion. Hastening this process of electronic decay was Accent’s
inability to completely absorb the ever burgening body of UNlX
developed software both at CMU and elsewhere -- despite the
existence of a “UNIX compatibility” package.

Mach was conceived as an Accent-like operating system which
would provide complete UNlX compatibility. It was also designed
to better accommodate the kind of general purpose shared-
memory multiprocessors which appear to be on their way to
becoming the successors to traditional general purpose
uniprocessor workstations and timesharing systems.

Table 4-4: File access times ih milliseconds

VP entries. Its page size is only 512 bytes, in contrast to 1024 bytes
for 4. l-bsd and 4096 or 8192 for 4.2bsd.

1134

..U,“.

5.1. The design of h4ach
The design of Mach differs

\I,Zl”P.
from that of Accent in several crucial

. The Accent notion of a process, which like RIG is an
address space and single program counter, was split
into two new concepts:

1. a task, which is the basic unit of resource
allocation including a paged address space,
protected access to system resources (such as
processors, ports and memory), and

2. a thread, which is the basic unit of CPU
utilization.

. A facility for handfing a form of structured sharing of
read/write memory between tasks in the same family
tree was added to allow finer granularity
synchronization than could be achieved ‘with a kernel
provided mechanism.

*The Mach IPC facility was further simplified. This
came about as the logical result of using thread
mechanisms to handle some forms of asynchrony and

error handling’(much as was done in the V Kernel [7]).

. The notion of memory object was generalized to allow
general purpose user-state external pager tasks to be
built.

These design modifications are a consequence of handling
shared-memory multiprocessor architectures. Accent provided no
tool for fine grain synchronization or lightweight processes. Both
are important for effective use of multiprocessor cycles in a variety
of applications.

Despite these changes, the basic features which allowed Accent
to provide uniform access to both local and network resources are
still in place. This allows networks of multiprocessors or of
multiprocessors and uniprocessors to be built using the same
basic system abstractions. As in Accent, operations on all Mach
objects other than messages are performed by sending messages
to ports which are used to represent them. For example, the act of
creating a task or thread returns access rights to the port which
represents the new object and which can be used to manipulate it.
A thread can suspend another thread by sending a suspend
message to that thread’s thread port, even across a network
boundary.

Tasks are re!ated to each other in a tree structure by task
creation operations. Virtual memory may be marked as inheritable
to a tasks children. Memory regions may be inherited read-write,
copy-on-write or not at all. A standard UNIX fork operation, for
example, takes the form of a task with one thread creating a child
task with a similar single thread of control and all its memory
shared copy-on-write.

The notions of multiple threads of control within a task and
limited sharing between task allows Mach to provide three levels
of synchronization and communication: fine grain, intra-
application interprocess communication and inter-application
interprocess communication.

Fine grain communication is performed on memory shared
either within a task or between related tasks. Mach provides a
library to support synchronization on shared memory to avoid the
cost of kernel trap operations on short-term locks. Network

read/write shared memory is not provided by the kernel, but is
potentially implementable by a user-state process acting as an
external object pager (see discussion of object pagers below).

lntra-application inter-thread communication is performed Using
the standard Send and Receive ports primitives but Can be .
implemented more efficiently in the presence of shared libraries
and memory. By the nature of the abstractions, threads can
ignore the difference between intra-application communication
and inter-application communication.

Inter-application communication requires the intervention of the
Mach kernel to provide protection. As in Accent, large amounts of
data in messages may be mapped copy-on-write from one address
space to another rather than copied. Data forwarded in messages
over the network can be transmitted on reference rather than all at
once at the discretion of the network server.

5.2. Implementation

52.1. Virtual memory modifications
While system analysis indicated that the basic Accent virtual

memory scheme worked well, it also demonstrated that the data
structure used to represent an Accent process map -. a two-level
indirect table terminated in linked lists of mapping descriptors --
was unnecessarily complicated. Because nearly all operations on
maps are sequential and maps seldom get very large, Mach
implements task address maps as simple ordered lists of mapping
descriptors. Each descriptor maps a range of virtual addresses to
a range of bytes in a memory object. The only non-sequential
operation .- lookup events due primarily to memory faults -- is
sped by the use of hints based on previous lookup requests.

Another innovation of Mach over Accent is in the.use of sharing
maps to represent read/write shared regions between tasks A
Mach mapping descriptor may point either directly to a memory
object (which can then only be shared copy-on-write) or indirectly
to memory objects through a sharing map. A sharing map is
simply an address map .which maps a range of virtual addresses
shared by at least two task address maps. All operations on tasks
maps in a shared range of addresses are performed through
indirection on sharing maps.

Overall, the Mach data structures are simpler, more compact
and more expressive than those of Accent. A Mach address map
can be thought of as a simple run-length encoding of a process
address space. A typical UNIX-style process can be expressed in
less than 100 bytes.

5.2.2. Mach IPC
The introduction of the notion of tasks and threads into Mach

necessitated some changes to Accent’s basic IPC facility. Port
access rights in Mach are owned by a task. All threads within a
task may therefore send or receive messages on that tasks ports.

1135

,-he availability of threads to manage asynchronous activities
simplified handling of software interrupts. Moreover, several

message options, such as message priorities and the ability to
preview the contents of a message before it had to be received,
had been found to be largely unused for their intended purpose in
Accent and have been removed.

5.2.3. Managing hardware diversity
Mach was intended from the outset to handle a wide diversity of

both uniprocessor and multiprocessor hardware. For example,
Mach provides a task memory sharing and a thread memory
sharing model for multiprocessor memory synchronization. This
allows Mach to support both muttiprocessors which support full
memory sharing with cache consistency as well as machines with
only partial sharing or explicit memory caching. In practice, the
system already is configured to handle a wide range of
uniprocessor and multiprocessor VAX configurations. The same
binary kernel image is used on both uniprocessor and
multiprocessor systems.

Mach also handles another form of diversity. Messages, because
they contain tagged data, are transformed from one machine data
format to another by network servers. Properly typed Matchmaker
interfaces allow programs written on an FIT PC to communicate
with VAX applications despite different byte ordering, data
packing and data format conventions. There are, however, limits
on this form of machine independence. For example, no attempt is
made to preserve precision of floating point numbers converted
from one form to another.

5.2.4. Confronting UNIX
One mechanism for ensuring Mach’s survival in the face of a

flood of UNIX based software is to make certain that it is
compatible with an existing UNIX environment. This was achieved
by building Mach to allow UNIX 4.3bsd system calls to be handled
in much the same way they would be handled in a completely
native system. The Mach kernel effectively supplants the basic
system interface functions of the UNIX 4.3bsd kernel: trap
handling, scheduling, multiprocessor synchronization, virtual
memory management and interprocess communication. 4.3bsd
functions are provided by kernel-state processes which are
scheduled by the Mach kernel, and share communication queues
with it. Work is now underway to remove non-Mach UNIX
functionality from kernel-state and provide these services through
user-state processes.

6. Conclusions
The evolution of network operating systems from RIG through

Mach was, in a sense, driven by the evolution of distributed
computer systems from small networks of minicomputers in the
middle 1970s to large networks of personal workstations and
mainframes in the early 1960s to networks of uniprocessor and
multiprocessor systems today. Not suprisingly, the basic software
primitives of Mach .- task, thread. port, message and memory
object .- parallel the hardware abstractions which characterize
modern distributed systems -- nodes, processors, network
channels, packets and primary and secondary memory.
Experiences, both good and bad, with RIG and Accent have
played an important role in determining the exact definition of the
Mach mechanisms and their implementation.

7. Acknowledgements
ln addition to anything the author may have done, the heroes of

the RIG kernel development were Gene Ball and llya Gertner.
Jerry Feldman was in large part responsible for the initial RIG
design and the system’s name. The Accent development team
included George Robertson and Gene Ball as well as the author.
Keith Lantz and Sam Harbison made notable contributions to the
design. Mary Shaw contributed the name. Others contributed
greatly to Accent’s evolution: particularly Doug Philips, Jeff
Eppinger, Robert Sansom, Robert Fitzgerald, David Golub, Mike
Jones and Mary Thompson. Matchmaker could not have come
into existence without the aid of Mary Thompson, Mike Jones, Rob
MacLachlin and Keith Wright. Mach was the brainchild of many
including Avie Tevanian, Mike Young and Bob Baron. Dario Giuse
came up with the name.

This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 3597,
monitored by the Air Force Avionics Laboratory Under Contract
F33615-81-K-1539.

The views and conclusions contained in this document are those
of the author and should not be interpreted as representing official
pol/cies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

1136

111 Department of Defense.
Preliminary Ada Reference Manual PhD thesis, Department of Computer Science, Carnegie-

1979. Mellon University, November, 1984.

PI Almes, G. and G. Robertson.
An Extensible File System for Hydra.
In Proc. 3rd International Conference on Software

Engineering. IEEE, May, 1978.

t31 Ball, J.E., J.A. Feldman, J.R. Low, R.F. Rashid, and P.D.
Rovner.
RIG, Rochester’s Intelligent Gateway: System overview.
/EEE Transactions on Software Engineering 2(4):321-328,

December, 1976.

[41 Ball, J.E., E. Burke, I. Gertner, K.A. Lantz and RF. Rashid.
Perspectives on Message-Based Distributed Computing.
In Proc. 7979 Networking Symposium, pages 46-51. IEEE,

December, 1979.

El Bisiani, R., Alleva, F., Forin, A. and R. Lerner.
Agora: A Distributed System Architecture for Speech

Recognition,
In International Conference on Acousffcs, Speech and

Signal Processing. IEEE, April, 1986.

Bobrow, D.G., Burchfiel, J.D., Murphy, D.L. and Tomfinson,
R.S.
TENEX, apaged time sharing system for the PDP-10.
Communications of the ACM 15(3):135-l 43, March, 1972.

171

181

191

Cheriton, D.R. and W. Zwaenepoel.
The Distributed V Kernel and its Performance for Diskless

Workstations.
In Proc. 9th Symposium on Operating Systems Principles,

pages.128.139. ACM, October, 1983.

Spice Project.
Proposal for a joint effort in personal scientific computing.
Technical Report, Computer Science Department,

Carnegie.Mellon University, August, 1979.

Fitzgerald, R. and R. F. Rashid.
The integration of Virtual Memory Management and

Interprocess Communication in Accent.
ACM Transactions on Computer Systems 4(2):, May, 1986.

References [lOI Hornig, D.A.
Automatic Partitioning and Scheduling on a Networh of

Personal Computers.

[Ill Jones, A.K., R.J. Chansler, I.E. Durham, K. Schwans and
S. Vegdahl.
StarOS, a Multiprocessor Operating System for the

Support of Task Forces.
In Proc. 7th Symposium on Operating Systems Principles,

pages 117-l 29. ACM, December, 1979.

t121 Jones, MB., R.F.,Rashid and M. Thompson.
MatchMaker: An Interprocess Specification Language.
In ACM Conference on Principles of Programming

Languages. ACM, January, 1985.

1131 Lantz, K.A.
Uniform Interfaces for Distributed Systems.
PhD thesis, University of Rochester, May, 1980.

[I41 Lantz, K.A., K.D. Gradischnig, J.A. Feldman and R.F.
Rashid.
Rochester’s Intelligent Gateway.
Computer 15(10):54-68, October, 1982.

1151 .McKusick, f&K., W.N. Joy, S.L. Leach and R.S. Fabry.
A Fast File System for UNIX.
ACM Transactions on Computer Systems 2(3):181-197,

August, 1984.

WI Rashid, RF. and G. Robertson.
Accent: A Communication Oriented Network Operating

System Kernel.
In Proc. 8th Symposium on Operating Systems Principles,

pages 64-75. ACM, December, 1981.

iI71 R.F. Rashid.
The Accent Kernel Interface Manual.
Technical Report, Department of Computer Science,

Carnegie-Mellon University, January, 1983.

1181 Spector, AZ. et al.
Support for Distributed Transactions in the TABS

Prototype.
In Proceedings of the Fourth Symposium on Reliability in

Distributed Software and Database Systems, pages
186-206. October, 1984.

1137

