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Abstract
Real-time compression for primary storage is quickly

becoming widespread as data continues to grow exponen-
tially, but adding compression on the data path consumes
scarce CPU and memory resources on the storage sys-
tem. Our work aims to mitigate this cost by introducing
methods to quickly and accurately identify the data that
will yield significant space savings when compressed.

The first level of filtering that we employ is at the data
set level (e.g., volume or file system), where we estimate
the overall compressibility of the data at rest. Accord-
ing to the outcome, we may choose to enable or disable
compression for the entire data set, or to employ a sec-
ond level of finer-grained filtering. The second filtering
scheme examines data being written to the storage system
in an online manner and determines its compressibility.

The first-level filtering runs in mere minutes while
providing mathematically proven guarantees on its esti-
mates. In addition to aiding in selecting which volumes
to compress, it has been released as a public tool, allow-
ing potential customers to determine the effectiveness of
compression on their data and to aid in capacity plan-
ning. The second-level filtering has shown significant
CPU savings (up to 35%) while maintaining compression
savings (within 2%).

1 Introduction
Data continues to grow at an exponential rate, outpacing
the growth of storage capacity [9]. Data is also growing
faster than IT budgets are, making it difficult to purchase
and maintain the disk drives required to store necessary
data [8]. Historically, compression has been widely used
in tape systems, desktop storage, WAN optimization, and
within applications such as databases. In the past few
years, deduplication and compression have been widely
adopted in backup and archive storage. More recently,
enterprise storage solutions have been adopting compres-
sion for primary storage.

In practice, primary storage compression comes in
three main flavors: real-time or inline compression [2, 15,
21–23], offline compression [6], and a mix of real-time
and offline [18]. Our work focuses on real-time compres-
sion for block and file primary storage systems. However,
its basic principles are general and can be applied to other
compression use cases as well.

∗This research was partially supported by the European Commu-
nity’s Seventh Framework Programme (FP7/2001-2013) under grant
agreement number 257019 - VISION Cloud.

Compression does not come for free: it consumes sys-
tem resources, mainly CPU time and memory. It may
also increase latency for both write and read operations,
where data must be compressed and decompressed, re-
spectively. On the other hand, if compression reduces the
data size substantially, performance can improve; disk
I/O time is reduced, and the system’s cache can hold
more data. These benefits can neutralize the compres-
sion overheads, and in some cases overall performance
may even improve substantially.

But what if the compression yields little or no benefit
for a given data set? In such cases, not only are there no
capacity savings (and associated cost savings), but also
degraded performance and wasted resources. Worse yet,
standard LZ type compression algorithms incur higher
performance overheads when the data does not compress
well. Figure 1 shows that with the standard zlib library [5,
7], one invests 3.5X (or more) as much time when com-
pressing data that compresses to 90% of its original size
as it does when compressing data that reduces to 20%.
These observations indicate that it is advisable to avoid
compressing what we refer to as “incompressible” data.

Our work addresses the problem of identifying incom-
pressible data in an efficient manner, allowing systems
to effectively utilize their limited resources: compressing
only data that will yield benefits, and not compressing
data that will cause the system to needlessly waste re-
sources and incur unnecessary overheads. Our solution
is comprised of two components: a macro-scale com-
pression estimation for the data set, and a micro-scale
compressibility test for individual write operations.

Our macro-scale estimation tool is an efficient offline
method for accurately determining the overall compres-
sion ratio and distribution of compression ratios for a data
set (e.g., volume or file system). It runs in a matter of
minutes and provides tight statistical guarantees on its
estimates. The output of the estimate can result in three
main actions. First, if the estimate shows that the data
is highly compressible overall, compression can be en-
abled with confidence that little-to-no resources will be
wasted. Second, if the output indicates that compression
will yield little benefit, compression can be disabled, al-
lowing resources to be directed to more beneficial tasks.
Third, if the data set contains data of varying compress-
ibility which has the potential to yield significant savings,
but where compressing all data would be wasteful, the
micro-scale test can be enabled to safely enable compres-
sion on a finer granularity.



230 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

The micro-scale test examines data as it is written and
for each write buffer, quickly determines the effective-
ness of compressing it. This online test must be quick
and accurate to maximize the benefits of compression.
If it is not significantly faster than compression, perfor-
mance will be similar to compressing all data. If it is not
accurate, we may miss opportunities to compress data
or waste resources on incompressible data. A common
method to determine if a write buffer is compressible is
to compress the first portion and see how well it com-
presses. We call this prefix estimation. If the prefix com-
presses well enough, the remainder of the buffer will then
be compressed, and so there is no overhead because no
extra work is done. However, the micro-scale test is most
important when there is a significant amount of incom-
pressible data, and here prefix estimation has a high over-
head (recall that compression is most expensive for in-
compressible data). We have developed a method to com-
plement prefix estimation that samples the data buffer and
employs heuristics to determine its compressibility. For
incompressible data, it has 2–6X less performance over-
head, and overall incurs less capacity overhead due to
missed compression opportunities.

Our contributions: The contributions of this paper
are the designs and implementations of the macro- and
micro-scale tests, along with thorough experimentation
and analysis on real-world data.

The macro-scale test provides a quick and accurate es-
timate for which data sets to compress. It has been re-
leased to the public as a tool for use with real-time com-
pression on the IBM Storwize V7000 and SAN Volume
Controller [13]; it has been proven in the field to be an
effective tool for customers to determine the effective-
ness of compression on their data, the amount of stor-
age to purchase, and which volumes to compress. It is
also being used in a cloud storage prototype to selec-
tively enable compression for large data transfers over
the WAN. The results are mathematically proven to pro-
vide a well-defined degree of accuracy, so its estimates
can be trusted.

The micro-scale test heuristics have proved critical in
reducing resource consumption while maximizing com-
pression for volumes containing a mix of compressible
and incompressible data. The heuristic method managed
to reduce CPU usage by up to 35% on a representative
data set, providing a significant improvement to a storage
system, which must effectively use its generally scarce
resources to serve I/Os.

Paper organization:Section 2 provides technical and
performance background on compression. We discuss
the macro-scale estimation in Section 3 and the micro-
scale in Section 4. Section 5 describes related work and
Section 6 provides concluding remarks.

Figure 1: The average times to compress 32KB of data for each
compression ratio, as collected by compressing the Benchmark
data set described in Table 3.
2 Preliminaries
The vast majority of lossless compression algorithms are
based either on Huffman encodings [12] or the Lempel-
Ziv algorithms [24, 25]. Huffman codes make use of the
fact that in most data not all symbols are equally popu-
lar, and encodes the most frequent symbols by the short-
est bit representations. The Lempel-Ziv methods look
for repeating strings in the data and store back-pointers
to long repetitions, thus avoiding the need to repeat data
and ultimately shortening the representation. Perhaps the
most widely used method is the DEFLATE framework
which combines the two aforementioned methodologies
(namely a Huffman encoding on top of an LZ77 encod-
ing). Our study is centered around this framework which
is relevant to IBM’s Real-time Compression [22], but it’s
general concepts are applicable for many other compres-
sion methods.

By compression ratio, we refer to the ratio between
the size of the compressed data to the size of the original
data. We present the compression ratio on a scale from 0
to 1, where compression savings are greater as the ratio is
closer to zero. Alternatively we sometimes use percent-
age to present this ratio.

In our tests we use the popular zlib open source com-
pression library [5, 7] that implements the DEFLATE al-
gorithm. zlib implements a number of different compres-
sion levels – numbered between 0 and 9: 1 gives the best
speed, while 9 attempts to give the best compression ra-
tio, and 0 gives no compression at all (the input data is
simply copied). In this work we use level 1 as it pro-
vides the fastest compression, which is an important fac-
tor for real-time compression, which is our focus. Our
implementation disabled compression by using zlib level
0, and set the HUFFMAN ONLY flag to disable the LZ77
algorithm and use only the Huffman coding.

Figure 1 shows the impact of varying compressibility
on the CPU time (for zlib level 1 and Huffman coding
on 32KB data blocks). Note that compression time for
zlib level 1 varies linearly by more than a factor of 8,
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performing worst for data that does not compress well
(what we refer to as incompressible). The run time of the
Huffman-only coding option is also influenced linearly
by compression ratio, and is faster than zlib level 1 for
compression ratios higher than 0.5.

3 The Macro-scale Solution
The macro-scale solution is appropriate for scenarios that
consider compression on a large scale; for example, an
entire volume or file system of a storage system, or a
large data transfer. The solution constitutes an efficient
estimation mechanism for the aggregate compression ra-
tio over the entire data set. The input to the procedure is
a pointer to the data set (e.g., a physical volume, a file
system, or a list of objects) and the output is an overall
compression ratio, histogram, and an accuracy range.

We implemented our estimator with two basic inter-
faces. The first is a block device interface, which is tai-
lored for a specific real-time compression product that
compresses data stored on a block storage system. The
second is a file and object storage interface. The input
here is a list of files or objects and their sizes. In this
model each object is compressed independently using a
standard compression mechanism (we use zlib with com-
pression level 1). This implementation can estimate com-
pression for both a file system and a collection of objects.

Our solution possesses two key properties that make it
particularly useful: speed and accuracy.
Speed: The test runs very fast, especially when con-
trasted with the time an exhaustive compression would
take on a large volume (improvements of up to 300X over
an exhaustive run are not uncommon). The run time de-
pends on the underlying platform and storage speed, but
is typically under two minutes, regardless of the volume
size. Performance results are described in Section 3.3.
Accuracy: The estimation comes with a statistical accu-
racy guarantee of the following form: the probability that
the estimation will be off by an additive error of A (the
accuracy) is no more than 1 − C (the confidence). In a
typical example, A could be 5% of the volume size, and
the guarantee would be that the test would be off by more
than A only once in 10 million tries (here C = 10−7).
This guarantee is backed up by a mathematical analysis
(see Section 3.2).

3.1 Motivation and Use Cases
Our estimation tool has proved most useful in a variety
of use cases which rely on its speed and accuracy.

Per-volume decisions: It is common to build a storage
system of multiple volumes, with each volume serving a
specific application. When configuring a system to in-
clude compression, one can run a quick per-volume es-
timation to decide whether or not to compress each vol-

ume. Determining when to compress is critical, as every
system has limited resources, and so it is unwise to direct
resources to compressing data where there is little or no
benefit. In many cases, the volume will contain data with
homogeneous compression characteristics, and compres-
sion can be enabled or disabled for the entire volume. Of-
ten, however, the volume will contain data with varying
degrees of compressibility. The macro-scale test provides
a histogram of compression ratios that clearly shows this
case and allows enabling the micro-scale test described
in Section 4 to compress only the portions of the volume
where it is beneficial. New volumes with little data can
initially be saved in uncompressed form and periodically
tested with the estimation tool. Once the volume’s char-
acteristics are clear, a decision can be made.

Sizing and pre-sales: The high accuracy provided by the
estimation allows determining what the expected size of
a storage system would be if it has compression included.
This is instrumental in two key junctures: 1) Evaluating
the overall cost savings that can be achieved by integrat-
ing compression into a system—naturally, this provides a
powerful selling tool for systems with compression, and
2) Deciding how many disks to buy for a system with
compression. The more accurate the estimation, the more
money customers can save by not purchasing extra disks
to over-provision their systems. Indeed, our implementa-
tion is an official planning and pre-sales tool for two IBM
storage systems that support real-time compression.

Large data transfers: Large data transfers between
hosts with limited bandwidth are typical in cloud stor-
age scenarios. For example, in large multi-site storage
clouds, large amounts of data need to be transferred over
a wide area network (WAN) when ingesting data from
cloud users or when recovering from a site failure. Com-
pressing data can reduce transfer time, but unless the
compression provides enough benefit, it may actually be
slower than transmitting the uncompressed data. By run-
ning our estimation method, one can quickly and accu-
rately compute the benefits of compression. Our estima-
tion in this case also takes the connection speed into ac-
count to determine the effectiveness of compression in
improving transfer time. The macro-scale test generally
completes in under two minutes, while the data transfers
may take hours or even days to complete, and can be cru-
cial in reducing transfer time as well as limiting resources
used for compression. The resulting decision is similar to
the case of per-volume decisions: enable or disable com-
pression completely, or decide on smaller granularities
using the micro-scale test.
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3.2 The General Method
Our method is based on random sampling, within the fol-
lowing natural and general framework:

1. Choose m random locations in the data, where m is
a predefined sample size (see Section 3.2.1).

2. For each location compute a compression ratio.
3. The overall estimation is an average of the m com-

pression ratios.

While the above process is very simple and expected,
the devil lies in the details. There are two main issues
that must be addressed:

• How to choose the number of samples m?
• How to compute the local compression ratios for

each sampled location?

Our method is complemented with an analytical proof
of accuracy that answers both of the above questions. Our
method is guided by the proof, which dictates valid sam-
pling methods, as well as how many samples are required
to achieve a desired level of accuracy.

3.2.1 Proof of Accuracy and Choosing the
Sample Size

In a nutshell, we look at the total compression ratio as
an average of the compression ratio of each byte in the
data set. This is tricky, however, as bytes are not com-
pressed independently and there is no meaning to the
compression ratio of a single byte. Instead, we view the
contribution of a single input byte to the output of the
compressed stream as an average of the compression rate
in its locality (we define locality in Section 3.2.2). Let
contributioni denote the contribution of the ith byte in
the volume. Our goal is to define contribution so that the
overall compression ratio could be presented in this form:

Compression Ratio =
1

n

n−1∑
i=0

contributioni

The benefit of this representation is that estimating an av-
erage over a large population is a well studied problem
in statistics. Specifically, we know that the average of a
random sample of the population is a good estimator and
can bound the variance of this estimator as a function of
the number of samples. We do this using the Hoeffding
inequality [11] which relates between three parameters:
Accuracy, Confidence and the sample size m. The analy-
sis states that if

Confidence = 2e−2m∗Accuracy2

Then

Prob(|Estimation−Ratio| > Accuracy)

< Confidence

Accuracy Confidence Sample Size
0.05 10−7 3363
0.02 10−7 21015
0.01 10−7 84057
0.05 10−3 1521
0.05 10−6 2902
0.05 10−9 4284

Table 1: Sample size examples for different values of accuracy
and confidence.

Figure 2: Accuracy as a function of sample size for 3 levels of
confidence.

That is, the estimation will stray by more than Accuracy
with probability at most confidence.

From this analysis we deduce the number of samples
that should be used in the sampling mechanism as a func-
tion of the accuracy and confidence parameters, as stated
in the following formula:

m ≥ 1

2 ·Accuracy2
ln

(
2

Confidence

)

Note that the confidence parameter appears inside a
logarithm and does not influence the result greatly. In
fact one can greatly improve the confidence with little ef-
fort (see example in Table 1). On the other hand, the ac-
curacy parameter is squared and dominates this equation,
and therefore improving the accuracy is costly, as seen in
the table. Improving accuracy by a factor of 2 requires 4
times as many samples (or in general, any improvement
by a k factor requires k2 as many samples). This effect
is seen in Figure 2 for different confidence levels. While
achieving an accuracy bound of up to 5% is fairly easy,
achieving a 2% bound requires significantly more sam-
ples, and achieving a 1% assurance while providing an
answer within the time constraints set by the use cases is
unrealistic. The above formulation gives only a simple
bound on the error, but in fact we know that for every
fixed sample size the distribution of results will form a
normal distribution around the actual ratio. Therefore,
most results will actually lie very close to the actual re-
sult, far better than what the accuracy bound guarantees.
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Note that if the data is mostly uniform in its compres-
sion ratio then we can stop the execution earlier (once it
has been established that the observed samples have low
variance). In real life however, the estimation was quick
enough so that this additional test could be avoided.

Histograms and other estimations: The accuracy guar-
antees rely on the fact that the estimated value lies in a
bounded range (in this case, between 0 and 1). Accurate
estimation can therefore be assured also for other metrics
that are similarly bounded. For instance, we can also esti-
mate the fraction of the data that has a compression ratio
within a certain range or the fraction of zero blocks in a
volume. Indeed our tool outputs such histograms on com-
pression ratio distribution within a volume (see Figure 5).
On the other hand, if the estimation target is unbounded,
then we cannot guarantee useful estimations. This is the
case with the running time of compression, which has a
high variance and is harder to estimate in a useful man-
ner.

3.2.2 What to Sample and Compute
For the above accuracy analysis to be useful, we must
be able to efficiently sample and compute the “contribu-
tion” of random bytes in the data set. To compute the
contribution of a byte, or even to define it properly, the
compression method must have some bounded locality
properties; the compression of a given byte must be in-
fluenced by a limited number of other bytes. These other
bytes should generally small in number and have offsets
close to the byte in question. While straightforward for
some methods, it is trickier for others, and may be alto-
gether impossible for some compression techniques. To
demonstrate this principle we give examples for the two
types of compression that we handle:

Sampling in real-time compression: Real-time com-
pression systems typically divide the data into chunks
and compress each chunk separately. This is advanta-
geous when data needs to be accessed randomly. Rather
than decompress entire large files or large data segments,
the decompression may be done locally on small chunks.
Depending on the technique, these chunks may be fixed-
size input chunks or alternatively may be defined by the
actual data and/or its compression rate. Either way, the
contribution of a specific byte is defined as the average
contribution of the chunk that it belongs to. Accordingly,
the sample phase will choose a random location and find
the compression chunk surrounding it. The compression
is then carried out only for this chunk, and the average
compression for the chunk is the value added as the sam-
ple’s contribution.

Sampling for zlib compression on objects: Another ex-

ample of locality appears when running the DEFLATE
algorithm on large data objects. Lempel-Ziv encodings
are locally bounded due to practical considerations—
back pointers are limited to 15 bits, allowing them to
point to a window of only 32KB, and each repeating
stream is limited to 256 bytes only in length (represented
by 1 byte). Thus the compression ratio of a byte can be
determined by examining a range of 32KB+256 bytes.
Huffman coding, is also computed on a local window (de-
termined by the space usage of the compression stream).
Lower levels of DEFLATE will use a smaller window and
thus easier to samlpe. In our estimation algorithm for the
object interface we use the window size induced by the
Lempel-Ziv encoding.

Once locality is understood for the particular algo-
rithm, the question of how to define the contribution of a
certain location remains. We first note that simply taking
the average compression over a window of 32KB+256B
does not fulfill our basic requirement that the overall ratio
is an average of all the contributions. Indeed, this simple
approach is misleading and can give gross miscalcula-
tions. The problem stems from the fact that a repeating
string should be counted in full only on its very first ap-
pearance, as it has a very succinct representation on its
second appearance. Therefore, given a chosen offset in-
side an object, we start running the compression process
32KB before this location, but discard the output. This
pre-run serves as a warm-up to initialize the compres-
sion data structures to the state they would be at during
compression of the object or volume. The contribution
of the chosen offset is computed by the output size of
compressing the next 256 bytes, divided by 256 (in other
words, the average contribution to the output). Under this
definition the average of contribution indeed sums up to
the total compression ratio.
Note: Unlike the above mentioned compression exam-
ples, deduplication has no locality properties. In fact it
can be viewed as a global version of compression, seek-
ing repetitions across the entire data set. Indeed it was
observed by Harnik et al. that deduplication ratios cannot
be accurately estimated using sampling [10].

3.3 Implementation and Evaluation
We implemented the two versions of our estimator (the
block device version and the objects version) in C++. The
tool can spawn multiple threads, taking advantage of the
inherent parallelism in processing random samples.

The block interface [13] estimates the compression ra-
tio that would be achieved on a volume by using IBM’s
real-time compression product [22]. This is a host-based
tool that can run on any storage attached to the host, and
estimates two numbers: the percentage of zero blocks
in the system, and the compression ratio on the non-
zero blocks. We treat zero blocks as a special case, as
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Data Type Interface Storage Size Zero Exhaustive Estimator
type blocks Run time Ratio (%) Run time Ratio (%)

Development 1 real-time Disk 279 GB 30% 4603 sec 17.28 177 sec 17.25
Development 2 real-time Disk 279 GB 23% 5112 sec 28.20 204 sec 27.45
Development 3 real-time Disk 279 GB 72% 4495 sec 87.09 207 sec 88.15
Development 4 real-time Disk 137 GB 47% 2916 sec 13.45 150 sec 14.00
Hypervisor 1 real-time Disk 3253 GB 49% 13800 sec 33.15 73 sec 32.99
Hypervisor 2 real-time Disk 3253 GB 74% 19573 sec 18.24 140 sec 18.55

File repository real-time RAID5 390 GB 39% 2004 sec 50.16 38 sec 50.53
Object repository 1 object RAID5 266 GB – 6376 sec 40.93 21 sec 42.35
Object repository 2 object RAID5 375 GB – 10333 sec 51.60 44 sec 52.85

Table 2: Examples of estimator runs vs. an exhaustive calculation on various data sets.

Figure 3: A histogram depicting the distance from the actual
compression ratio for 300 runs of the macro-scale test.

this is generally free space that will be filled in the fu-
ture, and we do not want to over-estimate the effective-
ness of compression by including zero blocks that com-
press extremely well. Further, zero blocks generally do
not take up actual space on modern storage systems due
to thin provisioning. The performance of the estimator
is highly dependent on the speed of the host machine
(the tests were run on various x86 machines with ac-
cess to the relevant storage), its connection to the storage,
and the amount of parallelism supported by the storage
(e.g., a single disk does not benefit from multi-threading,
whereas RAID does). One last factor affecting perfor-
mance is the fraction of zero blocks in the system. Zero
blocks are not counted for the estimation, and therefore
many more blocks need to be sampled in sparse volumes
than in fuller volumes to achieve the required number of
samples. For example, in a volume that is 90% empty,
one needs to sample approximately 10x samples in order
to find x non-zero blocks.

The object interface implementation takes as input a
list of objects and their sizes. With such an interface,
there is no issue with zero blocks.

We have tested our implementations on numerous data
samples from active real-world machines to evaluate their
speed and validate their accuracy. Table 2 presents
a partial list of volumes on which our estimator was
tested. They include several development machines run-

Figure 4: Three independent executions of the estimator con-
verge on the true compression ratio as more samples are col-
lected. The boundaries show the accuracy guarantees for each
sample size.

ning Linux, and two hypervisors with many virtual ma-
chine images that serve as a test bed for a large research
project. In addition, we ran tests on an artificial file repos-
itory containing data from various applications, includ-
ing, among others geo-seismic data, compressed and en-
crypted data, and databases to show that the estimator
manages to handle highly heterogeneous data with vary-
ing compression rates (estimations on homogeneous data
is far less challenging). All estimator tests ran within 3
minutes, while exhaustive tests ranged from half an hour
to over five hours. Estimator performance greatly im-
proves when running on a stronger machine (such as the
hypervisors). The difference in running times between
the two hypervisors is solely due to the higher fraction of
zero blocks in the second machine. The best performance
was achieved with RAID5 volumes, which benefit from
multi-threading (all tests ran with 10 threads). This is ex-
tremely effective when running on enterprise storage sys-
tems (in such environments our estimator typically ran in
well under one minute).

All tests were run with a minimum of 3,100 samples,
enough to ensure an accuracy of 5.2% with confidence of
1 in 10 million (10−7). The error in all tests was far lower
than that, as can be seen by comparing the compression
ratio achieved by the estimator with that of an exhaustive
run. This is what we expect, as our analysis predicts that
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Figure 5: Compression ratio histogram for file server volumes. The histogram was sampled as described in Section 3.

the error is normally distributed around the true value,
and most tests are likely to be very close to the center
(true value). Figure 3 validates this analysis. This depicts
300 executions of the macro-scale test on the same data
set and the result is a Gaussian distribution with nearly
all of the mass is within the 1% boundaries. Figure 4
shows the convergence of three estimator executions as
the number of samples increases. Theoretical accuracy
bounds are shown as well, and the runs are well within
these boundaries at all times.

Note that for the object interface, our sampling tech-
nique is affected by some implementation quirks in how
zlib flushes the compressed data. Rather than modifying
zlib, we give an external estimation that incurs a constant
shift in the results of just over 1% (the estimator’s results
are slightly more pessimistic). This shift is noticeable in
the object repository results in presented in Table 2.

4 Micro-Scale Compressibility
The decision to enable or disable compression at the level
of an entire volume or file system can be too coarse-
grained. Volumes containing data with varying levels
of compressibility are common [16]. Consider docu-
ments with text and graphics; text is highly compress-
ible, but graphics are typically pre-compressed. Many
other examples are available: databases containing em-
bedded BLOBs, virtual machine images, mail data files
containing attachments, and Web server data containing
both text and graphics.

We have identified many real-world use cases where
compressing an entire volume would provide good ca-
pacity savings, although it contains a substantial amount
of incompressible data. Figure 5 depicts examples of
some real-world compression ratio histograms: two vol-
umes from a file server (from the 42 volumes aggre-
gately described in Table 3), as well as two hypervisor
volumes and two development volumes (described in Ta-

ble 2). The horizontal axis shows the compression ratio
bins (lower is better), and the vertical axis denotes the
percentage of samples with a given compression ratio.
“Hypervisor 2” and “Development 3” are examples of
volumes where most of the data is compressible, and so
we would like to compress all data written to them. On
the other hand, the other volumes shown contain much
compressible data, but also at least 20% incompressible
data. One would like to benefit from the capacity reduc-
tion of compression on such volumes, but also to manage
the compression resources intelligently—compress data
where compression provides a benefit, but skip the com-
pression wherever it hardly achieves any space reduction.

The granularity at which we work is of single writes
to the storage system. While these vary substantially in
size, we focus on writes of size 8KB, 16KB and 32KB
which are typical in primary storage systems. The most
challenging case is of smaller writes (i.e., 8KB) where
typically the overheads are higher compared to having
few larger writes, and it is harder to evaluate compress-
ibility without reading a majority of the write buffer.

The test data: The analysis of the micro-scale solu-
tion presented in this section is based on three data sets,
whose characteristics are summarized in Table 3. The
file server data set contains home or project directories
owned by different users, stored in 42 different back-
end volumes. The VM images data set is stored on eight
back-end volumes. The file server and VM images data
sets were sampled from active primary storage using the
sampling techniques described in Section 3. The bench-
mark data set was artificially gathered to include many
types of data with varying compression properties to test
our algorithms. It includes images, documents (txt, csv,
doc, xml, html, xls, pdf, ps), database files, VMWare im-
ages, geo-seismic data, call detail records, archival data,
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Data Set Total Size Compressed Size Compression Saving Zero Chunks Comments
File server 37TB 15.2TB 17.5TB 4.6TB 42 volumes, 144K samples
VM images 6.7TB 1.2TB 1.2TB 4.3TB 8 volumes, 22.9K samples
Benchmark 300GB 122.8GB 161.8GB None exhaustive scan

Table 3: Data sets characteristic summary.

compressed and encrypted files, and others.

4.1 Two Basic Approaches
We consider two approaches to testing compressibility:
Prefix estimation: A common method to estimate com-
pression for files or large data chunks is to divide the data
into segments and estimate by compressing one of the
segments, typically the first one. Such an approach was
suggested in [3] albeit at a different scale (consider com-
pressing the first 1MB of each file). The decision to com-
press the data is based solely on the compressibility of
the selected segment, and assumes that the sample is rep-
resentative of the whole. Prefix estimation does not incur
performance overheads when we decide to compress the
data, as compressing the prefix is not wasted work. How-
ever, compressing the prefix is very wasteful when the
sample is incompressible and we decide not to compress;
not only will the compressed version of the sample not
be used, but compression consumes the most resources
when data is incompressible, as we have shown in in Fig-
ure 1. Another glaring shortcoming of this approach is
in handling data that changes noticeably from its prefix
(consider, for example data with a special header).
Heuristic based estimation: This approach refers to col-
lecting simple heuristic parameters over the chunk that
tend to characterize its compressibility and making the
decision solely based on these heuristics. The heuristics
must be extremely efficient, much more efficient than ac-
tually compressing the chunk. Due to this performance
restriction, we collect our heuristics on random samples
from the chunk rather than the whole chunk. Note that
this efficiency improvement still circumvents the prob-
lem of the prefix method (a buffer that changes in the
middle) since it samples the entire chunk.

An example of such a natural indicator for data com-
pressibility is the byte entropy for the data [19]. Byte
entropy is an accurate estimation of the benefits of an op-
timized Huffman encoding, and compression is generally
more effective on buffers with lower entropy. Figure 6
depicts this correlation for the file server data set, where
entropy and compression ratio were computed for 8KB
data blocks. For this data set, an entropy of less than
5.5 typically predicts that the data will be compressible
(compression ratio less than 0.8). However, the corre-
lation is not ideal, as there is compressible data whose
entropy is higher than 5.5. This is mainly due to the fact
that entropy does not measure repetitions in the data, and
therefore cannot capture all aspects of compression.

We have developed an estimation method that uses var-

Figure 6: Byte Entropy as a function of the compression ratio
of the file server data set.

ious heuristics to provide a more precise indication of
compressibility, which we present in Section 4.2. In Sec-
tion 4.5, we show how to combine this method with pre-
fix estimation to exploit the best properties of each of the
two approaches.

4.2 Our Heuristics
In this section we present our heuristic approach to deter-
mining compressibility. We considered a static threshold
for the compression ratio above which data should not be
compressed: 0.8. This threshold represents the trade-off
between resource utilization and compression savings,
and can be easily changed according to the amount of
resources and expected load on the storage system. We
use the following heuristics in our decision algorithm:
Data coreset size: We define the coreset to be the set of
unique symbols that compose the majority (e.g., 90%) of
the data. Logically, if the size of the coreset is small, we
can expect benefits from the Huffman encoding as well
as more repetitions and therefore the data is potentially
a good candidate for compression. In contrast, a large
coreset size indicates lower potential for obtaining bene-
fits from compression.
Byte entropy: As mentioned above, byte entropy is a
good indicator for compressibility of certain types.
Pairs distance from random distribution: The L2 dis-
tance heuristic looks at pairs of symbols and the proba-
bility that the two symbols appear consecutively in the
coreset. The distance is calculated as the (Euclidian) dis-
tance between the vector of the observed probability of
a pairs of symbols appearing in the data, and the vector
of the expected pair probabilities based on the (single)
symbol histogram, assuming no correlation between sub-
sequent pairs of symbols. The equation for calculating
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the L2 is as follows:

∑
∀a̸=b∈coreset

(
freq(a) ∗ freq(b)

size of sample2
− freq(a, b)

number of pairs

)2

This heuristic aims at distinguishing between randomly
ordered data and data that contains repetitions. This al-
lows us to distinguish between compressible and non-
compressible data in cases where single byte heuristics
such as entropy and coreset fails to do so.

Figures 7, 8 and 9 show each of the heuristics’ po-
tential thresholds for differentiating between compress-
ible and incompressible data based on the data sets de-
scribed in Table 3. We use this information to formulate
the thresholds used in our algorithm.

In Figure 7 we see that for all three data sets, coreset
size is directly related to compressibility. Based on this
data we can set conservative values for when to compress
(coreset size smaller than 50) and when not to compress
(coreset size larger than 200). Figure 8 shows that an en-
tropy lower than 6 is generally a good indication for com-
pressible data. However, there is a portion of data with
high entropy that compresses well. Figure 9 shows the
distance from random distribution heuristic for data with
an entropy higher than 5.5. This metric can be used to-
gether with entropy to further differentiate between com-
pressible and incompressible data. Most of the incom-
pressible data has a distance of less than 0.001 from the
random distribution, while most of the compressible data
has distance greater than 0.001 from it.

4.3 Implementation
The micro-scale approach works inside the storage I/O
path and must incur very little overhead. To achieve the
required low overhead we actually compute the heuris-
tics on a sampled subset of the write buffer. In fact, this
practice was also used when creating Figures 7, 8 and 9.

The size of the sample is based on a statistical sam-
pling rule of thumb. It is common to perform sampling
tests as long as the average number of elements in each
bin (i.e., symbol) is at least five (for example, Chi-square
tests). Instead of five, we choose eight as a more conser-
vative value to obtain more accurate results. If the data
contains the maximum number of symbols, which is 256,
we obtain a sample size bound of 2048. Therefore, we
sample at most 2KB of data per write buffer: 16 consec-
utive bytes from up to 128 randomly chosen locations. In
practice, in most cases data write operations include far
less than 256 unique symbols, allowing us to sample less
data and improve the run time of the heuristics.

Our solution framework is composed of (1) random
sampling a small subset of the write operation data, and
(2) providing a recommendation on whether to compress

data size

compress

compress

compress

compress

store

store
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(2)

close

small

minimal size

large
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entropy

coreset size
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distance from random
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Huffman only

compressstore

compress
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close far

Figure 10: The algorithm for estimating data compressibility
using heuristics.

or not compress the data based on the heuristics in Sec-
tion 4.2. The recommendation algorithm is outlined in
Figure 10. The algorithm flow is from top to bottom,
and at each step one parameter or heuristic is examined.
A recommendation is made if the heuristic satisfies the
given thresholds. The horizontal arrows represent rec-
ommendations and the downward arrows represent mov-
ing to the next heuristic computation. The vertical bars
represent the thresholds for making the recommenda-
tion at each step. The algorithm is designed for speed,
the heuristics are ordered according to their computation
time, from light to heavy calculation and a recommen-
dation is made as early as possible, reducing the compu-
tation overhead. The algorithm is outlined top to bot-
tom follows: (1) Small amounts of data (smaller than
1KB) should always be compressed, as calculating the
heuristics will generally take longer than compressing.
(2) If the total number of symbols in the data is very
small, e.g., 50, then compress. (3) If the coreset size
is very small (e.g., smaller than 50), compress, and if it
is very large (e.g., larger than 200), store (do not com-
press). (4) If the entropy is reasonably low (e.g., smaller
than 5.5), compress. (5a) Data with medium entropy
(e.e., 5.5–6.5) and a small distance from random distribu-
tion (e.g., 0.001) should be stored; for higher distances,
compress. (5b) Data with higher entropy (e.g., greater
than 6.5) and a small distance from random distribution
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(a) File server data set.
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(b) VM images data set.
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(c) Benchmark data set.

Figure 7: Coreset size CDFs for compressible and incompressible data.
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(a) File server data set.
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(b) VM images.
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(c) Benchmark data set.

Figure 8: Entropy CDFs for compressible and incompressible data.
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(a) File server data set.
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(b) VM images data set.
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(c) Benchmark data set.

Figure 9: Distance from random distribution CDFs for compressible and incompressible data with entropy higher than 5.5.

(e.g., 0.001) should not be compressed; data relatively
far enough from random distribution (e.g., 0.02) should
be compressed. Data in between the distance thresholds
should be compressed using Huffman coding; it provides
a balance when the heuristics do not provide a clear de-
cision. We can see that the majority of the data for which
the heuristics recommend to use Huffman coding falls
into the incompressible bins, or very close to the incom-
pressible bins.

4.4 Evaluation
We evaluated the run time and compression performance
of the prefix estimation and the heuristics method on a
dual processor Intel Xeon L5410 (2.33Ghz) Linux server.
Note that our implementation is single threaded and did
not exploit the system parallelism. The methods’ output
is either to compress the data (we used zlib level 1 for
this) or store it without compression (using zlib level 0
to copy it). The heuristic method can also recommend
using Huffman coding only (using the appropriate zlib
flag). Our measurements do not include the time for per-
forming the disk read and write operations, as our focus

is on the CPU resources for compression and the result-
ing capacity impact. The evaluation focuses on two cat-
egories: (1) accuracy of compressibility estimation, and
(2) time and capacity impacts.

Figure 11 shows the heuristic method’s recommenda-
tions for each compression ratio bins for the three test
data sets listed in Table 3. We see that the overwhelming
majority of the incompressible data with compression ra-
tio higher than 0.9 are identified as such. Compressible
data (with compression rate under 0.8) is identified al-
most always as compressible. For compression ratios be-
tween 0.8 and 0.9 the recommendations are mixed. Re-
call that the intention was to categorize such data as in-
compressible but data in this range turns out to be difficult
to identify accurately (especially for 8KB blocks).

Next we examine the run time of the different methods
as tested on 8KB blocks. Figure 12 shows the run time
of the prefix method on a 1KB prefix, of the heuristic
method and this is contrasted with compression time of
the entire 8KB data block. The heuristic approach is very
fast both for data with very good compression and for
highly non-compressible data. For mid-way data, with
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(a) File server data set. (b) VM images data set. (c) Benchmark data set.

Figure 11: The heuristic approach recommendation by compression ratio for 8KB data blocks.

Figure 12: Comparison of average compression time of com-
pressing a 1KB prefix, compressing the whole 8KB data, and
the heuristics approach for data of various compression ratio.

Figure 13: Time and capacity impact of compressing 8KB data
blocks from the benchmark data set using prefix estimation with
different compression ratio compressibility thresholds.

compression ratios of 0.4 through 0.9, it needs to review
all (or almost all) the heuristics to reach a recommenda-
tion and thus requires a longer running time. For all com-
pression ratios, the heuristic approach is much faster than
running the prefix estimation. However, for compressible
data (whenever the correct decision is made) the prefix
estimation essentially comes for free, as we can just con-
tinue to compress the data from the 1KB point. For in-
compressible data, on the other hand, the prefix compres-
sion estimation is plainly an overhead. We can therefore
conclude that that the prefix method is slightly better for
compressible data, while the heuristic method is faster by
2X to 6X for non-compressible data.

Figure 13 focuses on the prefix method and exam-

ines the impact of selecting different compression ratio
thresholds for differentiating between compressible and
incompressible 8KB data blocks. For each such choice
we depict the impacts on capacity and CPU time as mea-
sured on the benchmark data set. The horizontal axis is
the threshold used to identify incompressible data; for
example 0.9 means that if the compression ratio of the
prefix was higher than 0.9 the data will not be com-
pressed. Selecting a threshold of 0.99 inflates the ca-
pacity by 3.6% yet utilizes only 92% of the CPU time
required had all the data been compressed.

In Table 4 we compare the CPU and capacity impacts
of the the heuristic method versus the prefix estimation
when compressing block sizes of 8KB, 16KB and 32KB
from our benchmark data set. For the prefix estimation
we present two different thresholds: the first matches the
capacity impact of the heuristic method and then the CPU
savings can be measured on equal terms. The second
matches the CPU savings of the heuristic and then the
capacity can be examined. Note that there was no sin-
gle threshold for the prefix estimation that could match
or surpass both the CPU time and capacity overhead.

The heuristic approach manages to consistently limit
the impact on capacity (about 2%) for all block size and
shows a reduction of CPU time as the block sizes in-
crease. On the other hand, the prefix estimation needs to
sacrifice either capacity or CPU time to match the heuris-
tics approach. To match the CPU time, the prefix estima-
tion loses between 10.4% (for 8KB) to 4.4% (for 32KB)
of capacity compared to only about 2%. To match the
2% capacity overhead, the prefix estimation speedup is
between 92% (for 8KB) and 74% (for 32KB) compared
to a speedup of between 85% (for 8KB) and 65% (for
32KB) when using the heuristic approach.

It is important to note that the benchmark data set con-
tain about 30% incompressible data and 70% compress-
ible data (the compression ratio histogram are available
in Figure 5). For data sets with higher portion of in-
compressible data, the heuristics approach will provide
greater benefit and will in fact increase the performance
gap between the prefix estimation and the heuristics ap-
proach. On the other hand, as the portion of compressible
data grows, the prefix method will become more suitable.
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Block Method Capacity CPU Time
Size Overhead

8K
Heuristics 2.0% 85%
1K prefix w/ 0.99 3.6% 92%
1K prefix w/ 0.92 10.4% 85%

16K
Heuristics 2.3% 74%
2K prefix w/ 0.95 1.8% 86%
2K prefix w/ 0.87 7.0% 74%

32K
Heuristics 2.3% 65%
4K prefix w/ 0.88 2.2% 74%
4K prefix w/ 0.82 4.4% 65%

Table 4: Comparing CPU time ratio and capacity impact of
prefix estimation versus the heuristics approach on the bench-
mark data set.
4.5 Putting it All Together
While the heuristic approach has noticeable advantages
when there is a significant amount of incompressible data
on the storage volume, this is not the case when nearly
all of the data is compressible. In such cases the heuristic
only adds an overhead to the run time without any gain.

This calls for an adaptive on-demand deployment of
the estimation techniques. We propose to employ both
methods, the prefix estimation and the heuristics method,
within a single solution. Basically, employ the prefix
method when all or most of the data is compressible,
but switch to the heuristics approach whenever enough
non-compressible data is encountered. This mixed ap-
proach introduces only minimal overheads when han-
dling mostly compressible data, but will provide great
CPU relief once incompressible data is encountered.

Moreover, consider workloads for which there is a
clear distinction between times when incompressible data
is written to periods of compressible data writes. For ex-
ample, periods during which encrypted or zipped data are
written. In such scenarios, switching back and forth be-
tween prefix estimation and heuristics will deliver opti-
mal performance.

An additional opportunity for adaptiveness is in the
heuristics thresholds. We strived to collect as many real
world data types in our benchmark data set and suggested
thresholds that perform well on the various data sets.
However, we suggest that the thresholds be adaptive to
the data encountered and fine tuned during execution to
optimize usage of both capacity and CPU time.

5 Related Work
NetApp provides the Space Savings Estimation Tool
(SSET) to estimate the benefits of deduplication and
compression on a portion of a file system. Whereas our
macro-scale solution provides accuracy guarantees nec-
essary for making decisions with confidence, NetApp
claims that “in general, the actual results are within ±5%
of the space savings that the tool predicts” [18].

Estimating overall compression savings when com-
pressing each file has been explored in [3]. The au-

thors experimented with compressing a set of randomly-
sampled files, but saw that this resulted in a high vari-
ance between sample sets. The method they chose is to
compress the first megabyte of the largest files in the file
system, which comprise some percentage of the total ca-
pacity. Their method requires a full file system scan and
sort, and results show that between 0.02% and 1.93% of
the file system needs to be compressed for stable results.
They do not provide any statistical guarantees.

There is a procedure in Microsoft SQL Server called
sp estimate data compression savings that esti-
mates the compression savings for a given table [17]. Lit-
tle is stated about its implementation, other than that a
sample is compressed. No accuracy guarantees are given,
and some users report up to a 20% error [1].

Harnik et al. discuss how to piggyback compression
estimation to a process of estimating deduplication ra-
tios [10]. However, the authors do not discuss a stand-
alone algorithm for compression estimation.

Several works attempt to determine the most suitable
compression algorithm for a given chunk of data. One
such work concluded that the standard deviation of the
bytes is a good predictor for Huffman encoding effec-
tiveness, while the standard deviations of the difference
of consecutive bytes and XORed value of consecutive
bytes can be used to predict the effectiveness of 12-bit
LZW [4]. However, statistics were gathered on entire
files, and only correlations were shown, with no discus-
sion on performance or using the metrics together to de-
termine compression effectiveness. Another uses genetic
programming to attempt to predict exact compression ra-
tios using the byte frequency distribution and features ex-
tracted from the data stream [14]. This method is not suit-
able for our use case, as it spends a significant amount of
time finding an exact answer, whereas we require a fast
indication of compression effectiveness.

6 Concluding Remarks
We have shown how to effectively utilize storage system
resources for real-time compression by efficiently and
accurately filtering out incompressible data. The tech-
niques we demonstrated allow the storage system to in-
vest its valuable resources only in data that compresses
well. Rather than compressing incompressible data, the
resources are now free to compress other data as well as
to serve I/O requests, thus improving both cost savings
and performance.
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