Serverless Network File Systems

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe,
David A. Patterson, Drew S. Roselli, and Randolph Y. Wang

Computer Science Division
University of California at Berkeley

Abstract The recent introduction of switched local area networks

In this paper, we propose a new paradigm for network filsuch as ATM or Myrinet [Bode95] enables serverlessness by
system design,serverless network file systemgvhile providing aggregate bandwidth that scales with the number of
traditional network file systems rely on a central servemachines on the network. In contrast, shared media networks
machine, a serverless system utilizes workstationsuch as Ethernet or FDDI allow only one client or server to
cooperating as peers to provide all file system services. Arfyansmit at a time. In addition, the move towards low latency
machine in the system can store, cache, or control any blo¢ietwork interfaces [vE92, Basu95] enables closer
of data. Our approach uses this location independence, @@operation between machines than has been possible in the
combination with fast local area networks, to provide bettepast. The result is that a LAN can be used as an I/O
performance and scalability than traditional file systemsbackplane, harnessing physically distributed processors,
Further, because any machine in the system can assume themory, and disks into a single system.
responsibilities of a failed component, our serverless design Next generation networks not only enable serverlessness,
also provides high availability via redundant data storage. Tghey require it by allowing applications to place increasing
demonstrate our approach, we have implemented a prototygemands on the file system. The 1/O demands of traditional
serverless network file system called xFS. Preliminarypplications have been increasing over time [Bake91]; new
performance measurements suggest that our architectuigplications enabled by fast networks — such as multimedia,
achieves its goal of scalability. For instance, in a 32-nodgrocess migration, and parallel processing — will further
XFS system with 32 active clients, each client receives nearptessure file systems to provide increased performance. For
as much read or write throughput as it would see if it werghstance, continuous media workloads will increase file
the only active client. system demands; even a few workstations simultaneously
: running video applications would swamp a traditional central
1. Introduction server [Rash94]. Coordinated Networks of Workstations

A serverless network file system distributes storagegnOws) allow users to migrate jobs among many machines
cache, and control over cooperating workstations. Thigng also permit networked workstations to run parallel jobs
approach contrasts with traditional file systems such aPoug9l, Litz92, Ande95]. By increasing the peak
Netware [Majo94], NFS [Sand85], Andrew [Howa88], andyrocessing power available to users, NOWSs increase peak
Sprite [Nels88] where a central server machine stores all daggmands on the file system [Cyph93].
and satisfies all client cache misses. Such a central server is

both a performance and reliability bottleneck. A serverIesrﬁ%ndamemélIIy limit performance and availability since all

system, on the othe_r hand, d|str|but.es control Processing aligsd misses and all disk writes go through the central server.
data storage to achieve scalable high performance, mlgraulas

the responsibilities of failed components to the remaining ° address such performance limitations, users resort to
>SP . : -omp %ostly schemes to try to scale these fundamentally unscalable
machines to provide high availability, and scales gracefull)ﬁ

to simplify system management le s;_/stems. S_ome ingtallations rely on specialized server
_ ' machines configured with multiple processors, 1/0 channels,

Three factors motivate our work on serverless networlyng /0 processors. Alas, such machines cost significantly
file systems: the opportunity provided by fast switchedmyore than desktop workstations for a given amount of
LANSs, the expanding demands of users, and the fundameni@mputing or I/0 capacity. Many installations also attempt to
limitations of central server systems. achieve scalability by distributing a file system among
multiple servers by partitioning the directory tree across

Unfortunately, current centralized file system designs

Copyright © 1995 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of parthis alook for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial ety #miagepies show this notice
on the first page or initial screen of a display along with the full citation. Copyrights for components of this work oathedstthan ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists,amtecasponent of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM lraadifhh BRew York, NY 10036
USA, fax +1 (212) 869-0481, or <permissions@acm.org>.

Versions of this work appear in the 15th ACM Symposium on Operating Systems Principles (December 1995) and the ACM Tram&2atigneer
Systems (February 1996).

multiple mount points. This approach only moderatelyinstance, NOW systems already provide high-speed
improves scalability because its coarse distribution oftemetworking and trust to run parallel and distributed jobs.
results in hot spots when the partitioning allocates heavilgimilarly, XxFS could be used within a group or department
used files and directory trees to a single server [Wolf89]. It isvhere fast LANs connect machines and where uniform
also expensive, since it requires the (human) system managgistem administration and physical building security allow
to effectively becompart of the file system — moving users, machines to trust one another. A file system based on
volumes, and disks among servers to balance load. Finallgerverless principles would also be appropriate for “scalable
Andrew [Howa88] attempts to improve scalability by server” architectures currently being researched [Kubi93,
caching data on client disks. Although this made sense on &usk94]. Untrusted clients can also benefit from the scalable,
Ethernet, on today’s fast LANs fetching data from local diskeliable, and cost-effective file service provided by a core of
can be an order of magnitude slower than from servexFS machines via a more restrictive protocol such as NFS.

memory or remote striped disk. We have built a prototype that demonstrates most of
Similarly, a central server represents a single point okFS’s key features, including distributed management,
failure, requiring server replication [Walk83, Kaza89, cooperative caching, and network disk striping with parity
Pope90, Lisk91, Kist92, Birr93] for high availability. and multiple groups. As Section 7 details, however, several
Replication increases the cost and complexity of centrgdieces of implementation remain to be done; most notably,
servers, and can also increase latency on writes since the must stillimplement the cleaner and much of the recovery
system must replicate data at multiple servers. and dynamic reconfiguration code. The results in this paper
In contrast to central server designs, our objective is t§hould thus be viewed as evidence that the serverless
build a truly distributed network file system — one with no@PProach is promising, not as “proof” that it will succeed. We
central bottleneck. We have designed and implemented xFBl€Sent both simulation results of the xFS design and a few
a prototype serverless network file system, to investigate thiféliminary measurements of the prototype. Because the
goal. XFS illustrates serverless design principles in threBrototype is largely untuned, a single xFS client's
ways. First, xFS dynamically distributes control processing’@rformance is slightly worse than that of a single NFS client;
across the system on a per-file granularity by utilizing a neWe are currently working to improve single-client
serverless management scheme. Second, xFS distributesRggformance to allow one xFS client to significantly
data storage across storage server disks by implementing®dtPerform one NFS client by reading from or writing to the
software RAID [Patt88, Chen94] using log-based network'etwork-striped disks at its full network bandwidth.
striping similar to Zebra’s [Hart95]. Finally, XFS eliminates Nonetheless, the prototype does demonstrate remarkable
central server caching by taking advantage of cooperativécalability. For instance, in a 32 node xFS system with 32

caching [Leffol, Dahl94b] to harvest portions of client clients, each client receives nearly as much read or write
memory as a large, global file cache. bandwidth as it would see if it were the only active client.

This paper makes two sets of contributions. First, XFS The rest of this paper discusses these issues in more detail.
synthesizes a number of recent innovations that, takepection 2 provides an overview of recent research results
together, provide a basis for serverless file system desigRXPloited in the xFS design. Section 3 explains how xFS
XFS relies on previous work in areas such as scalable cacflistributes its data, metadata, and control. Section 4 describes
consistency (DASH [Leno90] and Alewife [Chai91]), xFS’s distributed log cleaner, Section5 outlines xFS’s
cooperative caching, disk striping (RAID and Zebra), and logiPProach to high availability, and Section 6 addresses the
structured file systems (Sprite LFS [Rose92] and BSD LF$ssue of security and describes how xFS could be used in a
[Selt93]). Second, in addition to borrowing techniquesmixed security environment. We describe our prototype in
developed in other projects, we have refined them to worRection 7, including initial performance measurements.
well in our serverless system. For instance, we haveection 8 describes related work, and Section 9 summarizes
transformed DASH's scalable cache consistency approadr conclusions.
into a more general, distributed control system that is alsg Background

fault tolerant. We have also improved upon Zebra to))
eliminate bottlenecks in its design by using distributed XFS builds upon several recent and ongoing research

management, parallel cleaning, and subsets of storage serv&f9rts to achieve our goal of distributing all aspects of file

called stripe groups. Finally, we have actually implemented€rVvice across the network. xFS's network disk storage
cooperative caching, building on prior simulation results. exploits the high performance and availability of Redundant
Arrays of Inexpensive Disks (RAIDs). We organize this

. The primary Ii!'nitat_ion of our serverle_ss approach is thaE,torage in a log structure as in the Sprite and BSD Log-
it is only appropriate in a restricted environment — among. . -tured File Systems (LFS), largely because Zebra
machines that communicate over a fast network and that tru&émonstrated how to exploit the s'ynergy between RAID and
one atnothtars k_ernels t;) ;anfk;)rce secunt_y. tl;ov;/etver, \I’:V?_FS to provide high performance, reliable writes to disks that
expect such environments to be common in the Tuluré. FQfe yistributed across a network. To distribute control across

the network, XxFS draws inspiration from several(FFS) [McKu84], to store pointers to the system’s data
multiprocessor cache consistency designs. Finally, since xH8ocks. However, where FFS’s inodes reside in fixed
has evolved from our initial proposal [Wang93], we describdocations, LFS’s inodes move to the end of the log each time
the relationship of the design presented here to previoukey are modified. When LFS writes a file’'s data block,
versions of the xFS design. moving it to the end of the log, it updates the file’s inode to
2 point to the new location of the data block; it then writes the
-1. RAID modified inode to the end of the log as well. LFS locates the
XFS exploits RAID-style disk striping to provide high mobile inodes by adding a level of indirection, called an
performance and highly available disk storage [Patt88map The imap contains the current log pointers to the
Chen94]. A RAID partitions atripe of data into N-1 data system’s inodes; LFS stores the imap in memory and
blocks and a parity block— the exclusive-OR of theperiodically checkpoints it to disk.
corresponding bits of the data blocks. It stores each data and Tpege checkpoints form a basis for LFS's efficient

parity block on a different disk. The parallelism of a RAID’s recovery procedure. After a crash, LFS reads the last

multiple disks provides high bandwidth, while its parity specipoint in the log and thealls forward, reading the later
storage provides fault tolerance — it can reconstruct theegments in the log to find the new location of inodes that
contents of a failed disk by taking the exclusive-OR of thg,are written since the last checkpoint. When recovery

remaining data blocks and the parity block. XFS uses singlg,mpjetes, the imap contains pointers to all of the system’s
parity disk striping to achieve the same benefits; in the fuwrﬁwodes, and the inodes contain pointers to all of the data
we plan to cope with multiple workstation or disk failures ks

using multiple parity blOCkS_ [Ifo’lal_194]' _ Another important aspect of LFS is Itsy cleanerthat
RAIDs suffer from two limitations. First, the overhea_ld Of_creates free disk space for new log segments using a form of
parity management can hurt performance for small writes; if o erational garbage collection. When the system overwrites
the system does not simultaneously overwrite all N-1 block§ ¢k, it adds the new version of the block to the newest log
of a stripe, it must first read the old parity and some of the °|§egment, creating a “hole” in the segment where the data used
data from the disks to compute the new parity. Unfortunately, regige. The cleaner coalesces old, partially empty segments

small writes are common in many environments [Bake91lytq 54 smaller number of full segments to create contiguous
and larger caches increase the percentage of writes in d'§bace in which to store new segments

workload mixes over fime. We expect cooperative The overhead associated with log cleaning is the primary
caching — using workstation memory as a global cache — t -
g g y d 8rawback of LFS. Although Rosenblum’s original

further this workload trend. A second drawback of ts found relativelv | | head
commercially available hardware RAID systems is that the);neaﬁurem(;n sdoun re ak|vet);] OWIC eaner ovbertﬂea s,ke\{en a
are significantly more expensive than non-RAID Commoditys.mfl.b otvzr cad can rrt1aFe the cieaner a kIO denec r'\n a
disks because the commercial RAIDs add special-purpo trz:ngalét?on eg\r'gg:gﬁ:;' i#cr:urerl,afggecvl\g;rnigg f)’vzlrjr?eaiz
hardware to compute parity. '

pute parity [Selt93, Selt9s].

2.2 LF_S 2.3. Zebra
XFS implements log-structured storage based on the

Sprite and BSD LFS prototypes [Rose92, Selt93] because Zebra [Hart95] proviqlesav_vay_ to combin_e LFS and RAID
this approach provides high-performance writes, simpl o that both work well in a distributed environment. Zebra

recovery, and a flexible method to locate file data stored o ses a software RAID on commodity hardware (workstation,

disk. LFS addresses the RAID small write problem b isks, and networks) to address RAID’s cost disadvantage,
buffering writes in memory and then committing them to dis

nd LFS’s batched writes provide efficient access to a
in large, contiguous, fixed-sized groups callegl segments network RAID. Further, the reliability of both LFS and RAID
it threads these segments on disk to create a logical appe

fpakes it feasible to distribute data storage across a network.

only log of file system modifications. When used with a LFS’s solution to the small write problem is particularly
RAID, each segment of the log spans a RAID stripe and ignportant for Zebra’s network striping since reading old data
committed as a unit to avoid the need to recompute parityo recalculate RAID parity would be a network operation for
LFS also simplifies failure recovery because all recen€ebra. As Figure 1 illustrates, each Zebra client coalesces its
modifications are located near the end of the log. writes into a privatger-client log It commits the log to the
Although log-based storage simplifies writes, it disks using fixed—s?zekd)g segme_n'@ach made up of several
potentially complicates reads because any block could 589 fragmentsthat it sends t(.) @fferent sto_rage servgr_d|sks
located anywhere in the log, depending on when it wagver the LAI_I. Log-based str!p|ng allows clients to efﬂmently
written. LFS’s solution to this problem provides a generaf:alculatQparlty fragment%nt!rfaly as a local operation, anq
mechanism to handle location-independent data storage. L'{,gen store them on an additional storage server to provide

uses per-filanodes,similar to those of the Fast File System high data availability.

Zebra’s log-structured architecture significantly Unfortunately, the fixed mapping from physical memory
simplifies its failure recovery. Like LFS, Zebra providesaddresses to consistency managers makes this approach
efficient recovery using checkpoint and roll forward. To roll unsuitable for file systems. Our goal is graceful recovery and
the log forward, Zebra relies aleltasstored in the log. Each load rebalancing whenever the number of machines in xFS
delta describes a modification to a file system blockchanges; such reconfiguration occurs when a machine
including the ID of the modified block and pointers to the oldcrashes or when a new machine joins XFS. Further, as we
and new versions of the block, to allow the system to replaghow in Section 3.2.4, by directly controlling which
the modification during recovery. Deltas greatly simplify machines manage which data, we can improve locality and
recovery by providing an atomic commit for actions thatreduce network communication.
modify state located on multiple machines: each delt .
encapsulates a set of changes to file system state that m 5 Previous xFS Work
occur as a unit. The design of XxFS has evolved considerably since our

Although Zebra points the way towards serverlessnes8'iginal proposal [Wang93, Dahl94a]. The original design
several factors limit Zebra's scalability. First, a sinfile Stored all system data in client disk caches and managed
managettracks where clients store data blocks in the log: th€&che consistency using a hierarchy of metadata servers
manager also handles cache consistency operations. Secoffted ata central server. Our new implementation eliminates
Zebra, like LFS, relies on a single cleaner to create empf§/i€nt disk caching in favor of network striping to take

segments. Finally, Zebra stripes each segment to all of tffvantage of high speed, switched LANs. We still believe
system’s storage servers, limiting the maximum number dhat the aggressive caching of the earlier design would work

storage servers that Zebra can use efficiently. well under different technology assumptions; in particular, its
_ _ efficient use of the network makes it well-suited for both
2.4. Multiprocessor Cache Consistency wireless and wide area network use. Moreover, our new

Network file systems resemble multiprocessors in thaflesign eliminates the central management server in favor of a
both provide a uniform view of storage across the Syste,.,qi,istributed metadata manager to provide better scalability,
requiring both to track where blocks are cached. Thidocality, and availability.
information allows them to maintain cache consistency by We have also previously examined cooperative
invalidating stale cached copies. Multiprocessors such asaching — using client memory as a global file cache — via
DASH [Leno90] and Alewife [Chai91] scalably distribute simulation [Dahl94b] and therefore focus only on the issues
this task by dividing the system’s physical memory evenlyraised by integrating cooperative caching with the rest of the
among processors; each processor manages the cadeeverless system.
consistency state for its own physical memory locatfons. 3. Serverless File Service

The RAID, LFS, Zebra, and multiprocessor cache
consistency work discussed in the previous section leaves

Client Memories three basic problems unsolved. First, we need scalable,

= = distributed metadata and cache consistency management,
<One Client's Write Log One Client's Write Log along with enough flexibility to dynamically reconfigure

(-0g Segment 00 Segmen} responsibilities after failures. Second, the system must

| 1 | 2 | 3 | | A | B | © | provide a scalable way to subset storage servers into groups

to provide efficient storage. Finally, a log-based system must
provide scalable log cleaning.

This section describes the XFS design as it relates to the
first two problems. Section 3.1 provides an overview of how
XFS distributes its key data structures. Section 3.2 then
provides examples of how the system as a whole functions for
several important operations. This entire section disregards
several important details necessary to make the design
practical; in particular, we defer discussion of log cleaning,
recovery from failures, and security until Sections 4
through 6.

Log Fragments Fr%aiment Log Fragments F,%airr'r%m

Storage Server Disks

Figure 1. Log-based striping used by Zebra and xFSEach L In the context of scalable multiprocessor consistency, this state is
client writes its new file data into a single append-only log and referred to as directory We avoid this terminology to prevent confusion
stripes this log across the storage servers. Clients compute paritwith file system directories that provide a hierarchical organization of file
for segments, not for individual files. names.

3.1. Metadata and Data Distribution allows each manager to locate where its files are stored in the

8n—disk log. File directories serve the same purpose in XFS as

ha standard UNIX file system, providing a mapping from a
man readable name to a metadata locator called an index

dynamically migrated during operation. We exploit thisnumber. Finally, the stripe group map provides mappings

location independence to improve performance by takin om segment _identifiers_ embed(_jed In disk log addresses to
advantage of all of the system'’s resources — CPUs, DRA e set of physical machines storing the segments. The rest of
and disks — to distribute load and increase locality ,Furthetthis subsection discusses these four data structures before

we use location independence to provide high availability b |\f/|ng an eTxatr)Tllplle of th;'r use in file reeﬁ; and W(;'tii' Fﬁr
allowing any machine to take over the responsibilities of elerence, Table 1 provides a summary of these and other key

failed component after recovering its state from the redundat S data structu;es. F'Elt”e 3trl1n Section 3.2.1 illustrates how
log-structured storage system. €se components work fogether.

In a typical centralized system, the central server has fo3.1.1. The Manager Map

The xFS design philosophy can be summed up with th
phrase, “anything, anywhere.” All data, metadata, and contr
can be located anywhere in the system and can

main tasks: xFS distributes management responsibilities according to
1.The server stores all of the system’s data blocks on i& globally replicated manager map. A client uses this
local disks. mapping to locate a file’'s manager from the file’s index

2.The server manages disk location metadata that indicat@g.mber by extrac.tmg some of the index number’s bits gnd
where on disk the system has stored each data block. using them as an index into the manager map. The map itself
is simply a table that indicates which physical machines

irtnseg:solg to satisfy some client misses without accessing This indirection allows xFS to adapt when managers ent_er
' or leave the system; the map can also act as a coarse-grained
4.The server manages cache consistency metadata that ligfgd balancing mechanism to split the work of overloaded
which clients in the system are caching each block. lmanagers. Where distributed multiprocessor cache
uses this metadata to invalidate stale data in clierdonsistency relies on a fixed mapping from physical
caches addresses to managers, xFS can change the mapping from

The xFS system performs the same tasks, but it builds JAd€x number to manager by changing the manager map.
the ideas discussed in Section 2 to distribute this work over To support reconfiguration, the manager map should have
all of the machines in system. To provide scalable control ¢it least an order of magnitude more entries than there are
disk metadata and cache consistency state, xFS spliganagers. This rule of thumb allows the system to balance
management amongmetadata managerssimilar to load by assigning roughly equal portions of the map to each
multiprocessor consistency managers. Unlike multiprocessor

managers, xFS managers can alter the mapping from files to ! ‘ . ‘ orage ‘
managers. Similarly, to provide scalable disk storage, xFS
uses log-based network striping inspired by Zebra, but it
dynamically clusters disks intstripe groupsto allow the %
system to scale to large numbers of storage servers. Finally, %

XFS replaces the server cache vattoperative cachinghat Network

forwards data among client caches under the control of the
managers. In XFS, four types of entities — the clients, storage

servers, and managers already mentioned andl¢a@ers

discussed in Section 4 — cooperate to provide file service as \ \ Manage

Figure 2 illustrates. (Manage} [Cleandr [Cleandr
The key challenge for xFS is locating data and metadata % % %

in this dynamically changing, completely distributed system.

The rest of this subsection examines four key maps used for LSS

this purpose: thenanager maptheimap, file directories and % % %

the stripe group map The manager map allows clients to ﬁtoragi /5torag /storag

determine which manager to contact for a file, and the imap Server Server Server

Figure 2. Two simple xFS installations.In the first, each

machine acts as a client, storage server, cleaner, and manager,
2. Note that the NFS server does not keep caches consistent. Inste While in the second each node only performs some of those roles.

NFS relies on clients to verify that a block is current before using it. we 1he freedom to configure the system is not complete; managers

rejected that approach because it sometimes allows clients to observe st and cleaners access storage using the client interface, so all
data when a client tries to read what another client recently wrote. machines acting as managers or cleaners must also be clients.

Data Structure Purpose Location Section
Manager Map Maps file’s index number manager. Globally replicated. 3.11
Imap Maps file's index numbes disk log address of file’s index node. Split among managers. 3.1.2
Index Node Maps file offset disk log address of data block. In on-disk log at storage servers. 3[1.2
Index Number Key used to locate metadata for a file. File directory. 3.1.3
File Directory Maps file's name. file’s index number. In on-disk log at storage servers. 3.13
Disk Log Address Key used to locate blocks on storage server disks. Includes a [dtrgex nodes and the imap. 3.1.4

group identifier, segment ID, and offset within segment.

Stripe Group Map Maps disk log addresdist of storage servers. Globally replicated. 3.14

Cache Consistency State Lists clients caching or holding the write token of each blocki Split among managers. B.2.1,3.2.3
Segment Utilization State Utilization, modification time of segments. Split among clients. 4

S-Files On-disk cleaner state for cleaner communication and recovery, In on-disk log at storage servers. 4

I-File On-disk copy of imap used for recovery. In on-disk log at storage servers, 5

Deltas Log modifications for recovery roll forward. In on-disk log at storage servers. 5
Manager Checkpoints Record manager state for recovery. In on-disk log at storage servefrs. 5

Table 1. Summary of key XFS data structuresThis table summarizes the purpose of the key xFS data structures. The location column
indicates where these structures are located in xFS, and the Section column indicates where in this paper the struiteck is desc

manager. When a new machine joins the system, xFS ci The disk storage for each file can be thought of as a tree
modify the manager map to assign some of the index numbWwhose root is the imap entry for the file’s index number and
space to the new manager by having the original manageWhOSG leaves are the data blocks. A file’s imap entry contains
send the corresponding part of their manager state to the nithe log address of the fileflsdex nodexFS index nodes, like
manager. Section 5 describes how the system reconfigurthose of LFS and FFS, contain the disk addresses of the file’'s
manager maps. Note that the prototype has not ydata blocks; forlarge files the index node can also contain log
implemented this dynamic reconfiguration of manager mapfaddreSSGS of indirect blocks that contain more data block
XFS globally replicates the manager map to all of theaddresses, double indirect blocks that contain addresses of

managers and all of the clients in the system. This repIicatic'mjIrGCt blocks, and so on.

allows managers to know their responsibilities, and it allow:3_1.3. File Directories and Index Numbers
clients to contact the correct manager directly — with the
same number of network hops as a system with a centraliz:
manager. We feel it is reasonable to distribute the manag
map globally because it is relatively small (even with
hundreds of machines, the map would be only tens c
kilobytes in size) and because it changes only to correct a loi
imbalance or when a machine enters or leaves the system.

The manager of a file controls two sets of information
about it, cache consistency state and disk location metada
Together, these structures allow the manager to locate . . . :
copies of the file’s blocks. The manager can thus forwanthe Cl"?nt that creates the f||¢. Section 3'2.'4 degcnpes
client read requests to where the block is stored, and it CES|muI§1t|on results of the 'eff:.actlveness of this policy in
invalidate stale data when clients write a block. For eacreducmg network communication.
block, the cache consistency state lists the clients cachingt3.1.4. The Stripe Group Map
block or the client that has write ownership of it. The nex

subsection describes the disk metadata.

3.1.2. The Imap

Managers track not only where file blocks are cached, bt
also where in the on-disk log they are stored. xFS uses tl
LFS imap to encapsulate disk location metadata; each file
index number has an entry in the imap that points to that file’
disk metadata in the log. To make LFS’s imap scale, xF.
distributes the imap among managers according to th
manager map so that managers handle the imap entries ¢
cache consistency state of the same files.

XFS uses the data structures described above to locate a
file's manager given the file’'s index number. To determine
the file’s index number, xFS, like FFS and LFS, uses file
directories that contain mappings from file names to index
numbers. xFS stores directories in regular files, allowing a
client to learn an index number by reading a directory.

In XFS, the index number listed in a directory determines
a file’s manager. When a file is created, we choose its index
number so that the file’'s manager is on the same machine as

Like Zebra, xFS bases its storage subsystem on simple
storage servers to which clients write log fragments. To
improve performance and availability when using large
numbers of storage servers, rather than stripe each segment
over all storage servers in the system, xFS implements stripe
groups as have been proposed for large RAIDs [Chen94].
Each stripe group includes a separate subset of the system’s
storage servers, and clients write each segment across a stripe
group rather than across all of the system’s storage servers.
XFS uses a globally replicated stripe group map to direct
reads and writes to the appropriate storage servers as the
system configuration changes. Like the manager map, xFS

globally replicates the stripe group map because it is smadlelow. When a client writes a segment to a group, it includes
and seldom changes. The current version of the prototypée stripe group’s ID in the segment’s identifier and uses the
implements reads and writes from multiple stripe groups, bunap’s list of storage servers to send the data to the correct
it does not dynamically modify the group map. machines. Later, when it or another client wants to read that

Stripe groups are essential to support large numbers §egment, it uses the identifier and the stripe group map to
storage servers for at least four reasons. First, without strip@cate the storage servers to contact for the data or parity.
groups, clients would stripe each of their segments over all of xFS distinguishes current and obsolete groups to support
the disks in the system. This organization would requirgeconfiguration. When a storage server enters or leaves the
clients to send small, inefficient fragments to each of theystem, xFS changes the map so that each active storage
many storage servers or to buffer enormous amounts of dadarver belongs to exactly one current stripe group. If this
per segment so that they could write large fragments to eackconfiguration changes the membership of a particular
storage server. Second, stripe groups match the aggregat®up, xFS does not delete the group’s old map entry. Instead,
bandwidth of the groups’ disks to the network bandwidth oft marks that entry as “obsolete.” Clients write only to current
a client, using both resources efficiently; while one clientstripe groups, but they may read from either current or
writes at its full network bandwidth to one stripe group,obsolete stripe groups. By leaving the obsolete entries in the
another client can do the same with a different group. Thirdnap, xFS allows clients to read data previously written to the
by limiting segment size, stripe groups make cleaning morgroups without first transferring the data from obsolete
efficient. This efficiency arises because when cleaners extragtoups to current groups. Over time, the cleaner will move
segments’ live data, they can skip completely emptyata from obsolete groups to current groups [Hart95]. When
segments, but they must read partially full segments in thethe cleaner removes the last block of live data from an
entirety; large segments linger in the partially-full stateobsolete group, xFS deletes its entry from the stripe group
longer than small segments, significantly increasing cleaningap.
costs. Finally, stripe groups greatly improve availability. .
Because each group stores its own parity, the system c§n2' System Operation
survive multiple server failures if they happen to strike This section describes how xFS uses the various maps we
different groups; in a large system with random failures thislescribed in the previous section. We first describe how
is the most likely case. The cost for this improved availabilityeads, writes, and cache consistency work and then present
is a marginal reduction in disk storage and effectivesimulation results examining the issue of locality in the
bandwidth because the system dedicates one parity server pgsignment of files to managers.
gro_llj_f] rathte_r than one for the entlrgdsystem. . ‘;3-2.1. Reads and Caching

e stripe group ma rovides several pieces o _ . . .
information gbout eagh gI’O[l)Jprthe group’s ID, thepmembers Figure 3 illustrates _hO_W XFS Teads a block given a f|_Ie
of the group, and whether the grouptisrentor obsoletewe name and an offset within that file. Although the figure is

describe the distinction between current and obsolete grou gmplex, the complexity in the architecture is de3|g,ned 0
rovide good performance with fast LANs. On today’s fast

Cache
Consistency Magr. UNIX Client Data
State _ to Cache to Block [D
UNIX Data Client Client Index # Client o
Cache Block E)) ID =Z= Offset — Zs n
n Gl nix e
] e Cache i
Magr Client gtrrcl)ﬂ?) SS
Directory Map t'g” Imap| L— Map I\/It%r. DSisSk to Kl]ggé
Name, |, Index # Mgr.Mgr. Index # I,Gggé_, SS.SS I[Gggé_, (5) Mgr-
Offset > Offset™ "5 ~ D Offet Ty Addr. |)] '© “Addr. .oﬁ%ﬂs —@——I
Access Local Data Structure— Stripe
Possible Network HopZ=> G,J.‘;‘,f,p I\/Itgr. SS tSOS é)latak
Data or Metadata Block (or Cac lgatak ss 55 LData Disk client =22 Ig
Globally Replicated Dat A(?gr ID%%{?&I(= n
Local Portion of Global Dat ' ' e

Figure 3. Procedure to read a blockThe circled numbers refer to steps described in Section 3.2.1. The network hops are labelled as
“possible” because clients, managers, and storage servers can run on the same machines. For example, xFS tries toncarlagate the

of a file on the same machine as the client most likely to use the file to avoid some of the network hops. “SS” is an aldbreviatio
“Storage Server.”

LANSs, fetching a block out of local memory is much fasterwould still need to notify the manager of the fact that they

than fetching it from remote memory, which, in turn, is muchnow cache the block so that the manager knows to invalidate

faster than fetching it from disk. the block if it is modified. Finally, our approach simplifies the
To open a file, the client first reads the file’s parentdesign by eliminating client caching and cache consistency

directory (labeled. in the diagram) to determine its index for index nodes — only the manager handling an index

number. Note that the parent directory is, itself, a data file thatumber directly accesses its index node.

must be read using the prqcedure described here. As wi§1_2.2_ Writes

FFS, XFS breaks this recursion at the root; the kernel learns

the index number of the root when it mounts the file system. Clients buffer writes in their local memory until
committed to a stripe group of storage servers. Because xFS

As the top left path in the figure indicates, the client firstuses a lo ! . .
. - g-based file system, every write changes the disk
checks its local UNIX block cache for the blode if the address of the modified block. Therefore, after a client

blockis present, the request is done. Otherwise it follows th(?ommits a segment to a storage server, the client notifies the

lower path to fetch the data over the network. xFS first Uses, o dified blocks’ managers: the managers then update their

the manager map to locate the correct manager for the ind ex nodes and imaps and periodically log these changes to
number 2b) and then sends the request to the manager. If ﬂﬁable storage. As with Zebra, xFS does not need to

manager 1S not co-located with the client, this m(':'SS"“gEsimultaneously" commit both index nodes and their data
requires a network hop. blocks because the client’s log includededta that allows

The manager then tries to satisfy the request by fetchingconstruction of the manager’s data structures in the event of
the data from some other client’s cache. The manager checkglient or manager crash. We discuss deltas in more detail in
its cache consistency staBa), and, if possible, forwards the section 5.1.
request to a client caching the data. That client reads the block : - :
from its UNIX block cache and forwards the data directly to As in BSD LFS [Selt93], each manager caches s portion

he cli h - dth Th | dof the imap in memory and stores it on disk in a special file
the ¢ |entt. at 0r|g|na}te t c request. e manager aiso a gglled theifile. The system treats the ifile like any other file
the new client to its list of clients caching the block.

with one exception: the ifile has no index nodes. Instead, the

If no other client can supply the data from memory, thesystem locates the blocks of the ifile using manager
manager routes the read request to disk by first examining th@eckpoints described in Section 5.1.

imap to locate the block’s index nodb). The manager may .

find the index node in its local cachég) or it may have to 3-2.3. Cache Consistency

read the index node from disk. If the manager has to read the xFS utilizes a token-based cache consistency scheme
index node from disk, it uses the index node’s disk logsimilar to Sprite [Nels88] and Andrew [Howa88] except that
address and the stripe group map) (to determine which xFS manages consistency on a per-block rather than per-file
storage server to contact. The manager then requests thasis. Before a client modifies a block, it must acquire write
index block from the storage server, who then reads the bloaivnership of that block. The client sends a message to the
from its disk and sends it back to the manadgr The block’'s manager. The manager then invalidates any other
manager then uses the index nodg t6 identify the log cached copies of the block, updates its cache consistency
address of the data block. (We have not shown a detail: if thaformation to indicate the new owner, and replies to the
file is large, the manager may have to read several levels ofient, giving permission to write. Once a client owns a block,
indirect blocks to find the data block’s address; the managehe client may write the block repeatedly without having to
follows the same procedure in reading indirect blocks as iask the manager for ownership each time. The client
reading the index node.) maintains write ownership until some other client reads or

The manager uses the data block’s log address and thgites the data, at which point the manager revokes
stripe group map7j to send the request to the storage servepwnership, forcing the client to stop writing the block, flush
keeping the block. The storage server reads the data from @8y changes to stable storage, and forward the data to the new
disk (8) and sends the data directly to the client that originallyglient.
asked for it. XFS managers use the same state for both cache

One important design decision was to cache index nod@®nsistency and cooperative caching. The list of clients
at managers but not at clients. Although caching index nodégching each block allows managers to invalidate stale
at clients would allow them to read many blocks from storagéached copies in the first case and to forward read requests to
servers without sending a request through the manager félients with valid cached copies in the second.

each block, doing so has three significant drawbacks. Fir il .
by reading blocks from disk without first contacting the%'2'4' Management Distribution Policies

manager, clients would lose the opportunity to use XFS tries to assign files used by a client to a manager co-

cooperative caching to avoid disk accesses. Second, althou@¢ated on that machine. This section presents a simulation
clients could sometimes read a data block directly, the§tudy that examines policies for assigning files to managers.

We show that co-locating a file’s management with the clienbr delete file request. The communication for a read block
that creates that file can significantly improve locality,requestincludes all of the network hops indicated in Figure 3.
reducing the number of network hops needed to satisfy clie@espite the large number of network hops that can be
requests by over 40% compared to a centralized manager.incurred by some requests, the average per request is quite
The xFS prototype uses a policy we call First Writer.Jow. 75% of read requests in the trace were satisfied by the
When a client creates a file, xFS chooses an index numblécal cache; as noted earlier, the local hit rate would be even
that assigns the file’s management to the manager co-locatBigher if the trace included local hits in the traced system. An
with that client. For comparison, we also simulated gverage local read miss costs 2.9 hops under the First Writer
Centralized policy that uses a single, centralized manager th@licy; & local miss normally requires three hops (the client
is not co-located with any of the clients. asks the manager, the manager forwards the request, and the
storage server or client supplies the data), but 12% of the time

We examined management policies by simulating xi=S %can avoid one hop because the manager is co-located with

behavior under a seven day trace of 236 clients’ NF
: . e client making the request or the client supplying the data.
accesses to an Auspex file server in the Berkeley Comput . . . -
. L . nder both the Centralized and First Writer policies, a read
Science Division [Dahl94al. We warmed the SImUIatecjmiss will occasionally incur a few additional hops to read an
caches through the first day of the trace and gathered statistics y P

through the rest. Since we would expect other workloads t'gdex node or indirect block from a storage server.

yield different results, evaluating a wider range of workloads Writes benefit more dramatically from locality. Of the

remains important work. 55% of write requests that required the client to contact the
The simulator counts the network messages necessary to 6.000.000
satisfy client requests, assuming that each client has 16 MB Rahaad | Delete Hop]
of local cache and that there is a manager co-located with § 5 000,000 Vli\ilgtaedmoopp]
each client, but that storage servers are always remote. % 000.000
; . . . 4 L
Two artifacts of the trace affect the simulation. First, g MU

M

omitting requests that resulted in local hits, the trace inflates
the average number of network hops needed to satisfy a read 1,000,000}
request. Because we simulate larger caches than those of the
traced system, this factor does not alter the total number of 0
network requests for each policy [Smit77], which is the ;
relative metric we use for comparing policies.)) Managemgnt Policy

.) e Figure 4. Comparison of locality as measured by

The second limitation of the trace is that its finite length network traffic for the Centralized and First Writer

does not allow us to determine a file’s “First Writer” with management policies.
certainty for references to files created before the beginning
of the trace. For files that are read or deleted in the trace
before being written, we assign management to random
managers at the start of the trace; when and if such a file is
written for the first time in the trace, we move its
management to the first writer. Because write sharing is
rare — 96% of all block overwrites or deletes are by the
block’s previous writer — we believe this heuristic will yield
results close to a true “First Writer” policy for writes,
although it will give pessimistic locality results for “cold-
start” read misses that it assigns to random managers.

<L
Figure 4 shows the impact of the policies on locality. The 0 .
First Writer policy reduces the total number of network hops Hops Per Hops Per Hops Per

Read* Write Delete
i i 0,
needed to satisfy client requests by 43%. Most of the Figure 5. Average number of network messages needed

difference comes from improving write locality; the to satisfy a read block, write block, or delete file request
algorithm does little to improve locality for reads, and deletes under the Centralized and First Writer policies. The

;) Hops Per Write column does not include a charge for
accqunt for only a small fraction of the system’s network writing the segment containing block writes to disk because
traffic. the segment write is asynchronous to the block write

; ; request and because the large segment amortizes the per
Figure 5 illustrates the average number of network block write cost. *Note that the number of hops per read

messages to satisfy a read block request, write block request would be even lower if the trace included all local hits in
the traced system.

Netwo

because the trace was gathered by snooping the network, it 3,000,000]
does not include reads that resulted in local cache hits. By
2,000,000t _

Centralized First Writer

4+ cCentralized[] First Writer [l
35} —]
3l

Network Hops Per Request
N

manager to establish write ownership, the manager was cd-1.. Distributing Utilization Status
located with the client 90% of the time. When a manager had
to invalidate stale cached data, the cache being invalidat

was local one-third of the time. Finally, when clients ﬂusheg

data to d|sk,_they informed th? manager of the data’s ne ookkeeping, and it provides good locality; because clients

storage |ocation, a local operation 90% of the time. seldom write-share data [Bake91, Kist92, Blaz93] a client’s
Deletes, though rare, also benefit from locality: 68% ofwrites usually affect only local segments’ utilization status.

file delete requests went to a local manager, and 89% of the We simulated this policy to examine how well it reduced

clients notified to stop caching deleted files were local to th‘tahe overhead of maintaining utilization information. As input

manager. to the simulator, we used the Auspex trace described in

In the future, we plan to examine other policies forSection 3.2.4, but since caching is not an issue, we gather
assigning managers. For instance, we plan to investigatgatistics for the full seven day trace (rather than using some
modifying directories to permit XFS to dynamically change af that time to warm caches.)

file’s index number and thus its manager after it has been Figure 6 shows the results of the simulation. The bars

created. This capability would allow fine-grained IOadsummarize the network communication necessary to monitor

balancing on a per-file rather than a per-manager map entQégment state under three policies: Centralized Pessimistic,

ba_sis,_and it would permit XF.S to impro"‘? locality byCentralized Optimistic, and Distributed. Under the
swiiching managers when a different machine rep(':'amdlé':entralized Pessimistic policy, clients notify a centralized,

accesses a file. remote cleaner every time they modify an existing block. The
Another optimization that we plan to investigate isCentralized Optimistic policy also uses a cleaner that is
assigning multiple managers to different portions of the samgmote from the clients, but clients do not have to send
file to balance load and provide locality for parallel messages when they modify blocks that are still in their local
workloads. write buffers. The results for this policy are optimistic
4. Cleanin because the simulator assumes that blocks survive in clients’
. g . ; . .
]) write buffers for 30 seconds or until overwritten, whichever
When a log-structured file system such as xFS writes dajg sooner; this assumption allows the simulated system to
by appending complete segments to its log, it ofteryyoid communication more often than a real system since it
invalidates blocks in old segments, leaving “holes” thalypes not account for segments that are written to disk early

contain no data. LFS usesog cleanerto coalesce live data qye to syncs [Bake92]. (Unfortunately, syncs are not visible
from old segments into a smaller number of new segments,

XFS assigns the burden of maintaining each segment’s
ilization status to the client that wrote the segment. This
proach provides parallelism by distributing the

creating completely empty segments that can be used for ©100%¢
future full segment writes. Since the cleaner must create 8 -

. . m Modified By
empty segments at least as quickly as the system writes new ' 80% ¢} B Same Client]
segments, a single, sequential cleaner would be a bottleneck S (< 30s)
in a distributed system such as xFS. Our design therefore 3 60%]
provides a distributed cleaner. % - “é'SﬁiEeé’liE%t

An LFS cleaner, whether centralized or distributed, has G 40% (> 30s)
three main tasks. First, the system must kedipation status ©
about old segments — how many “holes” they contain and = 20% Modified By]
how recently these holes appeared — to make wise decisions [Difflefent
about which segments to clean [Rose92]. Second, the system 0% 3o 5o g e
must examine this bookkeeping information to select %é’ %‘g 3
segments to clean. Third, the cleaner reads the live blocks %g ‘g'g 3

oa OO0 (=)

from old log segments and writes those blocks to new) . o
Figure 6. Simulated network communication between

segments. clients and cleaner.Each bar shows the fraction of all
The rest of this section describes how xFS distributes blocks modified or deleted in the trace, based on the time

; . ; and client that modified the block. Blocks can be
cleaning. We first describe how xFS tracks segment modified by a different client than originally wrote the

utilizations, then how we identify subsets of segments to data, by the same client within 30 seconds of the
examine and clean, and finally how we coordinate the parallel ~ previous write, or by the same client after more than 30

; ; seconds have passed. T®entralized Pessimistigolicy
cleaners to keep the file system consistent. Because the assumes every modification requires network traffic. The

prototype does not yet implement the distributed Cleaner, this Centralized Optimistic scheme avoids network
section includes the key simulation results motivating our ~ communication when the same client modifies a block it
design wrote within the previous 30 se'con.ds, while the

’ Distributed scheme avoids communication whenever a
block is modified by its previous writer.

10

in our Auspex traces.) Finally, under the Distributed policy5. Recovery and Reconfiguration
each client tracks the status of blocks that it writes so that it

needs no network messages when modifying a block fog
which it was the last writer.

Availability is a key challenge for a distributed system
uch as xFS. Because xFS distributes the file system across
many machines, it must be able to continue operation when

During the seven days of the trace, of the one milliorsome of the machines fail. To meet this challenge, xFS builds
blocks written by clients and then later overwritten or deletedgn zebra’s recovery mechanisms, the keystone of which is
33% were modified within 30 seconds by the same client angédundant, log-structured storage. The redundancy provided
therefore required no network communication under thgy a software RAID makes the system’s logs highly
Centralized Optimistic policy. However, the Distributed available, and the log-structured storage allows the system to
scheme does much better, reducing communication by @uickly recover a consistent view of its data and metadata
factor of eighteen for this workload compared to even théhrough LFS checkpoint recovery and roll-forward.

Centralized Optimistic policy. LFS provides fast recovery by scanning the end of its log
4.2. Distributing Cleaning to first read a checkpoint and then roll forward, and Zebra
. . b L demonstrates how to extend LFS recovery to a distributed
Clients store their segment utilization informationsin . . : . .

system in which multiple clients are logging data

files. We implement s-files as normal xFS files to facilitate .)
. . - . . concurrently. xFS addresses two additional problems. First,
recovery and sharing of s-files by different machines in the . .
XFS regenerates the manager map and stripe group map using
system. s :
]] S) a distributed consensus algorithm. Second, XFS recovers
Each s-file contains segment utilization information formanager metadata from multiple managers’ logs, a process
segments written by one client to one stripe group: clientgat xS makes scalable by distributing checkpoint writes and

separate s-files in their directories for segments stored e clients.

different St”'?e groups.) o) The prototype implements only a limited subset of XFS’s

A leader in each stripe group initiates cleaning when th?«‘ecovery functionality — storage servers recover their local
number of free segments in that group falls below a low Walefiate after a crash, they automatically reconstruct data from
mark or when the group is idle. The group leader decidesarity when one storage server in a group fails, and clients
which cleaners should clean the stripe group’s segments. lfite deltas into their logs to support manager recovery.
sends each of those cleaners part of the list of s-files thafowever, we have not implemented manager checkpoint
contain utilization information for the group. By giving eaChwrites, checkpoint recovery reads, or delta reads for roll
cleaner a different subset of the s_—files, XFS specifies subsgtsyard. The current prototype also fails to recover cleaner
of segments that can be cleaned in parallel. state and cache consistency state, and it does not yet

A simple policy would be to assign each client to clean itsmplement the consensus algorithm needed to dynamically
own segments. An attractive alternative is to assign cleaningconfigure manager maps and stripe group maps. This
responsibilities to idle machines. xFS would do this bysection outlines our recovery design and explains why we
assigning s-files from active machines to the cleaners runnirexpect it to provide scalable recovery for the system.
on idle ones. However, given the complexity of the recovery problem and
dinati | the early state of our implementation, continued research will
4.3. Coordinating Cleaners be needed to fully understand scalable recovery.

Like BSD LFS and Zebra, xFS uses optimistic
concurrency control to resolve conflicts between cleane5'1' Data Structure Recovery
updates and normal file system writes. Cleaners do not lock Table 2 lists the data structures that storage servers,
files that are being cleaned, nor do they invoke cacheanagers, and cleaners recover after a crash. For a system-
consistency actions. Instead, cleaners just copy the blockade reboot or widespread crash, recovery proceeds from
from the blocks’ old segments to their new segmentsstorage servers, to managers, and then to cleaners because
optimistically assuming that the blocks are not in the procedater levels depend on earlier ones. Because recovery depends
of being updated somewhere else. If there is a confliabn the logs stored on the storage servers, XFS will be unable
because a client is writing a block as it is cleaned, théo continue if multiple storage servers from a single stripe
manager will ensure that the client update takes precedengeup are unreachable due to machine or network failures.
over the cleaner's update. Although our algorithm forWe plan to investigate using multiple parity fragments to
distributing cleaning responsibilities never simultaneouslyallow recovery when there are multiple failures within a
asks multiple cleaners to clean the same segment, the sastepe group [Blau94]. Less widespread changes to xFS
mechanism could be used to allow less strict (e.gmembership — such as when an authorized machine asks to
probabilistic) divisions of labor by resolving conflicts join the system, when a machine notifies the system that it is
between cleaners. withdrawing, or when a machine cannot be contacted because

11

of a crash or network failure— trigger similar caching or for which it has write ownership from that
reconfiguration steps. For instance, if a single managenanager’s portion of the index number space.
crashes, the system skips the steps to recover the storageThe remainder of this subsection describes how managers
servers, going directly to generate a new manager map thgld clients work together to recover the managers’ disk
assigns the failed manager's duties to a new manager; tigation metadata — the distributed imap and index nodes
new manager then recovers the failed managers disjqat provide pointers to the data blocks on disk. Like LFS and
metadata from the storage server logs using checkpoint a'ﬂzbra, xFS recovers this data using a checkpoint and roll
roll forward, and it recovers its cache consistency state byynvard mechanism. XFS distributes this disk metadata
polling clients. recovery to managers and clients so that each manager and
5.1.1. Storage Server Recovery clleqt log written before the crash is assigned to one manager
or client to read during recovery. Each manager reads the log

The segments stored on storage server disks contain thgntaining the checkpoint for its portion of the index number
logs needed to recover the rest of XFS’s data structures, so ce, and, where possible, clients read the same logs that
storage servers initiate recovery by restoring their intermajey \wrote before the crash. This delegation occurs as part of

data structures. When a storage server recovers, it regeneri&s -onsensus process that generates the manager map.
its mapping of xFS fragment IDs to the fragments’ physical The goal of manager checkpoints is to help managers

disk addresses, rebuilds its map of its local free disk space

and verifies checksums for fragments that it stored near tH&COVEr their imaps f_rom the Io_g_s. As S_ect_|on 3.2.2 d(_e_scrlbed,
anagers store copies of their imaps in files called ifiles. To

time of the crash. Each storage server recovers th _ - .

information independently from a private checkpoint, so thi e_Ip recover the imaps from t_he _|f||es, managers penodmglly

stage can proceed in parallel across all storage servers. write checkpo_mts that contain I'S,ts of pointers to the disk
storage locations of the ifiles’ blocks. Because each

_ Storage servers next regenerate their stripe group Magseckpoint corresponds to the state of the ifile when the
First, the storage servers use a distributed consensyfecypoint is written, it also includes the positions of the
algorithm [Cris91, Ricc9l, Schr9l] to determine groupgjients' |ogs reflected by the checkpoint. Thus, once a
membership and to elect a group leader. Each storage Seryginaqer reads a checkpoint during recovery, it knows the
then sends the leader alist of stripe groups for which it storegqra e Iocations of the blocks of the ifile as they existed at
segments, and the leader combines these lists to form a list@f, time of the checkpoint and it knows where in the client
groups where fragments are already stored (the obsol§igys 1 start reading to learn about more recent modifications.
stripe groups). The leader then assigns each active storagfe main difference between xFS and Zebra or BSD LFS is
server to a current stripe group, and distributes the resulting: vrs has multiple managers, so each xFS manager writes
stripe group map to the storage servers. its own checkpoint for its part of the index number space.

5.1.2. Manager Recovery During recovery, managers read their checkpoints

Once the storage servers have recovered, the managitdependently and in parallel. Each manager locates its
can recover their manager map, disk location metadata, af#€CkPoInt by first querying storage servers to locate the
cache consistency metadata. Manager map recovery useS&Vest segment written to its log before the crash and then
consensus algorithm as described above for stripe groJEad'”g backwards in the log until it finds the segment with
recovery. Cache consistency recovery relies on server-drivdl€ Most recent checkpoint. Next, managers use this
polling [Bake94, Nels88]: a recovering manager contacts theheckpoint to recover their portions of the imap. Although the

clients, and each client returns a list of the blocks that it ig'anagers’ checkpoints were written at different times and
therefore do not reflect a globally consistent view of the file

system, the next phase of recovery, roll-forward, brings all of

Data Structure Recovered the managers’ disk-location metadata to a consistent state
From corresponding to the end of the clients’ logs.
Storage |Log Segments Local Data To account for changes that had not reached the
Server Structures managers’ checkpoints, the system uses roll-forward, where
Stripe Group Map Consensus clients use the deltas stored in their logs to replay actions that
Manager | Manager Map Consensus occurred later than the checkpoints. To initiate roll-forward,
Disk Location Metadata Checkpoint ahd the managers use the log position information from their
Roll Forward checkpoints to advise the clients of the earliest segments to
Cache Consistency Metadata Poll Clients scan. Each client locates the tail of its log by querying storage
Cleaner | Segment Utilization S-Files servers, and then it reads the log backwards to locate the

earliest segment needed by any manager. Each client then

Table 2. Data structures restored during recoveryRecovery reads forward in its log, using the manager map to send the
occurs in the order listed from top to bottom because lower data .
structures depend on higher ones. deltas to the appropriate managers. Managers use the deltas to

12

update their imaps and index nodes as they do during normal Like other file systems, XFS trusts the kernel to enforce a
operation; version numbers in the deltas allow managers foewall between untrusted user processes and kernel
chronologically order different clients’ modifications to the subsystems such as XFS. The XFS storage servers, managers,
same files [Hart95]. and clients can then enforce standard file system security
| semantics. For instance, xFS storage servers only store
5.1.3. Cleaner Recovery fragments supplied by authorized clients; XFS managers only
Clients checkpoint the segment utilization informationgrant read and write tokens to authorized clients; xFS clients
needed by cleaners in standard xFS files, called s-filesnly allow user processes with appropriate credentials and
Because these checkpoints are stored in standard files, theyrmissions to access file system data.

are automatically recovered by the storage server and \ye expect this level of trust to exist within many settings.
manager phases of recovery. However, the §—_f|le§ may net,, instance, xFS could be used within a group or
reflect the most recent changes to segment utilizations at th@)artment's administrative domain, where all machines are
time of the crash, so s-file recovery also includes a roll,yministered the same way and therefore trust one another.
forward phase. Each client rolls forward the utilization Stat%imilarly xFS would be appropriate within a NOW where

of the segments tracked in its s-file by asking the other clien{$sers already trust remote nodes to run migrated processes on
for summaries of their modifications to those segments thafeir pehalf. Even in environments that do not trust all

are more recent than the s-file checkpoint. To avoid scanniNgsktop machines, xFS could still be used within a trusted

their logs _twice, f:lients gather this segment utilization. e of desktop machines and servers, among physically
summary information during the roll-forward phase for

secure compute servers and file servers in a machine room, or
manager-metadata. within one of the parallel server architectures now being
5.2. Scalability of Recovery researched [qui93, Kusk94]. In these cases, the xFS core
could still provide scalable, reliable, and cost-effective file

Even with the parallelism provided by xFS’s approach t.oservice to less trustddnge clients running more restrictive

manager recovery, future work will be needed to evaluate 'tﬁrotocols The downside is that the core system can not

scalability. Our design is based on the observation that, WhigXploit the untrusted CPUs. memories. and disks located in
the procedures described above can require 2O(N tpe fringe ' ’

communications steps (where N refers to the number o

clients, managers, or storage servers), each phase can proceed-'€nt trust is a concern for xFS because xFS ties its
in parallel across N machines. clients more intimately to the rest of the system than do

For inst to locate the tails of th ¢ | traditional protocols. This close association improves
or instance, 1o locate the tails of the systems logs, ea‘ﬁ[?erformance, but it may increase the opportunity for
manager and client queries each storage server group

. . . . schievous clients to interfere with the system. In either XFS
locate the end of its log. While this can require a total o r

> : a traditional system, a compromised client can endanger
O(N) messages, each manager or client only needs to Com%%tta accessed by a user on that machine. However, a damaged
N storage server groups, and all of the managers and clie ’

. . XFS client can do wider harm by writing bad logs or by
can_proceed n paral!el, pro_wded that they take steps to avoé%pplying incorrect data via cooperative caching. In the
having many machines simultaneously contact the sa ture we plan to examine techniques to guard against
storage server [Bake94]; we plan use randomization t9

lish thi L Simil derati v o th nauthorized log entries and to use encryption-based
accompliis IS goal. similar considerations apply 1o Eft?lchniques to safeguard cooperative caching.

phases where managers read their checkpoints, clients ro o)
Our current prototype allows unmodified UNIX fringe

forward, and managers query clients for their cache . .
consistency state. clients to access XFS core machines using the NFS protocol

_ as Figure 7 illustrates. To do this, any xFS client in the core
6. Security exports the xFS file system via NFS, and an NFS client

XFS, as described, is appropriate for a restricted
environment — among machines that communicate over a
fast network and that trust one another’s kernels to enforce
security. XFS managers, storage servers, clients, and cleaners
must run on secure machines using the protocols we have
described so far. However, XxFS can support less trusted
clients using different protocols that require no more trust
than traditional client protocols, albeit at some cost to
performance. Our current implementation allows unmodified
UNIX clients to mount a remote XFS partition using the
standard NFS protocol.

NFS Clients

XFS Core

Figure 7. An xFS core acting as a scalable file server for
unmodified NFS clients.

13

employs the same procedures it would use to mount af data from parity, we have not completed implementation
standard NFS partition from the xFS client. The xFS cor®f manager state checkpoint and roll forward; also, we have
client then acts as an NFS server for the NFS client, providingot implemented the consensus algorithms necessary to
high performance by employing the remaining xFS coresalculate and distribute new manager maps and stripe group
machines to satisfy any requests not satisfied by its locahaps; the system currently reads these mappings from a non-
cache. Multiple NFS clients can utilize the XFS core as aFS file and cannot change them. Additionally, we have yet
scalable file server by having different NFS clients mount théo implement the distributed cleaner. As a result, xFS is still
XFS file system using different xFS clients to avoidbest characterized as a research prototype, and the results in
bottlenecks. Because xFS provides single machine sharitigis paper should thus be viewed as evidence that the
semantics, it appears to the NFS clients that they argerverless approach is promising, not as “proof” that it will
mounting the same file system from the same server. Thaicceed.
NFS clients also benefit from xFS’s high availability since .
they can mount the file system using any available XFS cIienZ'Z' Test Environment
Of course, a key to good NFS server performance is to For our testbed, we use a total of 32 machines: eight dual-
efficiently implement synchronous writes; our prototype doegrocessor SPARCStation 20's, and 24 single-processor
not yet exploit the non-volatile RAM optimization found in SPARCStation 10’s. Each of our machines has 64 MB of
most commercial NFS servers [Bake92], so for besphysical memory. Uniprocessor 50 MHz SS-20's and SS-
performance, NFS clients should mount these partitions usintf)’s have SPECInt92 ratings of 74 and 65, and can copy large
the “unsafe” option to allow xFS to buffer writes in memory.blocks of data from memory to memory at 27 MB/s and
20 MB/s, respectively.

7. xFS Prototype We use the same hardware to compare xFS with two

This section describes the state of the xFS prototype as gfntral-server architectures, NFS [Sand85] and AFS (a
August 1995 and presents preliminary performance resuli§smmercial version of the Andrew file system [Howa8sg)).
measured on a 32 node cluster of SPARCStation 10's angje yse NFS as our baseline system for practical reasons —
20's. Although these results are preliminary and although WRiFs is mature, widely available, and well-tuned, allowing
expect future tuning to significantly improve absoluteeasy comparison and a good frame of reference — but its
performance, they suggest that xFS has achieved its goal ighitations with respect to scalability are well known
scalability. For instance, in one of our microbenchmarkstHowagg]_ Since many NFS installations have attacked
32 clients achieved an aggregate large file write bandwidth Q4gs's |imitations by buying shared-memory multiprocessor
13.9 MB/s, close to a linear speedup compared to a singlgrvers, we would like to compare xFS running on
client’'s 0.6 MB/s bandwidth. Our other tests indicated similakygrkstations to NFS running on a large multiprocessor
speedups for reads and small file writes. server, but such a machine was not available to us, so our

The prototype implementation consists of four mainNFS server runs on essentially the same platform as the
pieces. First, we implemented a small amount of code asdiients. We also compare XFS to AFS, a more scalable
loadable module for the Solaris kernel. This code providesentral-server architecture. However, AFS achieves most of
XFS’s interface to the Solaris v-node layer and also accessiés scalability compared to NFS by improving cache
the kernel buffer cache. We implemented the remaining thrggerformance; its scalability is only modestly better compared
pieces of XFS as daemons outside of the kernel address sp&x®&FS for reads from server disk and for writes.

to facilitate debugging [Howa88]. If the xFS kernel module For our NFS and AFS tests, we use one of the SS-20's as
cannot satisfy a request using the buffer cache, then it sengie server and the remaining 31 machines as clients. For the
the request to the client daemon. The client daemons provigs tests, all machines act as storage servers, managers, and
the rest of xFS’s functionality by accessing the managegjients unless otherwise noted. For experiments using fewer
daemons and the storage server daemons over the networkyan 32 machines, we always include all of the SS-20’s before
The rest of this section summarizes the state of thstarting to use the less powerful SS-10's.
prototype, describes our test environment, and presents our The xFS storage servers store data on a 256 MB partition
results. of a 1.1 GB Seagate-ST11200N disk. These disks have an
7.1. Prototype Status advertised average seek time of 5.4 ms and ro_tate at
] 5,411 RPM. We measured a 2.7 MB/s peak bandwidth to
~ The prototype implements most of xFS's key featuresygaq from the raw disk device into memory. For all xFS tests,
including distributed management, cooperative caching, ange ,se a log fragment size of 64 KB, and unless otherwise
network disk striping with single parity anq multiple groups. ygted we use storage server groups of eight machines —
We have not yet completed implementation of a number &feyen for data and one for parity: all xFS tests include the
other features. The most glaring deficiencies are in crasf\ernead of parity computation. The AFS clients use a

recovery and cleaning. Although we have implemented g g partition of the same disks for local disk caches.
storage server recovery, including automatic reconstruction

14

The NFS and AFS central servers use a larger and2. RPC and TCP/IP overheads severely limit xFS’s network
somewhat faster disk than the xFS storage servers, a 2.1 GB performance. We are porting XFS’s communications
DEC RZ 28-VA with a peak bandwidth of 5 MB/s from the layer to Active Messages [VE92] to address this issue.
raw partition into memory. These servers also use ag \we have done little profiling and tuning. As we do so, we
Prestoserve NVRAM card that acts as a buffer for disk writes expect to find and fix inefficiencies.

[Bake92]. We did not use an NVRAM buffer for the xFS

machines, but xFS'’s log buffer provides similar performance AS @ result, the absolute performance is much less than we
benefits. expect for the well-tuned xFS. As the implementation

. . . matures, we expect a single xFS client to significantly
A high-speed, .SW'tChed Myrinet ngtwork [Bode9§] utperform an NFS or AFS client by benefitting from the
connects the machines. Although each link of the physm%

. andwidth of multiple disks and from cooperative caching.
network has a peak bandwidth of 80 MBIs, RP.C a}nd TCPil ur eventual performance goal is for a single xFS client to
protocol overheads place a much lower limit on the

h h I hieved [Keet95]. The th hout f achieve read and write bandwidths near that of its maximum
throughput actually achieved [Keet95]. The throughput Ohetwork throughput, and for multiple clients to realize an

fast .networks such as the Myrinet'depend§ heavily on th ggregate bandwidth approaching the system’s aggregate
version and patch level of the Solaris operating system use cal disk bandwidth

For our xFS measurements, we used a kernel that we)

compiled from the Solaris 2.4 source release. We measured The microbenchmark results presented here stress the
the TCP throughput to be 3.2 MBIs for 8 KB packets wherpc@lability of xFS's storage servers and managers. We
using this source release. For the NFS and AF€xamine read and write throughput for large files and write
measurements, we used the binary release of Solaris operformance for small files, but we do not examine small file
augmented with the binary patches recommended by Sun &d performance explicitly because the network is too slow
of June 1, 1995. This release provides better networl® Provide an mterestlng evaluation of cooperative caching;
performance; our TCP test achieved a throughput of/ leave this t’avaluatlon as future work. We also_ use
8.4 MB/s for this setup. Alas, we could not get sources for thedtyanarayanan's Andrew benchmark [Howa8g] as a simple
patches, so our xFS measurements are penalized with€4aluation of application-level performance. In the future, we
slower effective network than NFS and AFS. RPC overhead¥an 0 compare the systems’ performance under more
further reduce network performance for all three systems. démanding applications.

7.3. Performance Results 7.3.1. Scalability

This section presents a set of preliminary performance Figures 8 through 10.iIIustrate the scalability of xFS’s
results for xFS under a set of microbenchmarks designed Rg"formance for large writes, large reads, and small writes.

stress file system scalability and under an application-levéior each of these tests, as the number of clients inpreases, o]
benchmark. does xFS’s aggregate performance. In contrast, just a few

- lients saturate NFS’s or AFS’s single server, limiting peak
These performance results are preliminary. As note

o . roughput.
above, several significant pieces of the xFS system —))]
manager checkpoints and cleaning— remain to be Figure 8 illustrates the performance of our disk write

implemented. We do not expect these additions tdhroughput test, in which each client writes a large (10 MB),

significantly impact the results for the benchmarks presentelfivate file and then invokes sync() to force the data to disk
here. We do not expect checkpoints to ever limittsome of the data stay in NVRAM in the case of NFS and
performance. However, thorough future investigation will be*FS-) A single xFS client is limited to 0.6 MB/s, about one-
needed to evaluate the impact of distributed cleaning underird of the 1.7 MB/s throughput of a single NFS client; this
wide range workloads; other researchers have measurdiference is largely due to the extra kernel crossings and

sequential cleaning overheads from a few percent [R0569§§sociated d_ata copies in the user-level xFS impl_ementation
Blac95] to as much as 40% [Selt95], depending on th@S well as high network protocol overheads. A single AFS
workload. client achieves a bandwidth of 0.7 MB/s, limited by AFS’s

. . kernel crossings and overhead of writing data to both the
Also, the current prototype implementation suffers from

three inefficienci Il of which il attack in the fut local disk cache and the server disk. As we increase the
ree inetliciencies, ail ot which we will attack in the Tutire. , mper of clients, NFS's and AFS'’s throughputs increase

1.xFS is currently implemented as a set of user-level praanly modestly until the single, central server disk bottlenecks
cesses by redirecting vnode layer calls. This hurts perfoboth systems. The xFS configuration, in contrast, scales up to
mance because each user/kernel space crossing requigegeak bandwidth of 13.9 MB/s for 32 clients, and it appears
the kernel to schedule the user level process and copliat if we had more clients available for our experiments, they
data to or from the user process’s address space. To fiould achieve even more bandwidth from the 32 xFS storage
this limitation, we are working to move xFS into the ker-servers and managers.
nel. (Note that AFS shares this handicap.)

15

Figure 9 illustrates the performance of XxFS and NFS foclients to cache data in local memory, providing scalable
large reads from disk. For this test, each machine flushes imndwidths of 20 MB/s to 30 MB/s per client when clients
cache and then sequentially reads a per-client 10 MB fileaccess working sets of a few tens of megabytes. Furthermore,
Again, a single NFS or AFS client outperforms a single XFRFS provides a larger, though slower, local disk cache at
client. One NFS client can read at 2.8 MB/s, and an AF&ach client that provides scalable disk-read bandwidth for
client can read at 1.0 MB/s, while the current xFSworkloads whose working sets do not fit in memory; our 32-
implementation limits one xFS client to 0.9 MB/s. As is thenode AFS cluster can achieve an aggregate disk bandwidth of
case for writes, xFS exhibits good scalability; 32 clientsearly 40 MB/s for such workloads. This aggregate disk
achieve a read throughput of 13.8 MB/s. In contrast, twdandwidth is significantly larger than xFS’s maximum disk
clients saturate NFS at a peak throughput of 3.1 MB/s and t#andwidth for two reasons. First, as noted above, xFS is
clients saturate AFS’s central server disk at 1.9 MB/s. largely untuned, and we expect the gap to shrink in the future.

are not cached, all three file systems achieve much bettéfhile AFS’s cache accesses are local. Thus, there will be
scalability when clients can read data from their caches t§Pme workloads for which AFS’s disk caches achieves a

avoid interacting with the server. All three systems allowhigher aggregate disk-read bandwidth than xFS’s network
storage. xFS’s network striping, however, provides better

write performance and will, in the future, provide better read
XFS performance for individual clients via striping. Additionally,
once we have ported cooperative caching to a faster network
protocol, accessing remote memory will be much faster than
going to local disk, and thus the clients’ large, aggregate
memory cache will further reduce the potential benefit from
local disk caching.

Figure 10 illustrates the performance when each client
creates 2,048 files containing 1 KB of data per file. For this
benchmark, xFS’s log-based architecture overcomes the
AFS current implementation limitations to achieve approximate
NFS parity with NFS and AFS for a single client: one NFS, AFS,

S or XFS client can create 51, 32, or 41 files per second,

Clients respectively. xFS also demonstrates good scalability for this
Figure 8. Aggregate disk write bandwidth. The x axis benchmark. 32 XFS clients generate a total of 1,122 files per
indicates the number of clients simultaneously writing private second, while NFS’s peak rate is 91 files per second with four

10 MB files, and the y axis indicates the total throughput .) ;) :
across all of the active clients. xFS uses four groups of eight clients and AFS’s peak is 87 files per second with four

storage servers and 32 managers. NFS’s peak throughput isclients.
1.9 MB/s with 2 clients, AFS’s is 1.3 MB/s with 32 clients,
and xFS’s is 13.9 MB/s with 32 clients.

14 MBI/s,

12 MB/s
10 MB/s
8 MB/s
6 MB/s
4 MB/s

2 MB/s} ,

Aggregate Large-Write Bandwidth

0 MB/

1200 files/s
£ 14 MBJs = XFS
g Sl B 1000 files/s
S 12 MB/s 8
: B s00t
_g; 10 MB/s 5 800 files/q
@ 0
¢ 8MBIs § 600 files/s
Q =
5 6MBIs ® 400 files/s
- =
L
(0] _
g AMBhs : 200 files/s
5 . ! AFS
g =R O files/gy—s——15—15—20 72530 2
0 MB/5 510 15 20 25 30 35 Clients
Clients Figure 10. Aggregate small write performanceThe x axis
Figure 9. Aggregate disk read bandwidth. The x axis indicates the number of clients, each simultaneously creating

indicates the number of clients simultaneously reading private 2,048 1 KB files. The y axis is the average aggregate number of
10 MB files and the y axis indicates the total throughput file creates per second during the benchmark run. XFS uses four
across all active clients. xFS uses four groups of eight storage groups of eight storage servers and 32 managers. NFS achieves
servers and 32 managers. NFS’s peak throughput is 3.1 MB/s its peak throughput of 91 files per second with four clients, AFS
with two clients, AFS’s is 1.9 MB/s with 12 clients, and xFS’s peaks at 87 files per second with four clients, and XFS scales up
is 13.8 MB/s with 32 clients. to 1,122 files per second with 32 clients.

16

NFS 250 s AFS 250 s XES

make
readAll
scanDir

co
mapI%/eDir

0 0
0O 5 10 15 20 25 30 0O 5 10 15 20 25 30 0 5 10 15 20 25 30
Clients Clients Clients
Figure 11. Average time to complete the Andrew benchmark for NFS, AFS, and xFS as the number of clients simultaneously
executing the benchmark variesThe total height of the shaded areas represents the total time to complete the benchmark; each shaded
area represents the time for one of the five phases of the benchmark: makeDir, copy, scanDir, readAll, and make. Feysitokthe
the caches were flushed before running the benchmark.

Figure 11shows the average time for a client to completstripe group size from eight to four reduces the fraction of
the Andrew benchmark as the number of clients varies fcfragments that store data as opposed to parity. The additional
each file system. This benchmark was designed as a simfoverhead reduces the available disk bandwidth by 16% for
yardstick for comparing application-level performance forthe system using groups of four servers.
common tasks such as copying, reading, and compiling file: .
When one client is running the benchmark, NFS take7'3'3' Manager Scalability
64 seconds to run and AFS takes 61 seconds, while xF Figure 13 shows the importance of distributing
requires somewhat more time— 78seconds. xFS'management among multiple managers to achieve both
scalability, however, allows xFS to outperform the othemparallelism and locality. It varies the number of managers
systems for larger numbers of clients. For instance, withandling metadata for 31 clients running the small write
32 clients xFS takes 117 seconds to complete the benchmabenchmarl This graph indicates that a single manager is a
while increased I/O time, particularly in the copy phase of thsignificant bottleneck for this benchmark. Increasing the
benchmark, increases NFS'’s time to 172 seconds and AFSsystem from one manager to two increases throughput by
time to 210seconds. A surprising result is that NFSover 80%, and a system with four managers more than
outperforms AFS when there are a large number of clientdoubles throughput compared to a single manager system.

this is because in-memory file caches have growr Continuing to increase the number of managers in the
dramatically since this comparison was first made [Howa88]system continues to improve performance under xFS’s First

and the working set of the benchmark now fits in the NFSwriter policy. This policy assigns files to managers running
clients’ in-memory caches, reducing the benefit of AFS’s on

disk caches. 14 MB/s

XFS (8 SS’s per Group

7.3.2. Storage Server Scalability 12 MB/s

In the above measurements, we used a 32-node xF
system where all machines acted as clients, managers, &
storage servers and found that both bandwidth and sm:
write performance scaled well. This section examines th
impact of different storage server organizations on ths
scalability. Figure 12 shows the large write performance a
we vary the number of storage servers and also as we char
the stripe group size.

Increasing the number of storage servers improve
performance by spreading the system’s requests across m Figure 12. Large write throughput as a function of the
(_:PUS a_nd disks. The increase in bandwidth falls short ¢ number of.storage servers in the systent.he x axis indicates
linear with the number of storage servers, however, becau the total number of storage servers in the system and the y axis

client overheads are also a significant limitation on syster indicates the aggregate bandwidth when 32 clients each write a
bandwidth 10 MB file to disk. The 8 SS’s line indicates performance for

stripe groups of eight storage servers (the default), and the 4
Reducing the stripe group size from eight storage serve SS's shows performance for groups of four storage servers.

to four reduces the system’s aggregate bandwidth by 8%
2_2% forthe dlffer?nt measurements. We attr!bUte mOSt.Of thi 3-Due to a hardware failure, we ran this experiment with three groups
difference to the increased overhead of parity. Reducing thof eight storage servers and 31 clients.

10 MB/s

8 MB/s p
& MB/s 7"~ "XFS (4 SS's per Group)
4 MB/s

2 MB/s

Aggregate Large-Write Bandwidth

0 MB/s 101520 25 30 35

Storage Servers

17

on the same machine as the clients that create the filg§,0Ve93] provide redundant distributed data storage for
Section 3.2.4 described this policy in more detail. The systerparallel environments, and Tiger [Rash94] services
with 31 managers can create 45% more files per second tharultimedia workloads.

the system with four managers under this policy. This TijckerTAIP [Ca093], SNS [Lee95], and AutoRAID
improvement comes not from load distribution but from[Wi|k95] implement RAID-derived storage systems. These
locality; when a larger fraction of the clients also hOStsystems could provide services similar to xFS's storage
managers, the algorithm is able to successfully co-locatgarvers, but they would require serverless management to
managers with the clients accessing a file more often. provide a scalable and highly available file system interface

The Nonlocal Manager line illustrates what would happerio augment their simpler disk block interfaces. In contrast
without locality. For this line, we altered the system’swith the log-based striping approach taken by Zebra and xFS,
management assignment policy to avoid assigning fileFickerTAIP’'s RAID level 5 [Patt88] architecture makes
created by a client to the local manager. When the system healculating parity for small writes expensive when disks are
four managers, throughput peaks for this algorithm becaugdstributed over the network. SNS combats this problem by
the managers are no longer a significant bottleneck for thissing a RAID level 1 (mirrored) architecture, but this
benchmark; larger numbers of managers do not furtheapproach approximately doubles the space overhead for
improve performance. storing redundant data. AutoRAID addresses this dilemma by

storing data that is actively being written to a RAID level 1

8. Related Work and migrating inactive data to a RAID level 5.

Section 2 discussed a number of projects that provide an gqyeral MPP designs have used dynamic hierarchies to

important ba_15|s for xXFS. _Thls section describes seve_ral othgluid the fixed-home approach used in traditional directory-
efforts to b_und decentrallzeo! file systems an_d then discussgs,sed MPPs. The KSR1 [Rost93] machine, based on the
the dynamic management hierarchies used in some MPPs.pp\ proposal [Hage92], avoids associating data with fixed
Several file systems, such as CFS [Pier89], Bridgé&ome nodes. Instead, data may be stored in any cache, and a
[Dibb89], and Vesta [Corb93], distribute data over multiplehierarchy of directories allows any node to locate any data by
storage servers to support parallel workloads; however, theyearching successively higher and more globally-complete
lack mechanisms to provide availability across componerdirectories. While an early xFS study simulated the effect of
failures. a hierarchical approach to metadata for file systems
Other parallel systems have implemented redundant dalRahl94a], we now instead support location-independence
storage intended for restricted workloads consisting entirelSing a manager-map-based approach for three reasons. First,
of large files, where per-file striping is appropriate and wher@ur approach eliminates the “root” manager that must track
large file accesses reduce stress on their centralized managér data; such a root would bottleneck performance and
architectures. For instance, Swift [Cabr91] and SFgeduce availability. Second, the manager map allows a client
to locate a file's manager with at most one network hop.

131200 files/s oI Final_ly, tr_]e manager map approach can be integrated more
5 readily with the imap data structure that tracks disk location
glooo files/d metadata.
€ 800 files/s 9. Conclusions
4 Serverless file systems distribute file system server
$ 600 files/s responsibilities across large numbers of cooperating
g _ machines. This approach eliminates the central server
T 400 files/s bottleneck inherent in today’s file system designs to provide
‘__g 200 files/d improved performance, scalability, fand availability. Further,
&) 24 Storage Servels serverless systems are cost effective because their scalable
0 files/s 31 Clients architecture eliminates the specialized server hardware and

> 10 15 20 25 30 35 convoluted system administration necessary to achieve
Managers

i . . scalability under current file systems. The xFS prototype
Figure 13. Small write performance as a function of the d he viabili f buildi h labl
number of managers in the system and manager locality ~d€monstrates the viability of building such scalable systems,
policy. The x axis indicates the number of managers. The y axisand its initial performance results illustrate the potential of
is the average aggregate number of file creates per second by 3fjs approach.
clients, each simultaneously creating 2,048 small (1 KB) files.
The two lines show the performance using the First Writer policy
that co-locates a file’s manager with the client that creates théo‘(:kr]o\l\lledgmeﬂts

file, and a Nonlocal policy that assigns management to some We owe several members of the Berkeley
other machine. Because of a hardware failure, we ran thi ot : ;

experiment with three groups of eight storage servers and 3?0mmumcat'o_ns AbStraCtlon Layer group — D.aVId Culler,
clients. The maximum point on the x-axis is 31 managers. Lok Liu, and Rich Martin — a large debt for helping us to get

18

the 32-node Myrinet network up. We also made use of aSymp. on Computer Architectyrpages 245-254, April
modified version of Mendel Rosenblum’s LFS cleaner 1994.
simulator. Eric Anderson, John Hartman, Frans Kaashoek,

anonymous SOSP and TOCS referees provided he|pfu|8ystemsPthheS|s, Princeton University, January 1993.

comments on earlier drafts of this paper; these commercl)tét

reatly improved both the technical content and presentati 0de9sS] N. Boden, D. Cohen, R. Felderman, A. Kulawik,
9 y Improv : P I9Tc. Seitz, J. Seizovic, and W. Su. Myrinet — A Gigabit-per-

of this work. Second Local-Area NetworkEEE Micro, pages 29-36,
This work is supported in part by the Advanced ResearchFebruary 1995.

Projects Agency (N00600-93-C-2481, F30602-95-C-0014),

the National Science Foundation (CDA 0401156), CalifornidCabr91] L. Cabrera and D. Long. Swift: A Storage Architec-

MICRO, the AT&T Foundation, Digital Equipment ture for Large Objects. IRroc. Eleventh Symp. on Mass

Corporation, Exabyte, Hewlett Packard, IBM, Siemens Storage Systempages 123-128, Oct 1991.

Corporation, Sun Microsystems, and Xerox Corporation Ca093] P. Cao, S.Lim, S.Venkataraman, and J. Wilkes.

Anderson was also supported by a National Scienc The TickerTAIP Parallel RAID Architecture. Proc. of the

Foundation Presidential Faculty Fellowship, Neefe by a 5nih Symp. on Computer Architectupges 52-63, May
National Science Foundation Graduate Research Fellowshipggg3. ’

and Roselli by a Department of Education GAANN

fellowship. The authors can be contacted at {tea, dahlifChai91] D. Chaiken, J. Kubiatowicz, and A. Agarwal. Lim-
neefe, patterson, drew, rywang}@CS.Berkeley.EDU; itLESS Directories: A Scalable Cache Coherence Scheme.
additional information about xFS can be found at In ASPLOS-IV Proceedingpages 224-234, April 1991.
http://now.CS.Berkeley.edu/Xfs/xfs.html.
[Chen94] P.Chen, E.Lee, G.Gibson, R.Katz, and
References D. Patterson. RAID: High-Performance, Reliable Second-
[Ande95] T.Anderson, D.Culler, D. Patterson, and the ary StorageACM Computing Survey86(2):145-188, June
NOW team. A Case for NOW (Networks of Workstations). 1994.
IEEE Micro, pages 54-64, February 1995.
[Corb93] P. Corbett, S. Baylor, and D. Feitelson. Overview
[Bake91] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and of the Vesta Parallel File Systei@omputer Architecture
J. Ousterhout. Measurements of a Distributed File System.News 21(5):7-14, December 1993.
In Proc. of the 13th Symp. on Operating Systems Pringiples
pages 198-212, October 1991. [Cris91] F. Cristian. Reaching Agreement on Processor
Group Membership in Synchronous Distributed Systems.
[Bake92] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and Distributed Computing4:175-187, 1991.
M. Seltzer. Non-Volatile Memory for Fast, Reliable File
Systems. IASPLOS-Ypages 10-22, September 1992. [Cyph93] R. Cypher, A.Ho, S. Konstantinidou, and
P. Messina. Architectural Requirements of Parallel Scien-
[Bake94] M. BakerFast Crash Recovery in Distributed File tific Applications with Explicit Communication. IRroc. of
SystemsPhD thesis, University of California at Berkeley, the 20th International Symposium on Computer Architec-
1994, ture, pages 2-13, May 1993.

[Basu95] A. Basu, V. Buch, W. Vogels, and T. von Eicken.[Dahl94a] M. Dahlin, C. Mather, R. Wang, T. Anderson, and
U-Net: A User-Level Network Interface for Parallel and D. Patterson. A Quantitative Analysis of Cache Policies for
Distributed Computing. IRroc. of the 15th Symp. on Oper- Scalable Network File Systems.Pnoc. of 1994 SIGMET-
ating Systems PrincipleBecember 1995. RICS pages 150-160, May 1994.

[Birr93] A.Birrell, A.Hisgen, C.Jerian, T.Mann, and [Dahl94b] M. Dahlin, R.Wang, T.Anderson, and
G. Swart. The Echo Distributed File System. Technical Re- D. Patterson. Cooperative Caching: Using Remote Client
port 111, Digital Equipment Corp. Systems Research Cen-Memory to Improve File System PerformancePhoc. of
ter, September 1993. the First Symp. on Operating Systems Design and Imple-

mentation pages 267—280, November 1994.

[Blac95] T. Blackwell, J. Harris, and M. Seltzer. Heuristic
Cleaning Algorithms in Log-Structured File Systems. In[Dibb89] P. Dibble and M. Scott. Beyond Striping: The
Proc. of the 1995 Winter USENIZanuary 1995. Bridge Multiprocessor File Systentomputer Architech-

ture News17(5):32—-39, September 1989.

[Blau94] M. Blaum, J.Brady, J.Bruck, and J. Menon.

EVENODD: An Optimal Scheme for Tolerating Double [Doug91] F. Douglis and J. Ousterhout. Transparent Process
Disk Failures in RAID Architectures. IRroc. of the 21st Migration: Design Alternatives and the Sprite Implementa-

19

tion. Software: Practice and ExperiencL(7), July 1991. ary 1992.

[Hage92] E. Hagersten, A. Landin, and S. Haridi. DDM-A[LoVe93] S. LoVerso, M. Isman, A. Nanopoulos,
Cache-Only Memory ArchitecturelEEE Computer W. Nesheim, E. Milne, and R. Wheeler. sfs: A Parallel File
25(9):45-54, September 1992. System for the CM-5. IRroc. of the Summer 1993 Usenix

pages 291-305, 1993.

[Hart95] J. Hartman and J. Ousterhout. The Zebra Striped
Network File SystemACM Trans. on Computer Systems [Majo94] D. Major, G. Minshall, and K. Powell. An Over-
August 1995. view of the NetWare Operating SystemPlroc. of the 1994

Winter USENIXpages 355-72, January 1994.

[Howa88] J.Howard, M.Kazar, S.Menees, D. Nichols,

M. Satyanarayanan, R. Sidebotham, and M. West. Scal®cKu84] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A
and Performance in a Distributed File Syst&@M Trans. Fast File System for UNIXACM Trans. on Computer Sys-
on Computer System®(1):51-81, February 1988. tems 2(3):181-197, August 1984.

[Kaza89] M. Kazar. Ubik: Replicated Servers Made Easy. I{Nels88] M. Nelson, B. Welch, and J. Ousterhout. Caching in
Proc. of the Second Workshop on Workstation Operatingthe Sprite Network File SysterACM Trans. on Computer
Systemspages 60-67, September 1989. Systems6(1), February 1988.

[Keet95] K. Keeton, T. Anderson, and D. Patterson. LogHPatt88] D. Patterson, G. Gibson, and R. Katz. A Case for
Quantified: The Case for Low-Overhead Local Area Net- Redundant Arrays of Inexpensive Disks (RAID).liter-
works. InProc. 1995 Hot Interconnecgtéugust 1995. nat. Conf. on Management of Dataages 109-116, June

1988.

[Kist92] J. Kistler and M. Satyanarayanan. Disconnected Op-
eration in the Coda File SysteACM Trans. on Computer [Pier89] P. Pierce. A Concurrent File System for a Highly
Systemsl10(1):3-25, February 1992. Parallel Mass Storage Subsystem.Pioc. of the Fourth

Conf. on Hypercubes, Concurrent Computers, and Applica-

[Kubi93] J. Kubiatowicz and A. Agarwal. Anatomy of a tions pages 155-160, 1989.

Message in the Alewife Multiprocessor.Pnoc. of the 7th

Internat. Conf. on Supercomputintuly 1993. [Pope90] G. Popek, R.Guy, T.Page, and J. Heidemann.

Replication in the Ficus Distributed File SystemPhoc. of

[Kusk94] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, the Workshop on the Management of Replicated ,[patg-

R. Simoni, K. Gharachorloo, J.Chapin, D. Nakahira, es 5-10, November 1990.

J. Baxter, M. Horowitz, A.Gupta, M.Rosenblum, and

J. Hennessy. The Stanford FLASH MultiprocessoRroc. [Rash94] R. Rashid. Microsoft’s Tiger Media ServerThe

of the 21st Internat. Symp. on Computer Architectoages First Networks of Workstations Workshop Rec@dtober

302-313, April 1994. 1994,

[Lee95] E. Lee. Highly-Available, Scalable Network Stor- [Ricc91] A. Ricciardi and K. Birman. Using Process Groups
age. InProc. of COMPCON 951995. to Implement Failure Detection in Asynchronous Environ-
ments. InProc. Tenth Symp. on Principles of Distributed
[Leffo1] A. Leff, P. Yu, and J. Wolf. Policies for Efficient = Computing pages 341-353, August 1991.
Memory Ultilization in a Remote Caching Architecture. In
Proc. of the First Internat. Conf. on Parallel and Distribut- [Rose92] M. Rosenblum and J. Ousterhout. The Design and
ed Information Systempages 198-207, December 1991. Implementation of a Log-Structured File SysteACM
Trans. on Computer System€(1):26-52, February 1992.
[Leno90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta,
and J. Hennessy. The Directory-Based Cache CoherenfiRost93] E. Rosti, E. Smirni, T. Wagner, A. Apon, and
Protocol for the DASH Multiprocessor. Rroc. of the 17th L. Dowdy. The KSR1: Experimentation and Modeling of
Internat. Symp. on Computer Architectupages 148-159, Poststore. InProc. of 1993 SIGMETRIGCSages 74-85,
May 1990. June 1993.

[Lisk91] B. Liskov, S.Ghemawat, R. Gruber, P.Johnson[Sand85] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
L. Shrira, and M. Williams. Replication in the Harp File and B. Lyon. Design and Implementation of the Sun Net-
System. InProc. of the 13th Symp. on Operating Systemswork Filesystem. IrProc. of the Summer 1985 USENIX
Principles pages 226—238, October 1991. pages 119-130, June 1985.

[Litz92] M. Litzkow and M. Solomon. Supporting Check- [Schr91] M. Schroeder, A. Birrell, M. Burrows, H. Murray,

pointing and Process Migration Outside the UNIX Kernel. R. Needham, T. Rodeheffer, E. Satterthwaite, and
In Proc. of the Winter 1992 USENIgages 283—-290, Janu- C. Thacker. Autonet: A High-Speed, Self-Configuring Lo-

20

cal Area Network Using Point-to-Point LinkdEEE Jour-
nal on Selected Areas in Communicatie(8):1318—-1335,
October 1991.

[Selt93] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin.
An Implementation of a Log-Structured File System for
UNIX. In Proc. of the 1993 Winter USENIXages 307—
326, January 1993.

[Selt95] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File System Logging
Versus Clustering: A Performance ComparisorRioc. of
the 1995 Winter USENI[Xanuary 1995.

[Smit77] A. Smith. Two Methods for the Efficient Analysis
of Memory Address Trace DatlEEE Trans. on Software
Engineering SE-3(1):94-101, January 1977.

[VE92] T.von Eicken, D. Culler, S. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. Rroc. of 1992 ASP-
LOS pages 256—-266, May 1992.

[Walk83] B. Walker, G.Popek, R. English, C. Kline, and
G. Thiel. The LOCUS distributed operating system. In
Proc. of the 5th Symp. on Operating Systems Pringiples
pages 49-69, October 1983.

[Wang93] R. Wang and T. Anderson. xFS: A Wide Area
Mass Storage File System. Fourth Workshop on Work-
station Operating Systemsages 71-78, October 1993.

[Wilk95] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan.
The HP AutoRAID Hierarchical Storage System Plroc.
of the 15th Symp. on Operating Systems Pringiplesem-
ber 1995.

[Wolf89] J. Wolf. The Placement Optimization Problem: A

Practical Solution to the Disk File Assignment Problem. In
Proc. of 1989 SIGMETRIGPages 1-10, May 1989.

21

