
The following paper was originally published in the
Proceedings of the USENIX 2nd Symposium on
Operating Systems Design and Implementation

Seattle, Washington, October 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Microkernels Meet Recursive Virtual Machines

Bryan Ford, Mike Hibler, Jay Lepreau,
Patrick Tullmann, Godmar Back, and Stephen Clawson

University of Utah



Microkernels Meet Recursive Virtual Machines

Bryan Ford Mike Hibler Jay Lepreau Patrick Tullmann
Godmar Back Stephen Clawson

Department of Computer Science, University of Utah

Salt Lake City, UT 84112

flux@cs.utah.edu http://www.cs.utah.edu/projects/flux/

Abstract

This paper describes a novel approach to providingmod-
ular and extensible operating system functionality and en-
capsulated environments based on a synthesis of micro-
kernel and virtual machine concepts. We have developed
a software-based virtualizable architecture called Fluke
that allows recursive virtual machines (virtual machines
running on other virtual machines) to be implemented ef-
ficiently by a microkernel running on generic hardware.
A complete virtual machine interface is provided at each
level; efficiency derives from needing to implement only
new functionality at each level. This infrastructure allows
common OS functionality, such as process management,
demand paging, fault tolerance, and debugging support, to
be provided by cleanly modularized, independent, stack-
able virtual machine monitors, implemented as user pro-
cesses. It can also provide uncommon or unique OS fea-
tures, including the above features specialized for particu-
lar applications’ needs, virtual machines transparently dis-
tributed cross-node, or security monitors that allow arbi-
trary untrusted binaries to be executed safely. Our proto-
type implementation of this model indicates that it is prac-
tical to modularize operating systems this way. Some types
of virtual machine layers impose almost no overhead at all,
while others impose some overhead (typically 0–35%), but
only on certain classes of applications.

1 Introduction

Increasing operating system modularity and extensibil-
ity without excessively hurting performance is a topic of
much ongoing research [5, 9, 18, 36, 40]. Microkernels [4,
24] attempt to decompose operating systems “horizontally”
by moving traditional kernel functionality into servers run-
ning in user mode. Recursive virtual machines [23], on
the other hand, allow operating systems to be decomposed

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Department of the Army, under
contract number DABT63–94–C–0058. The opinions and conclusions
contained in this documentare those of the authors and should not be inter-
preted as representing official views or policies of the U.S. Government.

“vertically” by implementing OS functionality in stackable
virtual machine monitors, each of which exports a virtual
machine interface compatible with the machine interface
on which it runs. Traditionally, virtual machines have been
implemented on and export existing hardware architectures
so they can support “naive” operating systems (see Fig-
ure 1). For example, the most well-known virtual machine
system, VM/370 [28, 29], provides virtual memory and se-
curity between multiple concurrent virtual machines, all
exporting the IBM S/370 hardware architecture. Further-
more, special virtualizable hardware architectures [22, 35]
have been proposed, whose design goal is to allow virtual
machines to be stacked much more efficiently.

This paper presents a new approach to OS extensibil-
ity which combines both microkernel and virtual machine
concepts in one system. We have designed a “virtualiz-
able architecture” that does not attempt to emulate an ac-
tual hardware architecture closely, but is instead designed
along the lines of a traditional process model and is in-
tended to be implemented in software by a microkernel.
The microkernel runs on the “raw” hardware platform and
exports our software-based virtualizable architecture (see
Figure 2), which we will refer to as a virtualizable pro-

cess or nested process architecture to avoid confusion with
traditional hardware-based architectures. The virtual ma-
chine monitors designed to run on this software architec-
ture, which we call nesters, can efficiently create additional
recursive virtual machines or nested processes in which ar-
bitrary applications or other nesters can run.

Although the Fluke architecture does not closely fol-
low a traditional virtual machine architecture, it is de-
signed to preserve certain highly useful properties of re-
cursive virtual machines. These properties are required to
different degrees by different nesters that take advantage
of the model. For example, demand paging and check-
pointing nesters require access to and control over the pro-
gram state contained in their children, grandchildren, and
so on, whereas process management and security monitor-
ing nesters primarily rely on being able to monitor and con-
trol IPC-based communication across the boundary sur-



Bare Machine

Virtual Machine

Monitor
Virtual Machine

Virtual Machine

System
Kernel

Operating

App

Process

App

Process Virtual Machine

System
Kernel

Operating

App

Process

App

Process

Process
Interface

Interface
Hardware Monitor

Virtual Machine

Figure 1: Traditional virtual machines based on hardware architec-
tures. Each shaded area is a separate virtual machine, and each virtual
machine exports the same architecture as the base machine’s architecture.

rounding the nested environment.
Our microkernel’s API provides these properties effi-

ciently in several ways. Address spaces are composed from
other address spaces using hierarchical memory remapping
primitives. For CPU resources, the kernel provides primi-
tives that support hierarchical scheduling. To allow IPC-
based communication to short-circuit the hierarchy safely,
the kernel provides a global capability model that supports
selective interposition on communication channels. On top
of the microkernel API, well-defined IPC interfaces pro-
vide I/O and resource management functionalityat a higher
level than in traditional virtual machines. These higher-
level interfaces are more suited to the needs of modern ap-
plications: e.g., they provide file handles instead of device
I/O registers.

This nested process architecture can be used to apply
existing algorithms and techniques in more flexible ways.
Some examples we demonstrate in this paper include the
following:

Decomposing the kernel: Some features of traditional
operating systems are usually so tightly integrated into the
kernel that it is difficult to eliminate them in situations
in which they are not needed. A striking example is de-
mand paging. Although it is often possible to disable it
in particular situations on particular regions (e.g., using
POSIX’s mlock()), all of the paging support is still in
the kernel, occupying memory and increasing system over-
head. Even systems that support “external pagers,” such as
Mach, contain considerable paging-related code in the ker-

Nester

Process Mgmt
Nester

Checkpoint

Nested Process
Architecture

Application

Nester
Demand Paging

Debug Nester

Application

Application

Bare Machine

Microkernel
Interface
Hardware

Figure 2: Virtual machines based on an extended architecture imple-
mented by a microkernel. The interface between the microkernel and the
bare machine is a traditional hardware-basedmachine architecture, but the
common interface between all the other layers in the system is a software-
based nested process architecture. Each shaded area is a separate process.

nel and most do not allow control over physical memory
management, just backing store. Similarly, multiuser se-
curity mechanisms are not always needed, since most per-
sonal computers are dedicated to the use of a single per-
son, and even process management and job control features
may not be needed in single-applicationsystems such as the
proverbial “Internet appliance.” Our system demonstrates
decomposed paging and POSIX process management by
implementing these traditional kernel functions as optional
nesters which can be used only when needed, and only for
the parts of a system for which they are desired.

Increasing the scope of existing mechanisms: There
are algorithms and software packages available for com-
mon operating systems to provide features such as dis-
tributed shared memory (DSM) [10, 32], checkpoint-
ing [11], and security against untrusted applications [52].
However, these systems only cleanly support applications
running in a single logical protection domain. In a nested
process model, any process can create further nested sub-
processes which are completely encapsulated within the
parent. This design allows DSM, checkpointing, security,
and other mechanisms to be applied just as easily to multi-
process applications or even complete operating environ-
ments. Our system demonstrates this flexibility by provid-
ing a checkpointer, implemented as a nester, which can be
transparently applied to arbitrary domains such as a single
application, a multi-process user environment containing a



process manager and multiple applications, or even the en-
tire system.

Composing OS features: The mechanisms mentioned
above are generally difficult or impossible to combine flex-
ibly. One might be able to run an application and check-
point it, or to run an untrusted application in a secure en-
vironment, but existing software mechanisms are insuffi-
cient to run a checkpointed, untrusted application without
implementing a new, specialized program designed to pro-
vide both functions. A nested process architecture allows
one to combine such features by layering the mechanisms,
since the interface between each layer is the same. In Fluke,
for example, a Unix-like environment can be built by run-
ning a process manager within a virtual memory manager,
so that the process manager and all of the processes it con-
trols are paged. Alternatively, the virtual memory manager
can be run within the process manager to provide virtual
memory to an individual process.

We used micro benchmarks to measure the system’s per-
formance in a variety of configurations. These measure-
ments indicate a slowdown of about 0–35% per virtual
machine layer, in contrast to conventional recursive vir-
tual machines whose slowdown is 20%–100% [7]. Some
nesters, such as the process manager, do not need to in-
terpose on performance-critical interfaces such as memory
allocation or file I/O, and hence take better advantage of
the short-circuit communication facilities provided by the
microkernel architecture. These nesters cause almost no
slowdown at all. Other nesters, such as the memory man-
ager and the checkpointer, must interfere more to perform
their function, and therefore cause some slowdown. How-
ever, even this slowdown is fairly reasonable. Our results
indicate that, at least for the applications we have tested,
this combined virtual machine/microkernel model indeed
provides a practical method of increasing operating system
modularity, flexibility, and power.

The rest of this paper is organized as follows: In Sec-
tion 2 we compare our architecture to related work. We
describe the key principles upon which our work is based
in Section 3, and our software-based virtualizable architec-
ture derived from these principles in Section 4. Section 5
describes the implementation of the example applications
and nesters we designed to take advantage of the nested
process model. Section 6 describes the experiments and re-
sults using the example process nesters. Finally, we con-
clude with a short reflective summary.

2 Related Work

In this section, we first summarize virtual machine con-
cepts and how our system incorporates them; second,
we show how our design relates to conventional process
models, and finally, we contrast our system with other
microkernel-based systems. We describe related work con-
cerning the details of our design later, in the appropriate

sections.

2.1 Traditional Virtual Machines

A virtual machine simulator, such as the Java inter-
preter [25], is a program that runs on one hardware ar-
chitecture and implements in software a virtual machine
conforming to a completely different architecture. In con-
trast, a virtual machine monitor or hypervisor, such as
VM/370 [28, 29], is a program that creates one or more
virtual machines exporting the same hardware architecture
as the machine it runs on. Hypervisors are typically much
more efficient than simulators because most of the instruc-
tions in the virtual machine environment can be executed at
full speed on the bare hardware, and only “special” instruc-
tions such as privileged instructions and accesses to I/O
registers need to be emulated in software. Since the “up-
per” and “lower” interfaces of a hypervisor are the same,
a sufficiently complete hypervisor can even run additional
copies of itself, recursively.

Virtual machines have been used for a variety of pur-
poses including security, fault tolerance, and operating sys-
tem software development [23]. In their heyday, virtual
machine systems were not driven by modularity issues at
all, but instead were created to make better use of scarce,
expensive hardware resources. For example, organizations
often needed to run several applications requiring differ-
ent operating systems concurrently, and possibly test new
operating systems, all on only a single mainframe. There-
fore, traditional virtual machine systems used (and needed)
only shallow hierarchies, implementing all required func-
tionality in a single hypervisor. As hardware became cheap
and ubiquitous, virtual machines became less common, al-
though they remain in use in specialized contexts such as
fault tolerance [7], and safe environments for untrusted ap-
plications [25].

In this paper we revive the idea of using virtual machine
concepts pervasively throughout a system, but for the pur-
pose of enhancing OS modularity, flexibility, and extensi-
bility, rather than merely for hardware multiplexing. For
these purposes, virtual machines based on hardware archi-
tectures have several drawbacks. First, most processor ar-
chitectures allow “sensitive” information such as the cur-
rent privilege level to leak into user-accessible registers,
making it impossible for a hypervisor to recreate the under-
lying architecture faithfullywithout extensive emulation of
even unprivileged instructions. Second, a hypervisor’sper-
formance worsens exponentially with stacking depth be-
cause each layer must trap and emulate all privileged in-
structions executed in the next higher layer (see Figure 3).
Third, since hardware architectures are oblivious to the no-
tion of stacking, all communication must be strictly parent-
child; there is no way to support “short-circuit” commu-
nication between siblings, grandparents and grandchildren,
etc.



perform

returntrapperform

perform

perform

(4 traps & returns)(2 traps & returns)

Hypervisor

Application or OS

Privileged Instruction

trap

Hardware

reflect reflect
return

trap
reflect reflect

return

Figure 3: Exponential slowdown in traditional recursive virtual ma-
chines caused by emulation and reflection of privileged instructions, ac-
cesses to device registers, etc. Forn hypervisor layers, at least 2n�1 hard-
ware trap/return sequences are required to emulate any privileged instruc-
tion executed in the top layer.

2.2 The Nested Process Model

For the above reasons, Fluke does not conform exactly
to an existing hardware architecture. Instead, we use a
software-based architecture which allows us to solve these
problems by defining the architecture to avoid them. Al-
though some existing hypervisors export a virtual architec-
ture that differs slightly from the architecture on which they
are based, they generally try to minimize such divergence,
changing the architecture only enough to address “show-
stopping” problems such as double paging. In contrast,
Fluke does not attempt to minimize divergence, since run-
ning existing operating systems unmodified in our virtual
machines is not a goal. Instead, our design goal is to main-
tain maximum performance in the presence of deep virtual
machine layering. The resulting architecture is similar to
conventional process models such as Unix’s, though with
some important differences to make processes recursively
virtualizable or “nestable”; hence the term “nested process
architecture.”

The Cambridge CAP computer [54] implemented a sim-
ilar high-level architecture in microcode supporting an ar-
bitrarily deep process hierarchy in which parent processes
virtualize memory, CPU, and trap handlers for child pro-
cesses. However, the CAP computer strictly enforced the
process hierarchy at all levels, and did not allow commu-
nication paths to “short-circuit” the layers as Fluke does.
As noted in retrospect by the designers of the system, this
weakness made it impractical for performance reasons to
use more than two levels of process hierarchy (correspond-
ing to the “supervisor” and “user” modes of other architec-
tures), so the uses of nested processes were never actually
explored or tested in this system.

System call emulation, interposition, and stacking have

been used in the past to virtualize the activity of a process
by interposing special software modules between an ap-
plication and the actual OS on which it is running. This
form of interposition can be used, for example, to trace
system calls or change the process’s view of the file sys-
tem [31, 33], or to provide security against an untrusted ap-
plication [52]. However, these mechanisms can only be ap-
plied easily to a single application process and generally
cannot be used in combination (onlyone interpositionmod-
ule can be used on a given process). Furthermore, although
file system access and other system call-based activity can
be monitored and virtualized this way, it is difficult to vir-
tualize other resources such as CPU and memory.

2.3 Other Microkernel Architectures

Our nested process model shares many of the same goals
as those driving microkernel-based systems: flexibility,
modularity, extensibility, and the decomposition of tradi-
tional OS features into separate, unprivileged modules. In
fact, our prototype is essentially a microkernel-based sys-
tem revolving around a small privileged kernel that exports
a minimal set of interfaces to higher-level software. The
primary difference of interest in this paper is that our mi-
crokernel is designed to support a nested process model ef-
ficiently, and the higher-level services on top of the micro-
kernel take advantage of this model to provide a strongly
structured system instead of the traditional “flat” collection
of client and server processes.

Our work shares many of the extensibility goals of other
current kernel-related research [5, 18, 46, 50], but takes a
different, often complementary, approach. For example,
the Exokernel pushes the “red line” between the privileged
kernel and unprivileged code as low as possible so that ap-
plication code can gain more control over the hardware. In
contrast, our work is not primarily concerned with the loca-
tion of this boundary, but instead with certain fundamental
properties the kernel interface must have in order for pro-
cesses to virtualize each other effectively.

3 Properties of Virtual Machines

Before describing the Fluke architecture in detail, we
first present the underlying principles on which it is based.
All of these principles derive from a single goal: to pre-
serve the useful properties of a “pure” recursive virtual ma-
chine system without incurring the same exponential per-
formance cost. For our purposes, a “pure” virtual machine
system is one in which each layer completely simulates the
environment of the next higher layer, including all instruc-
tions, memory accesses, and device I/O [49]. Our work
hinges on two primary properties of such systems: state en-
capsulation and border control. These properties are de-
scribed briefly in the following sections, and a concrete
analysis of how our architecture satisfies these properties
is presented later in Section 4.



Nested Process Model

Child
State

Child
State

State
Process
Parent

Parent
Process
State

Child
State

Child
State

Traditional Process Model

Figure 4: Process state in traditional versus nested processes. In tradi-
tional systems, the program state (code, data, heap, stack, threads, etc.) of
a child process exists independently of the parent process. In a nested pro-
cess architecture, the child’s state is logically a part of the parent’s even
though the two run in separate address spaces.

3.1 State Encapsulation

The property of state encapsulation is the ability to en-
capsulate or “nest” one process inside another so that the
entire state of a child process and all its descendants is log-
ically a subset of the state of the parent process. This prop-
erty allows the parent process to treat an entire child pro-
cess hierarchy as merely a chunk of data that can be moved,
copied, deleted, etc., while remaining oblivious to the im-
plementation details of the child. Of primary interest are
the following three specific aspects of this property: hierar-
chical resource management, state visibility, and reference
relativity.

3.1.1 Hierarchical Resource Management

In popular systems such as Unix, Windows NT [45], and
Mach [1], each process in the system exists independently
of all other processes. A child process can outlive the par-
ent process that created it, and retains all of its resources
after its parent is destroyed (see Figure 4). By contrast,
in a virtual machine system, a virtual machine cannot ex-
ist independently of the simulator or hypervisor that cre-
ated it because the virtual machine’s entire state (includ-
ing the state of any sub-virtual machines it may contain)
is merely part of the simulator’s program variables. Some
operating systems, such as L3 [39], directly support a hier-
archical virtual machine-like process model in which a par-
ent process can destroy a child process and be assured that
all of the child’s descendants will also go away and their
resources will be freed. Other systems support a hierar-
chical resource pool abstraction from which the resources
used to create processes are allocated; destroyinga pool de-
stroys any sub-pools created from it as well as all processes
created from these pools. For example, KeyKOS space

banks [6, 27] serve this purpose, as do ledgers in OSF’s
MK++ [43]. This hierarchical resource management prop-
erty is a critical prerequisite for many of the applications
described in this paper; without it, a parent process cannot
even identify all of the state representing a child process
subtree, let alone manage it coherently. Note that a tradi-
tional “flat” process model can easily be emulated in a sys-
tem supporting the hierarchical model, as described in Sec-

tion 5.4, but it is difficult or impossible to emulate a hierar-
chical model given only a flat collection of processes.

3.1.2 State Visibility

The second aspect of the state encapsulation property is
state visibility: the ability of a parent process to “get at”
the state of a child process subtree rather than merely hav-
ing control over its lifetime. State visibility is needed by
any application that manages child process state, such as
demand paging, debugging, checkpointing, process migra-
tion, replication, and DSM. Pure virtual machine simula-
tors obviously satisfy this property since all of the state of a
virtual machine is merely part of the simulator’s variables.
Same-architecture hypervisors that “delegate” to the base
processor the job of executing unprivileged instructionsde-
pend on the processor to reveal the child’s full register state
through trap frames or shadow registers.

With notable exceptions such as the Cache Kernel [14]
and Amoeba [47], most operating systems are not as good
about making a child process’s state visible to its parent.
For example, although most kernels at least allow a pro-
cess to manipulate a child’s user-mode register state (e.g.,
Unix’s ptrace() facility), other important state is often
unavailable, such as the implicit kernel state representing
outstanding long-runningsystem calls the child may be en-
gaged in. While these facilities are sufficient for many
applications such as debugging, other applications such as
process migration and checkpointing require access to all

of the child’s state.

3.1.3 Relativity of References

While full state visibility is a necessary condition to
move or copy a child process, it is also necessary that its
references are relative to its own scope and are not abso-
lute references into larger scopes such as the machine or
the world. A “reference” for this purpose is any piece of
state in the child process that refers to some other piece of
state or “object.” For example, virtual addresses, unique
identifiers, and file descriptors are different forms of refer-
ences. An internal reference is a reference in the child to
some other object in the same process; an external refer-

ence is a reference to an object in an outer scope (e.g., in
an ancestor or sibling process). For example, in Figure 5,
references 1 and 2 are internal references with respect to
process A, while reference 3 and 4 are external references.

In a traditional virtual machine system, external ref-
erences in a virtual machine are effectively just the ad-
dresses of I/O ports or memory-mapped devices simulated
by the hypervisor, and internal references are simply point-
ers within that machine’s address space. In both cases, the
representation of these references is relative to the virtual
machine itself; the contents of the virtual machine can be
moved at any time to a different context and all of the ref-
erences it contains will remain valid.



1
Reference

Object

Process

Process B Process C

2

4

Process A

3

Figure 5: References into, out of, and within nested processes.

This relativity property is the exception rather than the
rule in operating systems. Absolute pathnames in Unix
serve as a simple example: if a process containing absolute
pathnames is migrated from one machine to another, then
the new machine must have exactly the same file system
organization (at least in the parts accessed by the migrated
program) or the external references from the program to the
file system will become invalid.

On a system such as L3 in which process-internal objects
such as threads are addressed using global unique identi-
fiers, even internal references in a migrated process will
become invalid unless exactly the same global identifiers
can be obtained on the target machine. Furthermore, there
can be no hope of cloning or replicating a process within a
single global identifier namespace, since the global identi-
fiers representing all the internal objects can only refer to
one object within that scope. Implementing fork() in a
single-address-space system [12] is a well-known instance
of this problem.

3.2 Border Control

Another primary property of virtual machines is the abil-
ity of a hypervisor to monitor and control all communica-
tion across the border surrounding a virtual machine with-
out impeding communication within the virtual machine.
Barring shared memory channels, the only way for vir-
tual machines to communicate with each other is to trap
into the hypervisor, which can handle the request however
it chooses. The Clans & Chiefs mechanism in L3 [38]
provides border control directly in a microkernel environ-
ment. In most microkernels that use a capability model,
such as Mach [1] and KeyKOS [6, 27], border control can
be achieved through interposition.

Whereas the state encapsulation property allows the par-
ent to control state inside the boundary, border control al-
lows the parent to control the child’s view of the world out-

side the boundary. As with state encapsulation, the extent
to which border control is needed depends on the applica-
tion in question. For example, Unix’s ability to redirect the
console output of an entire ‘make’ run to a file, including
the output of all the subprocesses it forks off, reflects the

IPC-based Common Protocols API

Privileged and Sensitive Instructions
B

asic Instruction Set
P

r
o
c
e
sso

r

M
ic

r
o
k

e
r
n

e
l

L
ow

-level System
 C

all A
PI

Application

Tracer/Security Monitor

Manager
Memory

Process
Manager

Memory API FS API

Memory API

Memory API

FS API

Process API

Process API

Process API

Figure 6: Illustration of the three components of the nested process
architecture presented to each layer. The basic instruction set (left) used
by all layers is implemented by the underlying processor and never needs
to be emulated. The low-level system call API (right) is similarly imple-
mented by the microkernel for all layers, whereas the Common Protocols
API (bottom) is initially implemented by the microkernel but may subse-
quently be interposed on or reimplemented by higher-level layers.

limited border control provided by the capability-like file
descriptor model. However, other applications, such as se-
curity monitors which allow untrusted applications to be
run safely, require complete border control.

4 Nested Process Architecture

This section describes the nested process architecture
used in our system, known as Fluke (“Flux �-kernel Envi-
ronment”). The Fluke architecture is the common interface
between each of the stackable layers in the system and con-
sists of three components: the basic computational instruc-
tion set, the low-level system call API, and the IPC-based
Common Protocols. As Figure 6 illustrates, the key distinc-
tion between these components is that the underlying pro-
cessor provides the one and only implementation of the ba-
sic instruction set used throughout the system, and the mi-
crokernel provides the only implementation of the system
call API, but the Common Protocols API is independently
implemented or interposed on, at least in part, at each layer.
The following sections describe the three components of
the nested process architecture in detail and explain how
this design efficiently supports stacking while preserving
all of the critical properties described in the previous sec-
tion.



fluke type create(objp)

Create a new object of type type at virtual address objp.

fluke type destroy(objp)

Destroy the object at virtual address objp.

fluke type move(objp, new objp)

Move the object from virtual address objp to new objp.

fluke type reference(objp, ref objp)

Associate the reference object ref objp with the object objp.

fluke type get state(objp, statep, refp, : : : )

Return the state of objp. State includes simple data passed back in
the type-specific structure statep and zero or more capabilities re-
turned in reference objects.

fluke type set state(objp, statep, refp, : : : )

Loads new state into objp. State arguments are identical to those of
the get state call.

Figure 7: Example of the Fluke low-level (“system call”) API. These
are the operations that are common to most object types. Each object type
has additional type-specific operations; e.g., IPC operations for ports and
lock/unlock operations for mutexes.

4.1 Basic Computational Instruction Set

The lowest level of our nested process architecture is
a well-defined subset of the x86 architecture, allowing all
processes to run with no instruction emulation on x86 ma-
chines. However, other processor architectures could be
used just as easily, including purely emulation-based in-
struction sets such as Omniware [2] or Java bytecode [25].
The only restriction is that application processes must only
use the subset of the instruction set that satisfies the prop-
erties described in Section 3; otherwise they may not func-
tion properly in virtualized environments. The instructions
compilers produce generally satisfy these requirements au-
tomatically, because they refer only to per-thread register
state or per-process memory. However, most architectures
have a few “sensitive” yet unprivileged instructions that
reveal global information and therefore cannot be virtual-
ized. For example, the x86’s CPUID instruction identifies
the processor on which it is executed, making it impossible
to safely migrate applications that rely on this instruction.

4.2 Low-level API

The second part of our nested process architecture is a set
of low-level microkernel objects and system calls. These
primitives are always implemented by the microkernel di-
rectly; therefore it is critical that they be designed to sup-
port all of the virtualization properties in Section 3. The re-
ward for carefully designing the low-level API in this way
is that it is never necessary for a parent process to interpose
on the kernel calls made by child processes; instead, it is al-
ways sufficient for the parent process merely to retain con-
trol over the resources to which the system calls refer. Fig-
ure 7 shows a sample of the Fluke microkernel API [20].

4.2.1 Address Spaces

The Fluke kernel supports an arbitrary number of ad-

dress spaces, much like stripped-down Unix processes or
Mach tasks; multiple threads can run in each address space.
Unlike most operating systems, address spaces in Fluke are
defined relative to other spaces. The low-level API does
not include system calls to allocate or free memory; it only
provides primitives to remap a given virtual address range
from one space into another space, possibly at a different
virtual address range or with reduced permissions.

For example, a parent process can use this mechanism
to “donate” access to some of its memory pages to a nested
child process, for that child to use as its own private stor-
age. This child can in turn donate some of this memory
to its children, and so on, forming a hierarchy of memory
remappings. The parent can change or revoke at any time
the permissions the child has to this memory. If a thread in a
descendant process attempts to access addresses in its space
whose permissions have been revoked, the thread will take
a page fault, which the kernel will deliver as an IPC mes-
sage to a thread in the parent.

This memory remapping mechanism is similar to that of
L4 [40], Grasshopper [41], and the “f-maps” in virtual ma-
chine systems [22, 23]. Our architecture uses this mech-
anism to provide the state containment and state visibility
properties described in Section 3. Since a child process can
only access memory given to it by its parent, the parent can
locate and identify all the memory comprising the state of
a child (including its descendants) simply by keeping track
of which pages of memory it grants to the child. A parent
can control the child’s use of this memory by manipulating
the mappings from its space into the child’s.

4.2.2 Kernel Objects

All low-level API calls are operations on a few types
of primitive kernel objects, such as address spaces and
threads. All active kernel objects are logically associated
with, or “attached to,” a small chunk of physical memory;
this is reminiscent of tagged processor architectures such
as System 38 [37] and the Intel i960XA [30]. A process
can invoke kernel operations on kernel objects residing on
pages mapped into its address space by specifying the vir-
tual address of the object as a parameter to the appropri-
ate system call. Since kernel objects are identified by local
virtual addresses, this design satisfies the relativity prop-
erty for user-mode references to kernel objects. In addition,
there are system calls that a process can use to determine
the location of all kernel objects within a given range of its
own virtual address space, as well as system calls to exam-
ine and modify the state of these objects [51].

This kernel object design, coupled with the address
space remapping mechanism described above, provides the
state containment and state visibility properties for kernel
object state as well as “plain data,” allowing parent pro-



cesses to identify and gain access to all of the vital state
comprising a child process. This mechanism is similar to
the kernel object caching mechanism in the Cache Ker-
nel [14], except that our mechanism does not impose or-
dering restrictions on manipulating kernel objects. For ex-
ample, to take a checkpoint, a checkpointer temporarily re-
vokes its child’s access to the memory to be checkpointed,
makes a system call to locate the kernel objects within this
memory, makes additional kernel calls to extract the vital
state from these objects (which includes the state of the
child’s threads, subprocesses, etc.), saves all the state of
both the plain memory and the kernel objects, and finally
resumes the child process. This is a very simplified de-
scription; the details of the procedure are presented later in
Section 5.6. However, this is the fundamental mechanism
by which not only checkpointing but other similar applica-
tions such as process migration and replication can be im-
plemented transparently in our system.

4.2.3 Thread Objects

Multithreaded processes are directly supported in the
low-level API through thread objects, which can be created
and manipulated just like any other kernel object. Once a
new thread object has been created and set up properly, it
becomes an active, independent flow of control supervised
directly by the kernel, executing instructions in its associ-
ated address space.

Unlike in most systems, Fluke threads provide full state
visibility: a parent process can stop and examine the state
of the threads in a child process at any time, and be as-
sured of promptly receiving all relevant child state; i.e., ev-
erything necessary to transplant the child nondestructively.
One implication of this property, which affects the low-
level API pervasively, is that all states in which a thread
may have to wait for events caused by other processes must
be explicitly representable in the saved-state structure the
kernel provides to a process examining the thread.

For example, our low-level API provides a “send re-
quest and await reply” IPC primitiveas a single system call.
Since the server may take arbitrarily long to service the re-
quest, and a parent process may try to snapshot the thread’s
state while the thread is waiting, the kernel must correctly
reveal this intermediate state to the parent. In our system
the kernel reveals this state by modifying the client thread’s
registers so that it appears to the parent that the client was
calling the low-level API entrypoint that only waits for a re-
ply without sending a message. This technique of adjusting
user-level registers to reflect kernel state transitions is used
throughout Fluke to provide full kernel state exportability
without reducing efficiency by breaking up all system calls
into minimal atomic units. The Mach IPC system [16] uses
a similar technique, except that user code must explicitly
check for interruption after every IPC operation and restart
it manually if necessary. Also, various other Mach system
calls are not cleanly interruptible at all and therefore do not

support full state visibility.

4.2.4 Capabilities

All references between low-level objects in Fluke are
represented as kernel-mediated capabilities [37]. Each
primitive object type contains a number of “capability
slots.” For example, each thread object contains an address
space slot, which refers to the address space in which the
thread is to run. Processes can store and manipulate indi-
vidual capabilities using reference objects, which are ker-
nel objects that hold a single capability of any type. System
calls are provided to produce capabilities pointing to exist-
ing kernel objects, copy capabilities between reference ob-
jects and the special-purpose slots in other kernel objects,
pass capabilities through IPC, and compare them against
each other. A process only refers to a capability by the vir-
tual address of the kernel object in which it is contained; it
never has direct access to the capability itself.

Capabilities in our API provide the relativity property
(Section 3.1.3) for cross-address-space references, such as
references within a child process to objects implemented
by its parent. Since only the kernel can access the actual
contents of a capability, capabilities can be passed freely
between arbitrary processes in our system, allowing com-
munication to short-circuit the process hierarchy when ap-
propriate. This contrasts with CAP [54], where capabili-
ties are used only for communication within a process and
all interprocess communication is strictly parent-child and
based on traps. Kernel-mediated capabilities satisfy the rel-
ativity property because even though the contents of a ca-
pability are absolute in the view of the kernel (i.e., it is typ-
ically just a pointer in the kernel’s address space), from the
view of any user-level process, a capability appears relative
since the process has no access to the actual pointer stored
in the capability. A parent process can locate all of the ca-
pabilities contained in a child process, discover to which
objects they point, and transparently make substitutions of
these capabilities, analogous to “pointer swizzling” done in
the persistence and language domains.

Capabilities also provide border control (Section 3.2).
Since a parent process determines what capabilities it
passes to its child, it can interpose on any of these capabil-
ities, as well as on capabilities subsequently passed into or
out of the child through communication channels on which
the parent has interposed. This way, the parent can com-
pletely monitor and control all communication into or out
of a process by intercepting IPC messages. However, the
capability model also allows the parent to interpose selec-

tively on only a subset of the capabilities provided to a
child. For example, a nester that interposes on file system-
related operations does not also need to intercept messages
to other external services. This contrasts with L3’s Clans &
Chiefs model [38], where interposition is “all or nothing”:
if a parent wants to intercept any communication transpar-
ently, it must intercept all communication.



4.2.5 Scheduling

The final type of resource with which the Fluke kernel
deals directly is CPU time. As with memory and com-
munication, the kernel provides only minimal, completely
relative scheduling facilities. Threads can act as sched-
ulers for other threads, donating their CPU time to those
threads according to some high-level scheduling policy;
those threads can then further subdivide CPU time among
still other threads, etc., forming a scheduling hierarchy.
The scheduling hierarchy usually corresponds to the nested
process hierarchy, but is not required to do so.

Our scheduling model, which has been prototyped and
tested in user space but not yet as part of the Fluke ker-
nel, is detailed in a companion paper [21]. However, only
its relative, hierarchical nature is important to the nested
process architecture. Other hierarchical schedulers should
also work, such as the meter system in KeyKOS [27], lot-
tery/stride scheduling [53], and SFQ scheduling [26].

4.3 High-level Protocols

While our low-level IPC mechanism provides primitive
capability-based communication channels, a higher level
protocol defines the conventions for communication over
these channels. The key distinction between the high-level
protocols and the low-level system call API is that any layer
in the system can provide implementations of the objects
defined by these interfaces, whereas only the microkernel
can implement the low-level API. High-level objects auto-
matically support the important properties in Section 3 be-
cause they are based on a capability model which allows
interposition; the disadvantage is that interposition has a
significant cost. We have designed our system around this
trade-off by placing simple, performance-critical activities
in the low-level API while leaving services that are invoked
less often to be implemented by high-level objects.

Our high-level interfaces, defined in CORBA IDL, are
known as the Common Protocols because they are common
to each layer in the nesting hierarchy. The Fluke Common
Protocols, modeled on existing multiserver systems [8, 33],
are designed to support a POSIX-compatible environment,
though many of the interfaces are generic enough to sup-
port other APIs such as Win32. Table 1 shows the currently
defined interfaces and example methods for each.

The most basic interface, the Parent interface, is used
for direct parent/child communication, and effectively acts
as a first-level “name service” interface through which the
child requests access to other services. This is the only in-
terface that all nesters interpose on; nesters selectively in-
terpose on other interfaces only as necessary to perform
their function. The cost of interpositionon the Parent inter-
face is minimal because the child usually makes only a few
requests on this interface, during its initialization phase,
to find other interfaces of interest. The Parent interface
currently provides methods to obtain initial file descrip-

Parent:: Basic parent-child interface
get process Get the Process Management interface
get mem pool Get the memory pool for this process
Process:: POSIX process management interface
create child Create a new POSIX child process
exec Execute a program
MemPool:: Memory Management interface
create var segment Create a growable memory segment
create sub Create a sub-pool of a pool
FileSystem:: File system interface
open Open a file
mkdir Create an empty directory
FileDescription:: Open file and segment interface
read Read data from a file
map Map a file or memory segment

Table 1: Fluke Common Protocols interfaces and example methods.
The top-level Parent interface acts as a name service for obtaining refer-
ences to process management, memory management and other nesters.

tors (e.g., stdin, stdout, stderr), to find file system,
memory, and process managers, and to exit. The relevant
details of these interfaces will be presented in the next sec-
tion as we describe specific applications that use and inter-
pose on them.

5 System Implementation

In the following sections we overview the kernel, sup-
port libraries, and example nesters we have implemented
to demonstrate the nested process model. These user-level
applications take advantage of the model to provide tra-
ditional OS features, namely POSIX process management,
demand paging, checkpointing, debugging, and tracing, in
a more flexible and decomposed way. Table 2 lists the ex-
ample nesters and the Common Protocols interfaces they
interpose on.

5.1 The Microkernel

To provide the initial, base-level implementation of our
nested process architecture, we developed a new microker-
nel that runs directly on “raw” x86 PC hardware. The initial
implementation was designed primarily with portability,
readability, and flexibility in mind rather than maximum
performance; it is written mostly in machine-independent
C and relies heavily on generic facilities provided by the
Flux OS Toolkit [19]. The prototype supports kernel pre-
emptibility, full multiprocessor locking, and can be con-
figured to run under either an interrupt or process model.
The kernel currently contains built-inconsole, serial, clock,
disk, and network drivers, although it is designed to support
out-of-kernel drivers in the future.

Besides implementing the low-level API used by all
processes, the microkernel also implements a first-level
Common Protocols interface defining the environment pre-
sented to the first process loaded (the “root” process). This



Nester Parent MemPool Process FileSys File
Debug/Trace

p p p p p

Process
p p

Memory
p p p

Checkpoint
p p p p p

Table 2: Fluke nesters and the interfaces they interpose on. FileSys is
the file system interface; File is the file and memory segment interface.

initial interface is sufficient to allow various simple appli-
cations as well as nesters to be run directly on top of the mi-
crokernel: for example, it includes a basic (physical) mem-
ory allocation interface, and a minimal root file system in-
terface which acts like a RAM disk.

Although it should be possible for a traditional mono-
lithic kernel to implement a nested process architecture, we
took a microkernel approach for the proof-of-concept, as it
would be much more difficult to adapt an existing mono-
lithic kernel because of the large source base and numer-
ous changes that would be required. In addition, a mono-
lithic kernel would benefit less from a nested process model
because so much functionality is already hard-wired into
the kernel. For example, while our checkpointer example
would probably still apply, the decomposed process man-
ager and virtual memory manager wouldn’t. Because we
chose the microkernel approach, our system takes the well-
known “microkernel performance hit” [13] due to the addi-
tional decompositionand context switchingoverhead. This
performance impact is made worse by the fact that our mi-
crokernel is new and entirely unoptimized.

5.2 The Libraries

In our system, traditional Unix system calls are imple-
mented by the C library residing in the same address space
as the application. These C library functions communi-
cate with ancestor nesters and external servers as neces-
sary to provide the required functionality. For example,
each process’s file descriptor table is managed by its local
C library and stored in the process itself, as IPC capabili-
ties to objects managed by file servers.1 Our system cur-
rently provides two different C libraries: a “minimal” li-
brary for nesters and simple applications, and a full-blown
BSD-based C library to support “real” Unix applications.
Similar libraries could be designed to provide compatibil-
ity with other APIs and ABIs, such as Linux or Win32.

The Nesting library, linked only into nesters and not
ordinary applications, provides the “parent-side” comple-
ment to the C library. For example, it contains standard
functions to spawn nested subprocesses and to handle or
forward a child’s Common Protocols requests. Use of this
library is optional. Applications can always create nested

1The actual files and “open file descriptions,” containing seek pointers
and other per-open state, are maintained by the file servers; this greatly
simplifies some of the traditionally hairy Unix multiserver issues.

PID 4

Process Manager

POSIX

PID 1

POSIX

PID 3
POSIX

PID 2

POSIX

Figure 8: Process manager managing a POSIX-style process hierar-
chy. Each POSIX process is an immediate child of the process manager
in terms of the nested process hierarchy. Process IDs and the POSIX-level
parent/child relationships are implemented within the process manager.

processes manually in whatever way they desire; the library
only provides a “standard” mechanism for creating chil-
dren and providing Common Protocols-compatible inter-
faces to them.

5.3 The Debug and Trace Nesters

We have implemented, as a simple nester, a debugger
that can be used to debug either ordinary applications or
other nesters. The debugger works by handling exceptions
that occur in the child process. When a thread in the child
faults, the kernel sends an exception RPC to the debugger,
which handles the fault by communicating with a remote
host running GDB. The debugger restarts the thread by re-
plying to the kernel’s exception RPC. Although Mach pro-
vides a similar ability to interpose on an exception port,
Mach allows a task to change its own exception port ref-
erence, potentially allowing a buggy or uncooperative task
to escape the debugger’s control.

We have also implemented a simple tracer, as a minor
modification to the debugger, which can be used to trace
the message activity of an arbitrary subprocess. The tracer
starts by interposing on the application’s Parent interface
(as all nesters do). Then, for any request from the child
that returns a new IPC capability, the tracer interposes on
it. This interpositionis completely generic in that the tracer
needs to know nothing about the semantics of what it is
interposing on; it will work for any IPC-based protocol.
Although the tracer does nothing more than record mes-
sages that cross the subprocess’s border, a security monitor
for untrusted applications would interpose in basically the
same way.

5.4 The Process Management Nester

Support for POSIX-style processes in our system is pro-
vided with the help of a process manager, which is the only
nester in our prototype system that manages multiple im-
mediate subprocesses at once. Each POSIX process, regard-
less of its location in the Unix-style process hierarchy, is
a direct child of the process manager in the global nested
process hierarchy, as illustrated in Figure 8. This allows



a POSIX child processes to outlive its POSIX parent, as is
the proper behavior for POSIX-style processes. The Pro-
cess Manager assigns a process ID to each of its child pro-
cesses, and allows these processes to create other “peer”
POSIX processes using fork() and exec(), which the
C library converts into Common Protocols requests to the
process manager. The process manager also handles inter-
process signals and other POSIX process-related features.
As with the other nesters, the Process Manager is an op-
tional component: applications that don’t fork(), send
signals, etc., can be run without it. Furthermore, multiple
process managers can be run side-by-side or even arbitrar-
ily “stacked” on top of each other to provide multiple inde-
pendent POSIX environments on a single machine; each of
these environments has its own process ID namespace and
POSIX process hierarchy.

The process manager uses the Common Protocols’ Mem-

Pool (“memory pool”) interface to manage the memory re-
sources consumed by its children and ensure that all state
is properly cleaned up when a POSIX process terminates.
A MemPool is an object from which anonymous mem-
ory segments can be allocated and mapped by any pro-
cess holding a capability for the pool. The MemPool in-
terface also provides methods to create and destroy sub-
pools; destroying a pool destroys all memory segments al-
located from it and, recursively, all sub-pools derived from
it. Thus, MemPools provide the hierarchical resource man-
agement property (Section 3.1.1) for memory. The pro-
cess manager uses the MemPool capability from its parent
to create a sub-pool for each POSIX process it supervises.
When a process terminates or is killed, the process manager
simply destroys the appropriate sub-pool; this automati-
cally frees all memory allocated by that process and any
nested subprocesses that may have been created. Further-
more, since the subprocess’s threads and other kernel ob-
jects are merely part of its memory, they too get destroyed
automatically when the MemPool is destroyed.

5.5 The Virtual Memory Management Nester

We have implemented a user-level demand paged vir-
tual memory manager which creates a nested environment
whose anonymous memory is paged to a swap file. Arbi-
trary programs can be run in this paged environment, such
as a single application, or a process manager supporting
an entire paged POSIX environment similar to a traditional
Unix system. The memory manager provides paged mem-
ory by interposing on the MemPool interface it passes to its
child, re-implementing the pool and segment operations it-
self instead of merely creating a sub-pool and passing the
sub-pool to the child as the process manager does.

All memory segments allocated from the memory man-
ager are backed by a swap file and cached in its own address
space. The “physical memory” cache used by the mem-
ory manager is a memory segment allocated from the mem-
ory pool passed in by the memory manager’s parent; the

swap file is implemented by a Common Protocols file sys-
tem server.

When a client invokes the map operation on a segment
implemented by the memory manager, the memory man-
ager uses Fluke kernel address space manipulation primi-
tives to remap the appropriate portions of its own memory
into the address space of the client. These mappings corre-
spond to “resident pages” in a conventional, kernel-based
virtual memory system. The kernel notifies the memory
manager of access violation and non-resident exceptions in
the segments it supervises, allowing it to do demand allo-
cation of memory and lazy copy optimization.

In the prototype memory manager, the physical mem-
ory cache is divided into fixed-size (4k) pages. All allo-
cations and I/O operations are performed on single pages;
no prepaging or other clustering techniques are used. It im-
plements a simple global FIFO page replacement algorithm
and uses a single, fixed-size file as its backing store. The
current implementation does not maintain “dirty” bits, so
pages are always written to backing store.

5.6 The Checkpoint Nester

We have implemented a user-level checkpointer that can
operate over a single application or an arbitrary environ-
ment, transparently to the target. By loading a checkpointer
as the “root” nester immediately on top of the microkernel,
a whole-machine checkpointed system can be created. To
our knowledge this is the first checkpointer that can operate
over arbitrary domains in this way.

Like the memory manager, the checkpointer interposes
on the MemPool interface in order to maintain complete
control over the state of its child processes. Since the ker-
nel provides primitives to locate and manipulate the low-
level objects within a memory region, the checkpointer ef-
fectively has direct access to all kernel object state in the
child as well as to its raw data. The checkpointer currently
uses a simplisticsequential checkpointingalgorithmto take
a checkpoint: it temporarily revokes all permissions on the
memory segments it provides (which also effectively stops
all threads in the child since they have no address space to
execute in), saves the contents of the child’s memory and
kernel object state, and then re-enables the memory per-
missions to allow the child to continue execution. This
algorithm, of course, will not scale well to large applica-
tions or distributed environments. However, more efficient
checkpointers based on well-known single-process algo-
rithms [15, 17] could be implemented in our environment
in the same way, and should also work automatically over
multi-process domains.

In order to checkpoint kernel objects that contain capa-
bilities, the checkpointer discovers what object each capa-
bility points to and replaces it with a simple identifier that is
unique within the saved checkpoint image. There are two
classes of capabilities that the checkpointer must deal with,



corresponding to the two types of references described in
Section 3.1.3. To handle capabilities representing internal
references (references to other objects within the check-
pointed environment), the checkpointer builds a catalog of
the objects in the checkpointed environment and uses ker-
nel primitives to look up each capability in this catalog.
Capabilities representing external references (references to
objects outside the checkpointed environment) will not ap-
pear in the catalog, but since any external reference owned
by the child environment must have been granted to it by
the checkpointer at some point, the checkpointer can rec-
ognize it and take a reasonable course of action.

For example, the capabilities representing the stdin,
stdout, and stderr file handles are recognized by the
checkpointer and, on restart, are reinitialized with the cor-
responding file handles in the new environment. Thus,
all standard I/O file descriptors (including descriptors in
nested subprocesses of the application) are transparently
routed to the new environment. Similarly, when the child
makes a Parent interface request for an external service
such as process management, the checkpointer keeps track
of the IPC capability returned, so that it can route it to
the new environment. IPC capabilities that the check-
pointer chose not to interpose on, such as open files other
than the standard I/O handles, are replaced with null refer-
ences. This has similar consequences to an NFS server go-
ing down and leaving stale file handles behind. Although
our current implementation doesn’t interpose on any file
system accesses, it could easily recognize open calls and
save file names, or even whole files, in order to provide a
more consistent restart.

The checkpointer is our most comprehensive nester, tak-
ing advantage of all of the virtual machine properties de-
scribed in Section 3 to provide the most complete encap-
sulation possible. The state encapsulation, visibility, and
relativity properties allow the checkpointer to save and re-
store the state of the child’s memory and kernel objects.
Additionally, the border control provided by the capability
model allows the checkpointer to interpose on whichever
interfaces it needs to; our implementation interposes on
only those things necessary for a minimal complete check-
point, comparable to the functionality offered by other
user-level checkpointers [42, 48].

There is a large body of work on checkpointers both
in and out of the kernel. A few existing operating sys-
tems, such as KeyKOS [34] and L3 [39], have imple-
mented checkpointing on a whole-machine basis in the ker-
nel. Similarly, a hypervisor was recently used to provide
fault tolerance (replication) on a whole-machine basis on
PA-RISC machines [7]. While these features appear practi-
cal and useful in some situations, they are inflexibly tied to
the machine boundary and cannot easily be used on smaller
scopes, such as a process or a group of processes, or on
larger scopes, such as networked clusters of machines. The
nested process model allows checkpointing and other algo-

rithms to be implemented over more flexible domains.

6 Experimental Results

In order to evaluate the performance effects of nesting
processes in our Fluke implementation, we used a set of mi-
cro benchmarks designed to reveal operating system per-
formance properties that directly affect real-world appli-
cations. Our primary interest in these tests is to show the
performance effect of different nesters on various types of
applications; thus, we are chiefly concerned with relative
slowdown due to nesting rather than the absolute perfor-
mance of the system. All tests were performed on 200MHz
Pentium Pro PCs with 128MB of RAM. The micro bench-
marks used are:

memtest: This is a simple memory tester which allo-
cates as much memory as it can withsbrk and then makes
four passes over it. Each pass writes and then reads back
a distinct pattern looking for bit errors. We configured the
heap to 4MB for this test. Memtest stresses memory man-
agement and is representative of programs that first allocate
memory and then repeatedly operate on it.

appel2: This benchmark tests a combination of basic
virtual memory primitivesas identified by Appel and Li [3].
This test, known as “trap+protN+unprot” in the original pa-
per, measures the time to protect 100 pages, randomly ac-
cess each page, and, in the fault handler, unprotect the fault-
ing page. Where memtest emphasizes higher-level Com-
mon Protocols memory management, appel2 stresses the
microkernel’s low-level memory remapping mechanism.

forktest: This program exercises the POSIX fork()

and wait() operations of the Process Manager. Forktest
creates a parent-child chain four levels deep; each level per-
forms a simple computation and then returns the result in its
exit status.

readtest: This test is similar to the lmbench [44]
bw file read test. It reads an 8MB file in 8KB chunks
accessing every word of the buffer after each read. It is in-
tended to discover the best-case file caching capability of
the operating system.

matconn: The final benchmark is a computationally in-
tensive application. It uses Warshall’s algorithm to com-
pute connectivity in adjacency matrices, and generates suc-
cessively larger matrices starting at 2x2 and ending with
128x128.

6.1 Absolute Performance

To provide a baseline for further evaluation, Table 3
presents absolute times for various primitive Fluke micro-
kernel operations. Table 4 shows absolute times for the
aforementioned benchmark programs running directly on
top of the microkernel with no intervening processes. For
reference, we also show micro benchmark performance re-
sults for FreeBSD (version 2.1.5). Fluke performs reason-



Time (�s)
Null system call 2.0
Mutex lock 3.6
Mutex unlock 4.0
Context switch 7.5
Null cross-domain RPC 14.9

Table 3: Absolute performance of microkernel primitives.

ably in most tests even though it is, for the most part, an
unoptimized microkernel and FreeBSD is a mature, well-
optimized monolithic kernel. There is no time listed for
forktest in the Fluke column since the Fluke kernel’s Com-
mon Protocols server does not implement the Process Man-
agement interface.

6.2 Overhead of Interposition

Figure 9 illustrates the overhead associated with interpo-
sition. Each benchmark was first run under the “bare” envi-
ronment created by the microkernel to serve as a baseline.
Then the benchmarks were run under one to four levels of
the previously described trace nester which interposes on
all IPC channels but simply passes data along. In this ex-
periment, readtest is the only benchmark exhibiting mea-
surable slowdown. This is because this test’s running time
is dominated by data copying since each interposition on
the FileDescription read method results in an extra copy
as data passes through the tracing nester’s address space.
These large IPC data transfers are unoptimized in the pro-
totype kernel.

6.3 Performance of Various Nester Hierarchies

Figure 10 illustrates the effect of increasing levels of
nesting on the micro benchmarks. The nester stacks were
chosen to be representative of “real world” situations. The
no-nesters case reflects a real-time or embedded system
where only minimal OS services are required. Addition of
the process manager (P) and memory manager (M) shows
increasing levels of functionality, providing multitasking
and traditional virtual memory services. A checkpointer
(C) can be included to checkpoint or migrate the entire en-
vironment on demand. No checkpoints are actually taken
during these tests, but the checkpointer performs all of the
interpositionand state management activities required to be
able to take a checkpoint at any time. The final stack shows
the insertion of the tracing nester (T) where it might be used
to trace Common Protocols activity.

The matconn and appel2 benchmarks are largely unaf-
fected by nesting. The matconn benchmark is not impacted
because it is largely computational. The appel2 result
demonstrates the importance of the low-level kernel API
directly supporting the virtualization properties described
in Section 3. Since nesters do not interpose on the low-
level interface, increasing the level of nesting has minimal

Test Fluke FreeBSD
memtest 929091 �s 914918 �s
appel2 5372 �s 3620 �s
forktest N/A 2534 �s
readtest 125844 �s 153010 �s
matconn 102917 �s 71568 �s

Table 4: Absolute micro benchmark results for Fluke and FreeBSD.
Fluke times reflect benchmarks running directly on top of the microker-
nel’s minimal Common Protocols server. FreeBSD times were collected
in single-user mode. All times were measured using the Pentium time-
stamp counter.

impact on appel2, even though the nesters may be virtual-
izing memory. There is a modest (1–4% per level) kernel
overhead associated with these nesters if they remap mem-
ory through themselves into their children. By mapping a
child’s memory into its own address space, a nester cre-
ates an additional level of mapping hierarchy in the kernel
which may need to be traversed when performing virtual-
to-physical address translations.

The readtest benchmark is not significantly affected by
most nesters since they do not interpose on the file system
interface. As in the complete interposition case, there is a
significant impact (34%) when the tracing nester is added.

As expected, memtest is only impacted by memory in-
terposition. An interesting observation is that memtest is
affected to a much greater degree by the memory man-
ager than by the checkpointer even though both interpose
and remap the memory used. The difference is the way in
which they remap the memory allocated for a child’s seg-
ment. The current memory manager provides memory to a
segment using single-page sized mappings to make page-
level pagein and pageout easy, while the checkpointer uses
one large multi-page mapping. The prototype kernel is not
yet optimized to deal with the large number of kernel data
structures that result from the memory manager’s behavior.

The forktest benchmark shows a pattern similar to that
of memtest, except that the performance degrades more
severely. The greater impact is due to the large ratio of
Common Protocols calls to other activity.

6.4 Status

Besides the simple tests and nesters above, our system is
just starting to run some larger applications including GNU
make, gawk, sed, bash, and gcc. We expect to make a
full, self-hosting public release within the year.

7 Conclusion

In this paper we have presented a novel approach to pro-
viding modular and extensible operating system function-
ality based on a synthesis of microkernel and virtual ma-
chine concepts. We have demonstrated the design and im-



0

20

40

60

80

100

None 1 2 3 4

R
el

at
iv

e 
pe

rf
or

m
an

ce
 (

pe
rc

en
t)

Levels of complete interposition

appel2
matconn
memtest
readtest
forktest

Figure 9: Worst-case overhead due to IPC interposition. Performance
is measured relative to the appropriate base (no interposition) case for all
tests.

plementation of a microkernel architecture that efficiently
supports decomposition of traditional OS services such as
process management, demand paging, fault tolerance, and
debugging, into cleanly modularized, stackable layers. Our
prototype implementation of this model indicates that it is
practical to modularize operating systems this way. Initial
micro benchmark results are encouraging, showing slow-
downs of 0–30% per layer.

Acknowledgements

For their many thoughtfuland detailed comments on ear-
lier drafts we thank our patient shepherd Marc Shapiro, the
many anonymous reviewers, and Fred Schneider. Jochen
Liedtke provided critique and discussion which influenced
our kernel design. We thank Steve Smalley and Jeff Turner
for their courage in being early guinea pigs and their crit-
ical intellectual involvement. Discussions with Jonathan
Shapiro also influenced the kernel, while Michael Bush-
nell and Miles Bader provided key insights on the design
of higher-level services. Gary Koob gave us the freedom
and trust to try something this new. Finally, we are grate-
ful to all members of the Flux project team for substantial
and varied help along the way, including Chris Alfeld, John
Carter, Eric Eide, Shantanu Goel, Linus Kamb, Gary Lind-
strom, John McCorquodale, Roland McGrath, Bart Robin-
son, Sai Susarla, Kevin Van Maren, and Teresa Whiting.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-
nian, and M. Young. Mach: A New Kernel Foundation for UNIX
Development. In Proc. of the Summer 1986 USENIX Conf., pages
93–112, June 1986.

[2] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient
and Language-Independent Mobile Programs. In Proc. ACM SIG-

PLAN Symp. on Programming Language Design and Implementa-

tion, pages 127–136, May 1996.

0

20

40

60

80

100

K K.P K.M.P K.C.M.P K.C.M.P.T

R
el

at
iv

e 
pe

rf
or

m
an

ce
 (

pe
rc

en
t)

Nester stacks

appel2
matconn
memtest
readtest
forktest

Figure 10: Slowdown due to increasing levels of process nesting.
Nester stacks on the horizontal axis were chosen to be representative of
actual usage. In each stack, ‘K’ is the kernel’s Common Protocols server,
‘P’ is the process manager, ‘M’ is the memory manager, ‘C’ is the check-
pointer, and ‘T’ is the tracer.

[3] A. Appel and K. Li. Virtual Memory Primitives for User Programs.
In Proceedings of the 4th Symposium on Architectural Support for

Programming Languages and Operating Systems, pages 96–107,
June 1991.

[4] N. Batlivala, B. Gleeson, J. Hamrick, S. Lurndal, D. Price, and
J. Soddy. Experience With SVR4 Over Chorus. In Proc. of the

USENIX Workshop on Micro-kernels and Other Kernel Architec-

tures, pages 223–241, Seattle, WA, Apr. 1992.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety,
and Performance in the SPIN Operating System. In Proc. of the

15th ACM Symp. on Operating Systems Principles, pages267–284,
Copper Mountain, CO, Dec. 1995.

[6] A. C. Bomberger and N. Hardy. The KeyKOS Nanokernel Archi-
tecture. In Proc. of the USENIX Workshop on Micro-kernels and

Other Kernel Architectures, pages 95–112,Seattle, WA, Apr. 1992.

[7] T. C. Bressoud and F. B. Schneider. Hyporvisor-based Fault-
tolerance. In Proc. of the 15th ACM Symp. on Operating Systems

Principles, pages 1–11, Dec. 1995.

[8] M. I. Bushnell. Towards a New Strategy of OS Design. In GNU’s

Bulletin, Cambridge, MA, Jan. 1994. Also http://www.cs.pdx.edu/-
˜trent/gnu/hurd-paper.html.

[9] P. Cao, E. W. Felten, and K. Li. Implementation and Performance
of Application-Controlled File Caching. In Proc. of the First Symp.

on Operating Systems Design and Implementation, pages165–177,
Monterey, CA, Nov. 1994. USENIX Assoc.

[10] J. Carter, D. Khandekar, and L. Kamb. Distributed Shared Mem-
ory: Where We Are and Where We Should Be Headed. In Pro-

ceedings of the Fifth Workshop on Hot Topics in Operating Sys-

tems, pages 119–122, May 1995.

[11] K. Chandy and L. Lamport. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Transactions on Com-

puter Systems, 3(1):63–75, Feb. 1985.

[12] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing
and Protection in a Single Address Space Operating System. Tech-
nical Report UW-CSE-93-04-02, University of Washington Com-
puter Science Department, Apr. 1993.

[13] J. B. Chen and B. N. Bershad. The Impact of Operating Sys-
tem Structure on Memory System Performance. In Proc. of the

14th ACM Symp. on Operating Systems Principles, pages120–133,
1993.



[14] D. R. Cheriton and K. J. Duda. A Caching Model of Operating Sys-
tem Kernel Functionality. In Proc. of the First Symp. on Operating

Systems Design and Implementation, pages179–193.USENIX As-
soc., Nov. 1994.

[15] G. Deconinck, J. Vounckx, R. Cuyvers, and R. Lauwereins. Sur-
vey of Checkpointing and Rollback Techniques. Technical Report
O3.1.8 and O3.1.12, ESAT-ACCA Laboratory Katholieke Univer-
siteit Leuven, Belgium, June 1993.

[16] R. P. Draves. A Revised IPC Interface. In Proc. of the USENIX

Mach Workshop, pages 101–121, Oct. 1990.

[17] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The Perfor-
mance of Consistent Checkpointing. In 11th Symposium on Reli-

able Distributed Systems, pages 39–47, Oct. 1992.

[18] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel:
An Operating System Architecture for Application-level Resource
Management. In Proc. of the 15th ACM Symp. on Operating

Systems Principles, pages 251–266, Copper Mountain, CO, Dec.
1995.

[19] B. Ford and Flux Project Members. The Flux Operating System
Toolkit. University of Utah. Postscript and HTML available under
http://www.cs.utah.edu/projects/flux/oskit/html/, 1996.

[20] B. Ford, M. Hibler, and Flux Project Members. Fluke: Flexi-
ble �-kernel Environment (draft documents). University of Utah.
Postscript and HTML available under http://www.cs.utah.edu/-
projects/flux/fluke/html/, 1996.

[21] B. Ford and S. Susarla. CPU Inheritance Scheduling. In Proc. of the

Second Symp. on Operating Systems Design and Implementation,
Seattle, WA, Oct. 1996. USENIX Assoc.

[22] R. P. Goldberg. Architecture of Virtual Machines. In AFIPS Conf.

Proc., June 1973.

[23] R. P. Goldberg. Survey of Virtual Machine Reseach. IEEE Com-

puter Magazine, pages 34–45, June 1974.

[24] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an Application
Program. In Proc. of the Summer 1990 USENIX Conf., pages 87–
96, Anaheim, CA, June 1990.

[25] J. Gosling and H. McGilton. The Java Language Environ-
ment: A White Paper. Technical report, Sun Microsystems Com-
puter Company, 1996. Available as http://java.sun.com/doc/-
language environment/.

[26] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU Scheduler
For Multimedia Operations. In Proc. of the Second Symp. on Oper-

ating Systems Design and Implementation, Seattle, WA, Oct. 1996.
USENIX Assoc.

[27] N. Hardy. The KeyKos Architecture. Operating Systems Review,
Sept. 1985.

[28] IBM Virtual Machine Facility /370 Planning Guide. Technical Re-
port GC20-1801-0, IBM Corporation, 1972.

[29] IBM Virtual Machine Facility /370: Release 2 Planning Guide.
Technical Report GC20-1814-0, IBM Corporation, 1973.

[30] Intel. i960 Extended Architecture Programmer’s Reference Man-

ual, 1994.

[31] M. Jones. Interposition Agents: Transparently Interposing User
Code at the System Interface. In Proc. of the 14th ACM Symp. on

Operating Systems Principles, pages 80–93, Dec. 1993.

[32] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and
Operating Systems. In Proc. of the 1994 Winter USENIX Conf.,
pages 115–132, Jan. 1994.

[33] Y. A. Khalidi and M. N. Nelson. Extensible File Systems in Spring.
In Proc. of the 14th ACM Symp. on Operating Systems Principles,
pages 1–14, 1993.

[34] C. Landau. The Checkpoint Mechanism in KeyKOS. In Proc.

Second International Workshop on Object Orientation in Operat-

ing Systems, Sept. 1992.

[35] H. C. Lauer and D. Wyeth. A Recursive Virtual Machine Architec-
ture. In ACM SIGARCH-SIGOPS Workshop on Virtual Computer

Systems, pages 113–116, Mar. 1973.

[36] C. H. Lee, M. C. Chen, and R. C. Chang. HiPEC: High Perfor-
mance External Virtual Memory Caching. In Proc. of the First

Symp. on Operating Systems Design and Implementation, pages
153–164, Monterey, CA, Nov. 1994. USENIX Assoc.

[37] H. M. Levy. Capability Based Computer Systems. Digital Press,
1984.

[38] J. Liedtke. Clans and Chiefs. In Proc. 12. GI/ITG-Fachtagung Ar-

chitektur von Rechensystemen, 1992.

[39] J. Liedtke. A Persistent System in Real Use – Experiences of the
First 13 Years. In Proc. of the Third International Workshop on

Object Orientation in Operating Systems, pages 2–11, Dec. 1993.

[40] J. Liedtke. On Micro-Kernel Construction. In Proc. of the

15th ACM Symp. on Operating Systems Principles, pages237–250,
Copper Mountain, CO, Dec. 1995.

[41] A. Lindstrom, J. Rosenberg, and A. Dearle. The Grand Unified
Theory of Address Spaces. In Proc. of the Fifth Workshop on Hot

Topics in Operating Systems, May 1995.

[42] M. Litzkow and M. Solomon. Supporting Checkpointing and Pro-
cess Migration Outside the UNIX Kernel. In Proc. of the Winter

1992 USENIX Conf., 1992.

[43] K. Loepere et al. MK++ Kernel Executive Summary. Technical
report, Open Software Foundation, 1995.

[44] L. McVoy and C. Staelin. lmbench: Portable Tools for Performance
Analysis. In Proc. of 1996 USENIX Conf., Jan. 1996.

[45] Microsoft Corporation. Win32 Programmer’sReference, 1993. 999
pp.

[46] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, T. A.
Proebsting, and J. H. Hartman. Scout: A Communications-oriented
Operating System. Technical Report 94–20, University of Arizona,
Dept. of Computer Science, June 1994.

[47] S. J. Mullender. Experiences with Distributed Systems, chapter
Process Management in Distributed Operating Systems. Lecture
Notes in Computer Science no. 309. Springer-Verlag, 1987.

[48] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
Checkpointing under Unix. In Proc. of the Winter 1995 USENIX

Technical Conf., Jan. 1995.

[49] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Fast and Ac-
curate Multiprocessor Simulation: The SimOS Approach. IEEE

Parallel and Distributed Technology, 3(4), 1995.

[50] C. Small and M. Seltzer. VINO: An Intergrated Platform for Oper-
ating System and Database Research. Technical Report TR-30-94,
Harvard University, 1994.

[51] P. Tullmann, J. Lepreau, B. Ford, and M. Hibler. User-level Check-
pointing Through Exportable Kernel State. In Proc. Fifth Interna-

tional Workshopon Object Orientation in Operating Systems, Seat-
tle, WA, Oct. 1996. IEEE.

[52] D. Wagner, I. Goldberg, and R. Thomas. A Secure Environment for
Untrusted Helper Applications. In Proc. of the 6th USENIX Unix

Security Symp., 1996.

[53] C. A. Waldspurger. Lottery and Stride Scheduling: Flexible

Proportional-Share Resource Management. PhD thesis, Mas-
sachusetts Institute of Technology, Sept. 1995.

[54] M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer

and its Operating System. North Holland, NY, 1979.


