
AN EXPERIMENTAL TIME-SHARING SYSTEM

Fernando J. Corbató, Marjorie Merwin Daggett, Robert C. Daley

Computation Center, Massachusetts Institute of Technology

Cambridge, Massachusetts

[Scanned and transcribed by F. J. Corbató from the original SJCC Paper of May 3, 1962]

Summary

It is the purpose of this paper to discuss briefly the need for time-sharing, some of the implementation
problems, an experimental time-sharing system which has been developed for the contemporary IBM
7090, and finally a scheduling algorithm of one of us (FJC) that illustrates some of the techniques which
may be employed to enhance and be analyzed for the performance limits of such a time-sharing system.

Introduction

The last dozen years of computer usage have seen great strides. In the early 1950’s, the problems solved
were largely in the construction and maintenance of hardware; in the mid-1950’s, the usage languages
were greatly improved with the advent of compilers; now in the early 1960’s, we are in the midst of a
third major modification to computer usage: the improvement of man-machine interaction by a process
called time-sharing.

Much of the time-sharing philosophy, expressed in this paper, has been developed in conjunction with
the work of an MIT preliminary study committee, chaired by H. Teager, which examined the long range
computational needs of the Institute, and a subsequent MIT computer working committee, chaired by J.
McCarthy. However, the views and conclusions expressed in this paper should be taken as solely those
of the present authors.

Before proceeding further, it is best to give a more precise interpretation to time-sharing. One can mean
using different parts of the hardware at the same time for different tasks, or one can mean several
persons making use of the computer at the same time. The first meaning, often called
multiprogramming, is oriented towards hardware efficiency in the sense of attempting to attain complete
utilization of all components (refs.5,6,7,8). The second meaning of time-sharing, which is meant here, is
primarily concerned with the efficiency of persons trying to use a computer (refs.1,2,3,4). Computer
efficiency should still be considered but only in the perspective of the total system utility.

The motivation for time-shared computer usage arises out of the slow man-computer interaction rate
presently possible with the bigger, more advanced computers. This rate has changed little (and has
become worse in some cases) in the last decade of widespread computer use (ref.10).

In part, this effect has been due to the fact that as elementary problems become mastered on the
computer, more complex problems immediately become of interest. As a result, larger and more
complicated programs are written to take advantage of larger and faster computers. This process
inevitably leads to more programming errors and a longer period of time required for debugging. Using
current batch monitor techniques, as is done on most large computers, each program bug usually

requires several hours to eliminate, if not a complete day. The only alternative presently available is for
the programmer to attempt to debug directly at the computer, a process which is grossly wasteful of
computer time and hampered seriously by the poor console communication usually available. Even if a
typewriter is the console, there are usually lacking the sophisticated query and response programs which
are vitally necessary to allow effective interaction. Thus, what is desired is to drastically increase the
rate of interaction between the programmer and the computer without large economic loss and also to
make each interaction more meaningful by extensive and complex system programming to assist in the
man-computer communication.

To solve these interaction problems we would like to have a computer made simultaneously available to
many users in a manner somewhat like a telephone exchange. Each user would be able to use a console
at his own pace and with-out concern for the activity of others using the system. This console could as a
minimum be merely a typewriter but more ideally would contain an incrementally modifiable
self-sustaining display. In any case, data transmission requirements should be such that it would be no
major obstacle to have remote installation from the computer proper.

The basic technique for a time-sharing system is to have many persons simultaneously using the
computer through typewriter consoles with a time-sharing supervisor program sequentially running each
user program in a short burst or quantum of computation. This sequence, which in the most
straightforward case is a simple round-robin, should occur often enough so that each user program
which is kept in the high-speed memory is run for a quantum at least once during each approximate
human reaction time (~.2 seconds). In this way, each user sees a computer fully responsive to even single
key strokes each of which may require only trivial computation; in the non-trivial cases, the user sees a
gradual reduction of the response time which is proportional to the complexity of the response
calculation, the slowness of the computer, and the total number of active users. It should be clear,
however, that if there are n users actively requesting service at one time, each user will only see on the
average 1/n of the effective computer speed. During the period of high interaction rates while debugging
programs, this should not be a hindrance since ordinarily the required amount of computation needed for
each debugging computer response is small compared to the ultimate production need.

Not only would such a time-sharing system improve the ability to program in the conventional manner
by one or two orders of magnitude, but there would be opened up several new forms of computer usage.
There would be a gradual reformulation of many scientific and engineering applications so that
programs containing decision trees which currently must be specified in advance would be eliminated
and instead the particular decision branches would be specified only as needed. Another important area
is that of teaching machines which, although frequently trivial computationally, could naturally exploit
the consoles of a time-sharing system with the additional bonus that more elaborate and adaptive
teaching programs could be used. Finally, as attested by the many small business computers, there are
numerous applications in business and in industry where it would be advantageous to have powerful
computing facilities available at isolated locations with only the incremental capital investment of each
console. But it is important to realize that even without the above and other new applications, the major
advance in programming intimacy available from time-sharing would be of immediate value to
computer installations in universities, research laboratories, and engineering firms where program
debugging is a major problem.

Implementation problems

As indicated, a straightforward plan for time-sharing is to execute user programs for small quantums of

computation without priority in a simple round-robin; the strategy of time-sharing can be more complex
as will be shown later, but the above simple scheme is an adequate solution. There are still many
problems, however, some best solved by hardware, others affecting the programming conventions and
practices. A few of the more obvious problems are summarized:

Hardware Problems:

1. Different user programs if simultaneously in core memory may interfere with each other
or the supervisor program so some form of memory protection mode should be available
when operating user programs.

2. The time-sharing supervisor may need at different times to run a particular program from
several locations. (Loading relocation bits are no help since the supervisor does not know
how to relocate the accumulator, etc.) Dynamic relocation of all memory accesses that pick
up instructions or data words is one effective solution.

3. Input-output equipment may be initiated by a user and read words in on another user
program. A way to avoid this is to trap all input-output instructions issued by a user’s
program when operated in the memory protection mode.

4. A large random-access back-up storage is desirable for general program storage files for
all users. Present large capacity disc units appear to be adequate.

5. The time-sharing supervisor must be able to interrupt a user’s program after a quantum of
computation. A program-initiated one-shot multivibrator which generates an interrupt a fixed
time later is adequate.

6. Large core memories (e.g. a million words) would ease the system programming
complications immensely since the different active user programs as well as the frequently
used system programs such as compilers, query programs, etc. could remain in core memory
at all times.

Programming Problems:

1. The supervisor program must do automatic user usage charge accounting. In general, the
user should be charged on the basis of a system usage formula or algorithm which should
include such factors as computation time, amount of high-speed memory required, rent of
secondary memory storage, etc.

2. The supervisor program should coordinate all user input-output since it is not desirable to
require a user program to remain constantly in memory during input-output limited
operations. In addition, the supervisor must coordinate all usage of the central, shared
high-speed input-output units serving all users as well as the clocks, disc units, etc.

3. The system programs available must be potent enough so that the user can think about his
problem and not be hampered by coding details or typographical mistakes. Thus, compilers,
query programs, post-mortem programs, loaders, and good editing programs are essential.

4. As much as possible, the users should be allowed the maximum programming flexibility
both in choices of language and in the absence of restrictions.

Usage Problems

1. Too large a computation or excessive typewriter output may be inadvertently requested so
that a special termination signal should be available to the user.

2. Since real-time is not computer usage-time, the supervisor must keep each user informed
so that he can use his judgment regarding loops, etc.

3. Computer processor, memory and tape malfunctions must be expected. Basic operational
questions such as "Which program is running?" must be answerable and recovery procedures
fully anticipated.

An Experimental Time-sharing system for the IBM 7090

Having briefly stated a desirable time-sharing performance, it is pertinent to ask what level of
performance can be achieved with existent equipment. To begin to answer this question and to explore
all the programming and operational aspects, an experimental time-sharing system has been developed.
This system was originally written for the IBM 709 but has since been converted for use with the 7090
computer.

The 7090 of the MIT Computation Center has, in addition to three channels with 19 tape units, a fourth
channel with the standard Direct Data Connection. Attached to the Direct Data Connection is a real-time
equipment buffer and control rack designed and built under the direction of H. Teager and his group.
[This group is presently using another approach (ref.9) in developing a time-sharing system for the MIT
7090.] This rack has a variety of devices attached but the only ones required by the present systems are
three flexowriter typewriters. Also installed on the 7090 are two special modifications (i.e. RPQ’s): a
standard 60 cycle accounting and interrupt clock, and a special mode which allows memory protection,
dynamic relocation and trapping of all user attempts to initiate input-output instructions.

In the present system the time-sharing occurs between four users, three of whom are on-line each at a
typewriter in a foreground system, and a fourth passive user of the back-ground Fap-Mad-Madtran-BSS
Monitor system similar to the Fortran-Fap-BSS Monitor System (FMS) used by most of the Center
programmers and by many other 7090 installations.

Significant design features of the foreground system are:

1. It allows the user to develop programs in languages compatible with the background
system,

2. Develop a private file of programs,

3. Start debugging sessions at the state of the previous session, and

4. Set his own pace with little waste of computer time.

Core storage is allocated such that all users operate in the upper 27,000 words with the time-sharing
supervisor (TSS) permanently in the lower 5,000 words. To avoid memory allocation clashes, protect
users from one another, and simplify the initial 709 system organization, only one user was kept in core
memory at a time. However, with the special memory protection and relocation feature of the 7090,
more sophisticated storage allocation procedures are being implemented. In any case, user swaps are
minimized by using 2-channel overlapped magnetic tape reading and writing of the pertinent locations in
the two user programs.

The foreground system is organized around commands that each user can give on his typewriter and the
user’s private program files which presently (for want of a disc unit) are kept on a separate magnetic
tape for each user.

For convenience the format of the private tape files is such that they are card images, have title cards
with name and class designators and can be written or punched using the off-line equipment. (The latter
feature also offers a crude form of large-scale input-output.) The magnetic tape requirements of the
system are the seven tapes required for the normal functions of the background system, a system tape for
the time-sharing supervisor that contains most of the command programs, and a private file tape and
dump tape for each of the three foreground users.

The commands are typed by the user to the time-sharing supervisor (not to his own program) and thus
can be initiated at any time regardless of the particular user program in memory. For similar
coordination reasons, the supervisor handles all input-output of the foreground system typewriters.
Commands are composed of segments separated by vertical strokes; the first segment is the command
name and the remaining segments are parameters pertinent to the command. Each segment consists of
the last 6 characters typed (starting with an implicit 6 blanks) so that spacing is an easy way to correct a
typing mistake. A carriage return is the signal which initiates action on the command. Whenever a
command is received by the supervisor, "WAIT", is typed back followed by "READY." when the
command is completed. (The computer responses are always in the opposite color from the user’s
typing.) While typing, an incomplete command line may be ignored by the "quit" sequence of a code
delete signal followed by a carriage return. Similarly after a command is initiated, it may be abandoned
if a "quit" sequence is given. In addition, during unwanted command typeouts, the command and output
may be terminated by pushing a special "stop output" button.

The use of the foreground system is initiated whenever a typewriter user completes a command line and
is placed in a waiting command queue. Upon completion of each quantum, the time-sharing supervisor
gives top priority to initiating any waiting commands. The system programs corresponding to most of
the commands are kept on the special supervisor command system tape so that to avoid waste of
computer time, the supervisor continues to operate the last user program until the desired command
program on tape is positioned for reading. At this point, the last user is read out on his dump tape, the
command program read in, placed in a working status and initiated as a new user program. However,
before starting the new user for a quantum of computation, the supervisor again checks for any waiting
command of another user and if necessary begins the look-ahead positioning of the command system
tape while operating the new user.

Whenever the waiting command queue is empty, the supervisor proceeds to execute a simple
round-robin of those foreground user programs in the working status queue. Finally, if both these queues
are empty, the background user program is brought in and run a quantum at a time until further
foreground system actively develops.

Foreground user programs leave the working status queue by two means. If the program proceeds to
completion, it can reenter the supervisor in a way which eliminates itself and places the user in dead
status; alternatively, by a different entry the program can be placed in a dormant status (or be manually
placed by the user executing a quit sequence). The dormant status differs from the dead status in that the
user may still restart or examine his program.

User input-output is through each typewriter, and even though the supervisor has a few lines of buffer
space available, it is possible to become input-output limited. Consequently, there is an additional
input-output wait status, similar to the dormant, which the user is automatically placed in by the
supervisor program whenever input-output delays develop. When buffers become near empty on output
or near full on input, the user program is automatically returned to the working status; thus waste of
computer time is avoided.

Commands

To clarify the scope of the foreground system and to indicate the basic tools avail-able to the user, a list
of the important commands follows along with brief summaries of their operations:

1. | alpha

alpha = arbitrary text treated as a comment.

2. login | alpha |beta

alpha = user problem number

beta = user programmer number

Should be given at beginning of each user’s session. Rewinds user’s private file
tape; clears time accounting records.

3. logout

Should be given at end of each user’s session. Rewinds user’s private file tape;
punches on-line time accounting cards.

4. input

Sets user in input mode and initiates automatic generation of line numbers. The
user types a card image per line according to a format appropriate for the
programming language. (The supervisor collects these card images at the end of
the user’s private file tape.) When in the automatic input mode, the manual mode
may be entered by giving an initial carriage return and typing the appropriate line
number followed by | and line for as many lines as desired. To reenter the
automatic mode, an initial carriage return is given.

The manual mode allows the user to overwrite previous lines and to insert lines.
(cf. File Command.)

5. edit | alpha | beta

alpha = title of file

beta = class of file

The user is set in the automatic input mode with the designated file treated as
initial input lines. The same conventions apply as to the input command.

6. file | alpha | beta

alpha = title to be given to file

beta = class of language used during input

The created file will consist of the numbered input lines (i.e. those at the end of
the user’s private file tape) in sequence; in the case of duplicate line numbers, the
last version will be used. The line numbers will be written as sequence numbers
in the corresponding card images of the file.

For convenience the following editing conventions apply to input lines:

a. an underline signifies the deletion of the previous characters of the
line.

b. a backspace signifies the deletion of the previous character in the
field.

The following formats apply:

a. FAP: symbol, tab, operation, tab, variable field and comment.

b. MAD, MADTRAN, FORTRAN: statement label, tab, statement.
To place a character in the continuation column: statement label, tab,
backspace, character, statement.

c. DATA: cols. 1-72.

7. fap | alpha

Causes the file designated as alpha,fap to be translated by the FAP translator
(assembler). Files alpha,symtb and alpha,bss are added to the user’s private file
tape giving the symbol table and the relocatable binary BSS form of the file.

8. mad | alpha

Causes file alpha,mad to be translated by the MAD translator (compiler). File
alpha,bss is created.

9. madtrn | alpha

Causes file alpha,madtrn (i.e. a pseudo-Fortran language file) to be edited into an
equivalent file alpha,mad (added to the user’s file) and translation occurs as if the
command mad|alpha had been given.

10. load | alpha-1 | alpha-2 | ... | alpha-n

Causes the consecutive loading of files alpha,bss (i=l,2,...,n). An exception
occurs if alpha-i = (libe), in which case file alpha-i+1,bss is searched as a library
file for all subprograms still missing. (There can be further library files.)

11. use | alpha-1 | alpha-2 | ... | alpha-n

This command is used whenever a load or previous use command notifies the
user of an incomplete set of subprograms. Same alpha-i conventions as for load.

12. start | alpha | beta

Starts the program setup by the load and use commands (or a dormant program)
after first positioning the user private file tape in front of the title card for file
alpha,beta. (If beta is not given, a class of data is assumed; if both alpha and beta
are not given, no tape movement occurs and the program is started.)

13. pm | alpha

alpha = "lights", "stomap", or the usual format of the standard Center
post-mortem (F2PM) request: subprogram name | loc-1 | loc-2 | mode | direction
where mode and direction are optional.

Produces post-mortem of user’s dormant program according to request specified
by alpha. (E.g. matrix | 5 | 209 | flo | rev will cause to be printed on the user’s
typewriter the contents of subprogram "matrix" from relative locations 5 to 209
in floating point form and in reverse sequence.)

14. skippm

Used if a pm command is "quit" during output and the previous program
interruption is to be restarted.

15. listf

Types out list of all file titles on user’s private file tape.

16. printf | alpha | beta | gamma

Types out file alpha,beta starting at line number gamma. If gamma is omitted, the
initial line is assumed. Whenever the user’s output buffer fills, the command
program goes into an I/O wait status allowing other users to time-share until the
buffer needs refilling.

17. xdump | alpha |beta

Creates file alpha,beta (if beta omitted, xdump assumed) on user’s private file
tape consisting of the complete state of the user’s last dormant program.

18. xundump | alpha | beta

Inverse of xdump command in that it resets file alpha,beta as the user’s program,
starting it where it last left off.

Although experience with the system to date is quite limited, first indications are that programmers
would readily use such a system if it were generally available, It is useful to ask, now that there is some
operating experience with the system, what observations can be made. [Note: Operating experience was
initially gained using the system on the 709 computer; due to equipment conversion difficulties, it was
not possible to use the system on the logically equivalent 7090 computer by May 3.] An immediate
comment is that once a user gets accustomed to computer response, delays of even a fraction of a minute
are exasperatingly long, an effect analogous to conversing with a slow-speaking person. Similarly, the
requirement that a complete typewritten line rather than each character be the minimum unit of
man-computer communication is an inhibiting factor in the sense that a press-to-talk radio-telephone
conversation is more stilted than that of an ordinary telephone. Since maintaining a rapid computer
response on a character by character basis requires at least a vestigial response program in core memory
at all times, the straight-forward solution within the present system is to have more core memory
available. At the very least, an extra bank of memory for the time-sharing supervisor would ease
compatibility problems with programs already written for 32,000 word 7090’s.

For reasons of expediency, the weakest portions of the present system are the conventions for input,
editing of user files, and the degree of rapid interaction and intimacy possible while debugging. Since to
a large extent these areas involve the taste, habits, and psychology of the users, it is felt that proper
solutions will require considerable experimentation and pragmatic evaluation; it is also clear that these
areas cannot be treated in the abstract for the programming languages used will influence greatly the
appropriate techniques. A greater use of symbolic referencing for locations, program names and
variables is certainly desired; symbolic post-mortem programs, trace programs, and before-and-after
differential dump programs should play useful roles in the debugging procedures.

In the design of the present system, great care went into making each user independent of the other
users. However, it would be a useful extension of the system if this were not always the case. In
particular, when several consoles are used in a computer controlled group such as in management or war
games, in group behavior studies, or possibly in teaching machines, it would be desirable to have all the
consoles communicating with a single program.

Another area for further improvement within the present system is that of file maintenance, since the

presently used tape units are a hindrance to the easy deletion of user program files. Disc units will be of
help in this area as well as with the problem of consolidating and scheduling large-scale central
input-output generated by the many console users.

Finally, it is felt that it would be desirable to have the distinction between the foreground and
background systems eliminated. The present-day computer operator would assume the role of a stand-in
for the background users, using an operator console much like the other user consoles in the system,
mounting and demounting magnetic tapes as requested by the supervisor, receiving instructions to read
card decks into the central disc unit, etc. Similarly the foreground user, when satisfied with his program,
would by means of his console and the supervisor program enter his program into the queue of
production background work to be performed. With these procedures implemented the distinction of
whether one is time-sharing or not would vanish and the computer user would be free to choose in an
interchangeable way that mode of operation which he found more suitable at a particular time.

A Multi-Level Scheduling Algorithm

Regardless of whether one has a million word core memory or a 32,000 word memory as currently
exists on the 7090, one is inevitably faced with the problem of system saturation where the total size of
active user programs exceeds that of the high-speed memory or there are too many active user programs
to maintain an adequate response at each user console. These conditions can easily arise with even a few
users if some of the user programs are excessive in size or in time requirements. The predicament can be
alleviated if it is assumed that a good design for the system is to have a saturation procedure which gives
graceful degradation of the response time and effective real-time computation speed of the large and
long-running users.

To show the general problem, Figure 1 qualitatively gives the user service as a function of n, the number
of active users. This service parameter might be either of the two key factors: computer response time or
n times the real-time computation speed. In either case there is some critical number of active users, N,
representing the effective user capacity, which causes saturation. If the strategy near saturation is to
execute the simple round-robin of all users, then there is an abrupt collapse of service due to the sudden
onset of the large amount of time required to swap programs in-and-out of the secondary memory such
as a disc or drum unit. Of course, Figure 1 is quite qualitative since it depends critically on the spectrum
of user program sizes as well as the spectrum of user operating times.

To illustrate the strategy that can be employed to improve the saturation performance of a time-sharing
system, a multi-level scheduling algorithm is presented. This algorithm also can be analyzed to give
broad bounds on the system performance.

The basis of the multi-level scheduling algorithm is to assign each user program as it enters the system
to be run (or completes a response to a user) to an ell-th level priority queue. Programs are initially
entered into a level ell-sub-0, corresponding to their size such that

where w-sub-p is the number of words in the program, w-sub-q is the number of words which can be
transmitted in and out of the high-speed memory from the secondary memory in the time of one
quantum, q, and the bracket indicates "the integral part of". Ordinarily the time of a quantum, being the
basic time unit, should be as small as possible without excessive overhead losses when the supervisor
switches from one program in high-speed memory to another. The process starts with the time-sharing
supervisor operating the program at the head of the lowest level occupied queue, ell, for up to 2**ell
quanta of time and then if the program is not completed (i.e. has not made a response to the user) placing
it at the end of the ell+1 level queue. If there are no programs entering the system at levels lower than
ell, this process proceeds until the queue at level ell is exhausted; the process is then iteratively begun
again at level ell+1, where now each program is run for 2**(ell+1) quanta of time. If during the
execution of the 2**ell quanta of a program at level ell, a lower level, ell-prime, becomes occupied, the
current user is replaced at the head of the ell-th queue and the process is reinitiated at level ell-prime.

Similarly, if a program of size w-sub-p at level ell, during operation requests a change in memory size
from the time-sharing supervisor, then the enlarged (or reduced) version of the program should be
placed at the end of the ell-double-prime queue where

[Note: corrected from the original]

Again the process is re-initiated with the head-of-the-queue user at the lowest occupied level of
ell-prime.

Several important conclusions can be drawn from the above algorithm which allow the performance of
the system to be bounded.

Computational Efficiency

1. Because a program is always operated for a time greater than or equal to the swap time
(i.e. the time required to move the program in and out of secondary memory), it follows that
the computational efficiency never falls below one-half. (Clearly, this fraction is adjustable
in the formula for the initial level, ell-0.) An alternative way of viewing this bound is to say
that the real-time computing speed available to one out of n active users is no worse than if

there were 2n active users all of whose programs were in the high-speed memory.

Response Time

2. If the maximum number of active users is N, then an individual user of a given program
size can be guaranteed a response time,

since the worst case occurs when all competing user programs are at the same level.
Conversely, if t-sub-r is a guaranteed response of arbitrary value and the largest size of
program is assumed, then the maximum permissible number of active users is bounded.

Long Runs

3. The relative swap time on long runs can be made vanishingly small. This conclusion
follows since the longer a program is run, the higher the level number it cascades to with a
correspondingly smaller relative swap time. It is an important feature of the algorithm that
long runs must in effect prove they are long so that programs which have an unexpected
demise are detected quickly. In order that there be a finite number of levels, a maximum
level number, L, can be established such that the asymptotic swap overhead is some
arbitrarily small percentage, p:

where w-sub-pmax is the size of the largest possible program.

Multi-level vs. Single-level Response Times

4. The response time for programs of equal size, entering the system at the same time, and
being run for multiple quanta, is no worse than approximately twice the response-time
occurring in a single quanta round-robin procedure. If there are n equal sized programs
started in a queue at level 1, then the worst case is that of the end-of-the-queue program
which is ready to respond at the very first quantum run at the ell+j level. Using the
multi-level algorithm, the total delay for the end-of-the-queue program is by virtue of the
geometric series of quanta:

Since the end-of-the-queue user has computed for a time of (2**ell)*((2**j)-1) quanta, the
equivalent single-level round-robin delay before a response is:

Hence

and the assertion is shown. It should be noted that the above conditions, where program
swap times are omitted, which are pertinent when all programs remain in high-speed
memory, are the least favorable for the multi-level algorithm; if swap times are included in
the above analysis, the ratio of (T-sub-m / T-sub-s) can only become smaller and may
become much less than unity. By a similar analysis it is easy to show that even in the
unfavorable case where there are no program swaps, head-of-the-queue programs that
terminate just as the quanta are completed receive under the multi-level algorithm a response
which is twice as fast as that under the single-level round-robin (i.e. (T-sub-m / T-sub-s) =
1/2).

Highest Serviced Level

5. In the multi-level algorithm the level classification procedure for programs is entirely
automatic, depending on performance and program size rather than on the declarations (or
hopes) of each user. As a user taxes the system, the degradation of service occurs
progressively starting with the higher level users of either large or long-running programs;
however, at some level no user programs may be run because of too many active users at
lower levels. To determine a bound on this cut-off point we consider N active users at level
ell each running 2**ell quanta, terminating, and reentering the system again at level ell at a
user response time, t-sub-u, later. If there is to be no service at level ell+1, then the
computing time, Nq(2**ell), must be greater than or equal to t-sub-u. Thus the guaranteed
active levels, are given by the relation:

In the limit, t-sub-u could be as small as a minimum user reaction time (~.2 sec.), but the
expected value would be several orders of magnitude greater as a result of the statistics of a
large number of users.

The multi-level algorithm as formulated above makes no explicit consideration of the seek or latency
time required before transmission of programs to and from disc or drum units when they are used as the
secondary memory, (although formally the factor w-sub-q could contain an average figure for these
times). One simple modification to the algorithm which usually avoids wasting the seek or latency time
is to continue to operate the last user program for as many quanta as are required to ready the swap of
the new user with the least priority user; since ordinarily only the higher level number programs would
be forced out into the secondary memory, the extended quanta of operation of the old user while seeking
the new user should be but a minor distortion of the basic algorithm.

Further complexities are possible when the hardware is appropriate. In computers with input-output
channels and low transmission rates to and from secondary memory, it is possible to overlap the reading
and writing of the new and old users in and out of high-speed memory while operating the current user.

The effect is equivalent to using a drum giving 100 % multiplexor usage but there are two liabilities,
namely, no individual user can utilize all the available user memory space and the look-ahead procedure
breaks down whenever am unanticipated scheduling change occurs (e.g. a program terminates or a
higher-priority user program is initiated).

Complexity is also possible in storage allocation but certainly an elementary procedure and a desirable
one with a low-transmission rate secondary memory is to consolidate in a single block all high-priority
user programs whenever sufficient fragmentary unused memory space is available to read in a new user
program. Such a procedure is indicated in the flow diagram of the multi-level scheduling algorithm
which is given as Figure 2.

It should also be noted that Figure 2 only accounts for the scheduling of programs in a working status
and still does not take into account the storage allocation of programs which are in a dormant (or
input-output wait status). One systematic method of handling this case is to modify the scheduling
algorithm so that programs which become dormant at level ell are entered into the queue at level ell+1.
The scheduling algorithm proceeds as before with the dormant programs continuing to cascade but not
operating when they reached the head of a queue. Whenever a program must be removed from
high-speed memory, a program is selected from the end-of-the-queue of the highest occupied level
number.

Finally, it is illuminating to apply the multi-level scheduling algorithm bounds to the contemporary IBM
7090. The following approximate values are obtained:

Using the arbitrary criteria that programs up to the maximum size of 32,000 words should always get
some service, which is to say that max ell-sub-a = max ell-sub-0, we deduce as a conservative estimate
that N can be 4 and that at worst the response time for a trivial reply will be 32 seconds.

The small value of N arrived at is a direct consequence of the small value of w-sub-q that results from
the slow disc word transmission rate. This rate is only 3.3% of the maximum core memory multiplexor
rate. It is of interest that using high-capacity high-speed drums of current design such as in the Sage
System or in the IBM Sabre System it would be possible to attain nearly 100% multiplexor utilization
and thus multiply w-sub-q by a factor of 30. It immediately follows that user response times equivalent
to those given above with the disc unit would be given to 30 tines as many persons or to 120 users; the
total computational capacity, however, would not change.

In any case, considerable caution should be used with capacity and computer response time estimates
since they are critically dependent upon the distribution functions for the user response time, t-sub-u,
and the user program size, and the computational capacity requested by each user. Past experience using
conventional programming systems is of little assistance because these distribution functions will

depend very strongly upon the programming systems made available to the time-sharing users as well as
upon the user habit patterns which will gradually evolve.

Conclusions

In conclusion, it is clear that contemporary computers and hardware are sufficient to allow moderate
performance time-sharing for a limited number of users. There are several problems which can be solved
by careful hardware design, but there are also a large number of intricate system programs which must
be written before one has an adequate time-sharing system. An import-ant aspect of any future
time-shared computer is that until the system programming is completed, especially the critical
time-sharing supervisor, the computer is completely worthless. Thus, it is essential for future system
design and imple-mentation that all aspects of time-sharing system problems be explored and
understood in prototype form on present computers so that major advances in computer organization and
usage can be made.

Acknowledgements

The authors wish to thank Bernard Galler, Robert Graham and Bruce Arden, of the University of
Michigan, for making the MAD compiler available and for their advice with regard to its adaptation into
the present time-sharing system. The version of the Madtran Fortran-to-Mad editor program was
generously supplied by Robert Rosin of the University of Michigan. Of the MIT Computation Center
staff, Robert Creasy was of assistance in the evaluation of time-sharing performance, Lynda Korn is to
be credited for her contributions to the pm and madtran commands, and Evelyn Dow for her work on the
fap command.

References

1. Strachey, C., "Time Sharing in Large Fast Computers," Proceedings of the International Conference
on Information processing, UNESCO (June, 1959), paper B.2.19.

2. Licklider, J. C. R., "Man-Computer Symbiosis," IRE Transactions on Human Factors in Electronics,
HFE-l, No. 1 (March, 1960), 4-11.

3. Brown, G., Licklider, J. C. R., McCarthy, J., and Perlis, A., lectures given Spring, 1961, Management
and the Computer of the Future, (to be published by the M.I.T. press, March, 1962).

4. Corbató, F. J., "An Experimental Time-Sharing System," Proceedings of the IBM University
Director’s Conference, July, 1961 (to be published).

5. Schmitt, W. F., Tonik, A. B., "Sympathetically Programmed Computers," Proceedings of the
International Conference on Information Processing, UNESCO, (June, 1959) paper 8.2.18.

6. Codd, E. F., "Multiprogram Scheduling, Communications of the ACM, 3, 6 (June, 1960), 347-350.

7. Heller, J., "Sequencing Aspects of Multiprogramming," Journal of the ACM, 8, 3 (July, 1961),
426-439.

8. Leeds, H. D., Weinberg, G. M., "Multiprogramming," Computer Programming Fundamentals,
356-359, McGraw-Hill (1961).

9. Teager, H. M., "Real-Time Time-Shared Computer Project," Communications of the ACM, 5, 1
(January, 1962) Research Summaries, 62.

10. Teager, H. M., McCarthy, J., "Time-Shared Program Testing," paper delivered at the 14th National
Meeting of the ACM (not published).

