
Quantitative Analysis of Cache Policies for Scalable Network File Systems

Michael D. Dahlin, C’lifford J. Mather, Randolph Y. Wang,

Thomas E. Anderson, and David A. Patterson

Computer Science Division. University of California at Berkeley

{ dahlin, cjmather, rywang, tea, pattrsn } @cs.berkeley.edu

Abstract

Current network file system protocols rely heavily on a cen-

tral server to coordinate tile activity ~mong client workstations.

This central server can become a bottleneck that limits scalabdity

for environments with large numbers of clients. In central server

systems such as NFS and AFS, all chent writes, cache misses, and

coherence messages are handled by the server. To keep up with this

workload, expensive server machines are needed, configured with

high-performance CPUS, memory systems, and 1/0 channels.

Since the server stores all data, tt must be physically capable of

connecting to many disks. This reliance on a central server also

makes current systems inappropriate for wide area network use

where the network bandwidth to the server may be Ilmited.

In this paper, we mvestlgate the quantitative performance

effect of movmg as many of the server responsibilities as possible

to client workstations to reduce the need for high-performance

server machines. We have devised a cache protocol in which all

data reside on clients and all data transfers proceed directly from

client to client. The server is used only to coordinate these data

transfers. Thm protocol]s being incorporated as part of our experi-

mental file system, xFS. We present results from a trace-driven

simulation study of the protocol using traces from a 237 client NFS

installation. We find that the xFS protocol reduces server load by

more than a factor of six compared to AFS without significantly

affecting response time or file availability.

1 Introduction

Current network tile systems rely on powerful central servers

that make it difficult to build economical large-scale file systems.

Ideally, a network file system should scale to hundreds or thou-

sands of client machines using nothing more than commodity

workstations, even for the server. In reahty, the widely used SUN

Network Fde System, NFS [Sand85], has spawned a new industry

dedicated to building the high-performance multiprocessor sys-

tems needed to scale NFS to more than a few dozen clients, The

Andrew Fde System, AFS [Howa88], was designed to reduce

server load relative to NFS in the interest of scalabdity, but its ulti-

mate scalabdity M limlted because AFS still relies on a central

This work 1s supported m pm by the Advanced Research Projects Agency

(NO0600-93-C-248 I), the National Science Foundaaon (CDA 8722788), Callfomla

MICRO. DIgmd Equipment Corpormon. the AT&T Fo.ndatmn, Xerox Corporation.

and Siemens Corporation Dahlln was alm supported under a National Science Foun-

dation Graduate Research Fellowship Anderson was dlm supported by a N~tlonal

Science Foundation Young Inve\tlgator Award

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy othe~’se, or to republish, requires a fee
and/or specific permission.

SIGMETRICS 94- 5/94 Santa Clara, CA. USA
Q 1994 ACM 0-89791 -659-xKWO005..$3.5O

server to receive a copy of all modified data and to supply data for

all client cache miss requests Also, NFS and AFS must generally

use specialized servers rather than commodity desktop worksta-

tions as server machines because the server must support enough

disks to hold a copy of the entu-e file system, and desktop worksta-

tions are generally hmited to a single SCSI string, Commodity

workstations are a more cost effective way to buy computing

power and 1/0 bandwidth because server machines must be

designed with greater 1/0 expandabdlty and because development

costs of the more complicated servers must be amortized over a

smaller sales volume. For instance in the SUN product hne, a

server costs three times as much as a similarly configured worksta-

tion.

Trends in file system use promise to place even heavier

demands on the central servers of file systems. Baker et al.

[Bake91] report that the size of large files grew by an order of

magmtude between 1985 and 1992. If this trend continues, the cost

of transferring all data through the central server may become pro-

hibitive. File systems are also being asked to manage data over

wide area networks (WANS) where bandwidth restrictions limit the

amount of data that can be supplied from a central source,

At the same time, technology trends are giving chents tre-

mendous amounts of disk space, main memory. and processing

power and are also providing high-speed low-latency networks to

tle these resources together. Inexpensive disks make it feasible for

clients to store large amounts of data locally. A 1.3 GB SCSI disk

currently costs less than $1000, and most workstations sold today

are configured with significant amounts of local disk. Similarly, the

aggregate memories and processing resources of client machmes

dwarf the capacity of a single server machme. Addmonally, high

speed local area networks (LANs) allow clients to access data from

peers across a local area network almost as quickly as they can

access local data.

Thn paper investigates the quantitative benefits of utilizing

cache techniques oriented towards extreme scalabMy to reduce

the load on the central server. These techniques provide better and

more cost-effective file serwce than a specialized server machme

by pushing responsibilities onto the clients in the system to exploit

the aggregate client disk, processing, and memory capacities. The

protocol has four pieces respired by efforts to achieve scalable

cache coherence in massively parallel processors [Arch86,

Leno90]. The protocol uses a no write through policy, utillzes cli-

ent-to-client data transfers, Implements write ownership, and takes

advantage of cluster servers.

In this paper we compare the effects of this protocol to a base-

line AFS system. We base this comparison on event driven simula-

tion parameterized to model the service demands of tile system

requests on a DECstation 5000. We compared the performance of

the systems under a workload taken from a large NFS system at

150

Berkeley in which an Auspex file server prowdes serwce for 237

client workstations 1.

Our principal result is that for this workload the experimental

protocol reduced server load by more than a factor of six. In addi-

tion, we show that each of the four parts of the protocol has a sig-

nificant impact on performance, that the protocol not only reduces

average server load but also significantly reduces peak demand at

the server. that the aggregate client memories are more effective at

reducing disk 1/0 than the server memory, and that cluster servers

Isolate almost all communication to within clusters, as is desirable

when clusters are connected by a WAN.

This study also addresses a number of Issues that arise when

clients become responsible for more tile system services. We

examme the problems of scalable backup, data availability in the

presence of client failures. and security when clients supply data to

each other.

We are currently implementing the protocol described here as

part of a file system called xFS. To facilitate comparison with AFS,

this paper assumes the AFS policy of synchronizing file consis-

tency when a file is closed for writing and assumes whole-file

caching. However our implementation of xFS does not have these

restrictions. The actual xFS implementation also stripes data in a

RAID distributed across client disks to improve 1/0 bandwidth and

availability, We do not consider these other issues further.

Section 2 of this paper outlines the file system caching algo-

rithms used by NFS and AFS and motivates the alternative strate-

gies we consider in this paper. Section 3 describes our workload,

and m Section 4 we discuss the key aspects of our simulation.

Section 5 details the results of our study, with emphasis on the

impact of the protocol on server scalability, network load, and cli-

ent load. Section 6 examines the potentially thorny issues of

backup, availability, and security that arise when chents are given

responsibdities that were formerly the server’s. We survey related

network file system studies in Section 7. Finally in Section 8 we

summarize our conclusions.

2 File System Cache Protocols

An important factor m a file system’s scalability is its caching

policy. File systems use caches to improve response time and to

reduce server load. Clients can access data found in their memory

caches more quickly than they can access remote data on a server.

File caches reduce server load by satisfying some requests without

server interaction. The use of caches. however, introduces the

problem of cache consistency: different caches may hold copies of

the same file, and if the file is changed by one client, the changes

must be seen when the file is read by a different client. How the

cached copies are kept consistent can have a large effect on server

scalability y. This section describes the cache protocols found in the

industry-standard NFS, the emerging AFS standard, and our more

scalable xFS.

2.1 Existing Protocols
NFS, the current industry-standard distributed file system pro-

tocol, was designed to provide good response time for moderate

numbers of clients rather than to provide scalability. NFS caches

file system data in main memory on each client workstation. NFS

does not attempt to use the client’s local disk space as a cache, nor

does it attempt to keep file data strictly coherent. Instead, periodic
1 The Auspex is built with special hardware to allow It to support

thts large number of clients [Hltz90].

invalidations of file attribute information ensure that new data

eventually (within several seconds) replace any out-of-date cached

copies. Once a file’s attributes are invalidated, the next time the fik:

M referenced the client will verify that its cached copy is current, If

it is not, the client will fetch the new data from the server. Clients

write through all modified tile data to the server to ensure that

fetches from other clients will receive the new data. NFS maintains

separate caches for data, attributes, and names, and the protoco I

caches data on a per-block basis.

NFS’S scalability IS limited by its use of relatively small in.

memory file caches rather than the larger caches possible if locall

disks were used. NFS’S policy of periodically invalidating,

attributes guarantees a stream of client requests to the server as

attributes expire, even for files that are not being modified. NFS’S

write through policy sends all changes to the server disk, even if no,

other clients are using the data.

AFS improves upon NFS’S scalabihty by using a large local

on-disk cache at each client and by using callbacks for cache con-

smtency. AFS uses a two-level cache on each client. An in-memory

file cache similar to NFS’S file cache provides good response time

for most accesses, but misses to the in-memory file cache go to a

chent on-disk file cache and only go to the server if not satisfied

there. Rather than requiring periodic veriticatlon of a file’s consis-

tency as NFS does, AFS reduces server load further by using call-

backs: the server maintains a hst of all cached copies of each data

file and notifies clients when another client modifies the file. The

client fetches the new data from the server the next time it opens

the file. AFS clients send all modified data to the server when a file

is closed, guaranteeing that the server has the most current version

of the data and allowing the server to know when to invalidate the

other cached copies. Clients also cache directory information in

write through directory caches. All modifications to directories are

sent immediately to the server, which maintains callbacks to keep

cached copies of directory information consistent.

Despite these improvements, AFS’S scalability is still limited.

All communication and data transfer takes place between the cli-

ents and the server; no direct client-to-client communication is

allowed. In particular. the server supplies data each time a client

has a cache miss and receives data each time a client closes a file it

bas written. The central server must have enough disk space to

store all of the file system data; this is despite the fact that the

aggregate size of the client disks is typically much larger than that

of the server disks. The server is also responsible for fielding all

directory moditicatlon operations and for generating callback mes-

sages on every cache coherence operation.

2.2 xFS Protocol

In this paper we consider the effect of four separate optimiza-

tlons to the AFS protocol. Together, these push most server respon-

sibilities onto the client machines. Collectively we refer to these as

the xFS protocol. Each of these optimization has been proposed

as a way to improve the scalability of multiprocessor hardware

caches, and some have also been suggested for file systems. In

Section 5.2 we evaluate their performance impact individually and

find that all are important to get good performance.

The first two optimization, write through and client-to-client

data transfers. eliminate file transfers through the server, making

the server responsible only for coordinating the data that flow from

client to client. These two aspects of the protocol also eliminate the

151

need to buy a specialized server machine configured with a large

amount of disk space.

1. No write through. Clients no longer write moddied data to the

server on close. Instead they inform the server of the update,

and the server invalidates cached copies at other clients using

callbacks. Modified files remain on each client’s local disk.

The elimination of write through is motivated by a number of

studies showing that when a client writes a tile, it is often deleted

or quickly rewritten by the same client [Thom87, Bake91, Blaz91,

Kist92]. We confirmed this pattern for the Berkeley NFS traces.

After discarding the statmtics for writes made during the last day of

the simulation, we found that of the bytes that would be sent to the

server in AFS, 85’% were overwritten or deleted without being read

by another client, another 5% were never read by another client,

and only 10% were read by another chent. With no write through.

bytes that are overwritten can be discarded at the client without

ever being transferred to the server. Note that there is no need to

write data to the server to ensure the data’s durability. Delayed

writes of about 30 seconds have been used in other network tile

systems to reduce writes to the server without putting too much

data at risk of loss in a client crash [Nels88], but xFS’S use of client

disks allows a complete no write through pohcy where files are

never written to the server.

‘7-. Client-to-client data transfers. When a client has a cache

miss, it sends a request for the data to the server, and the server

forwards the request to a client that is currently caching the

needed data. The second client then sends the desired data

directly to the chent that wants the data.

Client-to-client data transfers reduce server load by replacing

a large server data transfer with a small forwarding packet. Direct

client-to-client communication also permits the no write through

policy to be implemented without the significant delays that would

be incurred if all requested dirty data were first written to the cen-

tral server and then supplied by the server. Client-to-client data

transfers are an example of separating the control and data paths as

suggested by the Mass Storage Reference Model [Coyn93].

The first two parts of the protocol allow all data to be stored

on client disks, implementing what is referred to for multiproces-

sors as a cache only memory architecture (COMA) [Hage92,

Rost93]. An important detail of this approach is that we must guar-

antee that the clients don’t discard the last copy of any file. The cli-

ents do this by markmg one copy of each tile as permanent, A copy

becomes marked when It is written, and marked copies may be

passed between clients but not discarded. When a client’s cache is

full lt sends any marked copies It would normally discard to a ran-

domly selected client. The client notifies the server of this transfer.

These marked data copies are otherwise managed m the same way

as unmarked data copies.

The final two optimization, write ownership and clustering,

try to reduce the demands on the server of coordinating cached

copies of files.

3. Write ownership based cache consistency. The first time a

client closes a modified file the server KSnotified, triggering an

invalidation of all copies cached on other clients. At that point

the chent has excluslve }vrite ow,nersh~p [Arch86] and may

modify the file freely without notifying the server; there are no

other copies of the data to be invahdated. A chent wdl lose

exclusive ownership of a file when another client opens the file

for reading. Its copy will be invahdated lf another client

acquires exclusive ownership,

Write ownership is an optimization of the write invalidate

consistency protocol on which AFS’S callback mechanism is

based. It allows us to eliminate messages to the server in the com-

mon case of repeated writes by the same client to the same tile.

4. Clustering. Clusters are formed by selecting groups of work-

stations that closely cooperate or are near each other on the

network topology, for instance, on the same LAN. Cluster

servers keep track of the ownership and callback state for all of

the clients in the cluster. The central server only tracks file

Iocatlon reformation to the cluster level, relying on the cluster

server to forward requests to the specific clients caching data.

The cluster servers Isolate ownership changes and data trans-

fers internal to the cluster from the central server. For instance,

if ownership is transferred between two clients in the same

cluster, the cluster server M notified of the chdnge, but the cen-

tral server need not be. On the other hand, if ownership is

transferred between clients from different clusters, the central

server must be involved so it can know that a new cluster

server is responsible for tracking the ownership of the file.

Clustering M inspmed by the DASH multiprocessor architec-

ture [Leno90] which clusters processing nodes on busses as we

cluster cbents on LANs. Clustering improves scalablhty by off-

loading some central server state to cluster servers and isolating

the central server from changes in state only affecting clients in the

cluster [Blaz91, Munt92, Sand92]. Clustering also allows the sys-

tem to work in a wide area network context by organizing commu-

nication around the cluster LAN networks and using the WAN

links only when necessary.

xFS clustering is distinct from name space splitting and read

repbcatlon, two methods of ut]hzmg multiple servers avadable to

NFS and AFS, Name space splitting improves tile system scalabil-

ity by manually splitting the file system into logical pieces. each

managed by a different server. However, lt can be difficult to

divide files among servers so as to balance load and avoid hot spots

[Wolf89]. Name space splitting is. however, useful when the dif-

ferent parts of the tile system are managed by different administra-

tive domams, xFS can support this splitting by using multlple

“central” servers, with each cluster server pro~ Idmg a combined

file system wew to Its chents. Fde systems can also be rephcated

across multiple servers to improve scalability for reading files, at a

cost of makmg file writes more expensive [Lisk91, Klst92], We

will show m Section 5 that xFS-style clustering reduces the cost of

both reads and writes,

The cornbmaoon of these four changes dllows xFS to be dra-

mahcally more scalable than AFS. The central server is no longer

revolved In any data transfers and coordinates a much smaller

amount of control activity the central server must forward read

miss requests between clusters when they cannot be satisfied

within a cluster; the central server must send consistency messages

between clusters when a modification m one cluster invahdates

cached copies in another; finally, the central server is informed

when files are created or deleted so that It always knows what files

exist and where to forward requests for all files.

152

3 Trace Overview

To evaluate the performance impact of these changes we

gathered traces of NFS file system activity from a large NFS mstal-

latlon served by an Auspex file server. The system includes 237

clients spread over four Ethernets, each of which connects directly

to the central server. The trace spans seven days, and unless noted,

the measurements that appear in this paper cover the last six days

of the trace after using the first day’s activity to warm the caches.

During the full seven day trace 141,574 files were referenced.

We gathered this trace by monitoring network activity on

each of the four Ethernets. On each subnet we placed a workstation

that monitored all network traffic using rpcspy [Blaz93] which is

built on the Ultrix Packetfilter interface [Mogu87]. Over the trace

period, rpcspy reported that it dropped 4% of all network traffic

calls due to buffer overflow.

We postprocessed the NFS trace to reflect the semantics of the

AFS and xFS protocols. Since we gathered the traces at the net-

work, we had access only to NFS network traffic, which intro-

duced some biases of NFS mto our raw trace. For instance NFS

has no network-visible open or close calls, and many get at t r

(get file attribute) calls are really for validating cache consistency.

In the first step of the postprocessing we added opens and

closes to the trace. We added file opens before the first access to an

unopened file. Read and read/write opens signal AFS and xFS to

bring the file being accessed into the local on-disk cache. We

inserted file closes immediately after the last tile access before a

long (2 minute) period of inactivity for the tile or before a block

write to block zero of a tile after a series of writes to other parts of

the file. We use AFS’S write close semantics: after the close. the

newly written file should be supplied to any subsequent read open.

Block reads and writes in the trace are caused by NFS in-

memory cache misses. In AFS and in the version of xFS simulated

here, these reads and writes cause local disk traffic, but no network

activity, since whole file caching is assumed and tile consistency is

handled when the file is opened or closed.

We included NFS directory reads and writes as AFS and xFS

directory reads and writes. Directories were simulated with the

semantics that each directory write is immediately visible to the

entire system. AFS implements this by writing directory changes

through to the server while xFS uses its file ownership and invali-

dation mechanisms.

Finally, we include most NFS getattr calls as simulator

requests for file attributes. We excluded get at t r calls immedi-

ately before an access to a block of the same file, assuming those

calls to be NFS cache validation packets. The simulator also

dynamically eliminates many get at t r calls by filtering calls

through an attribute cache. The attribute cache is kept consistent in

the same way as the directory cache for each protocol. An attribute

is invalidated when the file lt references M written. Note that we

are not simulating the “access time” attribute, which is updated for

each tile read, for either AFS or xFS.

The resulting trace is slmdar to other measured AFS work-

loads in macro characteristics. Our simulated AFS server supplied

on average 5.0 MB to each of its clients per day for read opens;

[Spas94] measured 5.3 MB per chent per day for a large AFS

installation. We measured a 5.7 MB per client per day write back

load; 4,7 MB per client per day loads were measured by [Spas94].

This trace reflects the file system activity of a real system.

Although this enhances our confidence that the trace IS realistic,

the capabilities of the traced system can limit the activity seen in

the trace. The prime example of this limitation M on peak load. Our

trace will underestimate the peak server load that might be

imposed on a more scalable system for two reasons. First, the linl-

ited speed of the traced system will spread out requests, resulting

in longer periods of activity but lower peaks. Second. users will

tend to avoid operations that take a long time on the traced system,

lowering both peak and overall load. Sharing is another example

where the system’s limitations may distort the workload. Since

NFS has weak data sharing semantics, few users attempt to share

data. If more tiles were shared, both AFS and xFS would see

increased server loads, although AFS’S increase would be largtx-

since AFSSS sharing requires data transfer through the server while

sharing under xFS is accornphshed with read forwarding and

invalidation packets.

4 Simulator Methodology

We built a simulator to evaluate the performance of AFS and

xFS for the traced workload. This simulator starts wdh a model clf

system behavior describing what actions are taken to implement

the AFS and xFS protocols. We then parameterized the system to

reflect the performance of real hardware. The subsections below

describe the system model and the hardware parameters used.

4.1 System Model

Our simulator provides both average resource utilization and

more detailed performance information. In the simplest case we

can determine average processor, disk, and network utilizations b:y

simulating cache behavior on the trace input and counting accesses

to the different hardware resources. We get more detailed perfor-

mance information by adding an event driven model to the cache

simulation to measure the response time of different requests and

monitor the burstiness of the utilization of different parts of the

system. This event-driven hardware model includes both hardwar(a

and queuing delays. The rest of this subsection provides details

about the simulated caches.

Our simulations of xFS and AFS include both on-dtsk and ln-

memory client file caches. and our AFS simulations include an in-

memory tile cache at the server. These caches are simulated using

whole-file caching for simplicity, although in practice both AFS

and xFS would cache chunks of files We do break large transfers

into 64 KB chunks for realistic latency measurements. We assume

in-memory caches of 8 MB per client and 128 MB at the AFS

server, and we give each chent a 100 MB on-disk file cache.

Our simulations also include attribute caches used when CIE

ents access a file’s attributes without fetch]ng the entree file. Each

client had a 2048 entry In-memory attribute cache backed by Its

disk, and the server has a 32,768 entry in-memory cache. Tht:

server supplies attributes and the systems mamtam attribute con-

sistency using the same protocols used for the files themselves.

Because cache behavior IS so crucial to performance of large

scale file systems, we warm the caches before gathering statistics.

The results presented In this paper are gathered during the last six

days of our seven day trace, after warming the caches for the firsit

day, a Saturday. Figure I plots the hit rate of read opens not satis

fied completely in the in-memory cache over time and indicates

that after the first day, the hit rate fluctuates between 307c and

95%. There appears to be no general upward trend as we WOUICI

expect once the caches are warm. The steady state hlt rate is rela-

153

tlvely low because opens that are completely satisfied m the NFS

local In-memory cache dld not appear in the trace

Even after warmmg the caches. 8% of the read opens (21% of

those that miss on the local disk) access files that have not been

referenced earlier in the trace We must make some assumption

about which xFS cllent owns these tiles. We arbitrary assume

each file with unknown location is stored on a randomly selected

client disk. The ilmpact of this assumption]s Iimlted since 92% of

the file opens are located normally, at a chent that is currently

caching the data.

4.2 Hardware Parameters

To estimate the performance of’ xFS and compare lt to AFS,

absent an lmplementatlon, we parameterized the model to reflect

the performance of a mid-range workstation for tasks simdar to

those that would be performed in an xFS or AFS implementation.

We approximate the performance of a DECstation 5000/200 uslrrg

measured and reported performance results for Its subsystems

summarized m Figure 2. Each hardware resource services a

reqae.stSi;e request in time o\erlzead+req[ie. ~tSize/ba)ldwidtll. This

approach is clearly an oversimplification: not all requests to a

given piece of hardware wdl have the same overheads and band-

widths and the actual overhead> are unlikely to exactly match

those for current systems. Nevertheless. these simple assumptions

provide a starting point for system evaluation. [Lazo86] used a

similar approach in parametenzing performance for network file

system simulations.

The processor overhead time represents the CPU and memory

subsystem time to send or receive one network request and do a

small amount of work in the file system. We estimated this time by

measurmg the time for a DECstation 5000/200 to handle an NFS

get at t r request. For the CPU bandwidth for large requests, we

100%
1, AFS Local Disk Hlt Rate —

0701 f I

0123456 7
Day of Simulation

Figure 1. Local hit rate over time. This plot of local on-disk
cache hit rate against day of the simulation of AFS suggests thai
one day is sufficient to warm the caches. Hour-to-hour fluctuations
have been smoothed in this plot by averaging over the previous 4
hours for each point.

Overhead Bandwidth

Processor 1.4 ms 7 MB/s

Disk 9.6 ms 2 MBIs

Network 0.1 ms 4or5xl MB/s

Figure 2. Service demand parameters.

use the time to supply file system data from the in-memory file

cache reported In [Chen93].

We assume that the machines use disks that rotate at 5400

RPM, that the typical seek time M 4ms2, and that the disk band-

width]s 2MB/s.

We base the network topology on the configuration of the cll-

ents in our NFS trace four subnets each connected to the server.

For AFS, each subnet connects directly to the server. and for xFS

each subnet connects to a cluster server. The cluster servers con-

nect to the central server using a fifth subnet. The network latency

is the time to transmit a minimum-sized Ethernet packet and the

network bandwidth is an optimistic estimate of the net bandwidth

available on an Ethernet

Whale other performance assumptions would result in differ-

ences m the absolute latency and burstiness numbers reported later,

they are unlikely to affect our central conclusion that the xFS pro-

tocol scales slgruficantly better than AFS.

5 Results
This section presents the results of our simulations. We show

that the proposed optlmizations reduce server load by more than a

factor of six compared to AFS. and we also show that the xFS pro-

tocol greatly reduces peak bursts of server load. xFS also signifi-

cantly reduces total network load, and the distribution of traffic

that remains m better suited for a mixed LANAVAN environment.

The increased responsibility this protocol places on clients does

increase client file system load slightly, but the extra forwarding of

read requests does not Increase response time.

The next subsection presents our overall results in more

detail, and the subsection after that examines the Individual Impact

of each of the four main aspects of xFS: its no write through pol-

icy, chent-to-chent transfers, write ownership, and clustering. We

find that all four techniques make significant contributions to the

overall performance.

5.1 Overall Results
This section compares the xFS protocol to AFS in terms of

server CPU load, the burstmess of server load, response time, rret-

work load, and client load.

Figure 3 summarizes our results showing that xFS reduces

server load bv more than a factor of six compared to AFS. This.
load estimate is the total server processor demand including both

overhead and bandwidth as described m Section 4.2, expressed as

a fraction of AFS’S server demand. We find that xFS reduces server

load by 85% compared to AFS by eliminating data transfemed at

the server and by reducing the number of messages the server must

handle.

Server Server Server
Messages Data Load

AFS 1,411,504 15.2 GB 1.000
I I 1

xFS 457,356 0.0 GB 0.153

Figure 3. Total server load. The normalized server load
expresses the server CPU load for the simulated protocols as a
fraction of the simulated server load for AFS.

2 This estimate of the typical disk overhead differs from the “aver-
age” seek time reported by manufacturers because it accounts for locality
seen m real workloads [Henn90] while the manufacturer-reported average
seek IS the mean time over all possible source and destination tracks—
seeks that average one third of the distance across the disk surface

154

Figure 4 details how much server load each type of operation

demands. Write close operations at the server include write

through (for AFS), notifying the server of a write of a file that is

not write owned (for xFS), and the messages sent by the server to

invalidate cached copies. Read open operations at the server are

caused by client misses and include handling the client request and

supplying the data (for AFS) or forwarding the request (for xFS).

Delete operations include the message sent to the server to indicate

that a file has been deleted and the server messages notifying the

clients caching that file. Attribute messages include packets to

request, update, and invalidate file attribute information. The cate-

gory “other” includes all other packets sent to or received by the

server; an xFS client notifies the server when it purges a file

(potentially forwarding marked data to another cache) to make

room for new data.

In addition to the total work at the server, performance and

scalability will also be dependant on periods of heavy load.

Figure 5 summarizes the distribution of time spent at increasing

levels of server load for AFS and xFS. It shows that xFS’S reduc-

tion in average load translates into a reduction in time spent at high

load. This figure indicates that the AFS server spends several min-

utes per day working at loads of over 0.5 while the xFS server is

never loaded that heavily. The extremely low peak demands of xFS

suggest that we could scale the system to a larger number of clients

than AFS. We note that tbe absolute load level for both machines is

relatively low, suggesting that either server could probably handle

the Berkeley Auspex workload. As we noted earlier, however, the

maximum load that either system experiences in this simulation is

limited by the maximum load accepted by the NFS system where

the workload trace was gathered.

Having servers forward read requests can potentially increase

latency. Our measurements show, however, that the aggregate

effect of the client in-memory caches minimizes the impact of the

extra step. We focus on the time spent to open a file for reading,

from when the request is issued until the first chunk of up to 64 KB

arrives on the local disk. We consider both requests that are found

on the local disk without additional network communication and

requests that are satisfied over the network.

Figure 6 breaks down the response time based on where

recprested files are found. Opens that are satisfied locally, requiring

no disk accesses, account for most of the opens and are satisfied

quickly by both systems. Misses that are satisfied in the remote in-

memory cache and misses that require remote disk accesses are

slightly slower in the xFS implementation because of the extra for-

warding step, This does not, however, increase the cost of a miss

because xFS misses are satisfied by the remote client in-memory

cache more often than AFS requests are satisfied by the server in-

memory cache. The higher remote client in-memory cache hit rate

is initially surprising because the AFS server in-memory cache is

128 MB while each xFS client cache is just 8 MB. We note, how-

ever, that the aggregate size of the 237 client caches is 1896 MB,

making them together an effective file cache even though many of

the files stored in this distributed cache are duplicates. Further,

note that the server does not attempt to keep track of which clients

have a file cached in memory rather than on disk; although this

would be an obvious optimization, it could increase server load.

Figure 7 plots the remote in-memory hit rate for xFS as a function

of client memory cache size and indicates that the 128 MB server

cache is about equivalent to 5 MB client caches.

Network load, the number of bytes transferred over the net-

work during the trace, is an important metric of scalability. We are

particularly concerned about minimizing network usage for wide

area network file systems, where network bandwidth can become a

’60~

.,.
0 ~..

(J7 04 06 08
Ser~er Load Level (1 Second Inter~als)

Figure 5. Cumulative distribution of server load. The X axis is
the amount of load presented to the server during a one second
interval, This load is the sum of the service demands for all
requests that arrive at the server during a one second interval. The
Y value is the amount of time during the day that the server
experienced at least that load level. The AFS server handled at
least one request per second for 159 minutes per day, while the
xFS server was completely idle for all but 34 minutes per day. The
circled points indicate that the AFS server would have a load of
more than 0.2 for over eight minutes per day while the xFS server
would have a load that high less than ten seconds per day.

I AFS xFS
I I I

Freq. Time Freq. Time

Local 60% 6.3 ms 60% 6.3 ms

AFS xFS

Write Close 0.429 0.018

I Attribute / 0.104 I 0.043 I

Other 0.000 0.006

I I
I Total I 1.000 I 0.153 I

Figure 4. Server load breakdown. Portion of AFS server load
due to each type of request.

I Remote I 40% I 57rns I 40% I 56ms I

I Mem I 9% I 25ms I 15% I 30msl

Disk 31% 66 ms 25% 71 ms
I I I I

Total 100% 27 ms 100% 26 ms

Figure 6. Read open response time. The response time is the
time needed to put the first chunk of the opened file onto the
local disk and return. Local hits are data that are already on the
local disk. For both AFS and xFS data not found in the local on-
disk cache are fetched from a remote machine. For AFS that
remote machine is the server but for xFS that remote machine is
another client. At that remote machine the desired data may be
found on disk or in the in-memory cache.

155

bottleneck. Bandwidth can also be an issue for mobile computing

using wireless interconnects [Kist92].

Figure 8 summarizes total network traffic for AFS and xFS

using the assumption that each packet sent has a header of

128 bytes. The table indicates that xFS reduces total network traf-

fic by 52%. The major difference in total network bandwidth is

xFS’S elimination of write through traffic for files that are later

modified or deleted by the same client.

Although xFS only reduces total network traffic by a factor of

two compared to AFS, it significantly changes the nature of that

traffic. Figure 9 shows that client-to-client transfers reduce the

bytes transferred to the server by more than 99%. This reduction is

crucial for file systems where the server may be located across a

WAN. The use of clustering also reduces the number of bytes

‘oo%~

8070 . xFS Aggregate Client Cac~
a

z
,= 60’%0.
z
A AFS 512 MB Server Cache -
k
g 4070 _ AFS 256 MB Server Cache —__ —.———. ——

5
AFS 128 MB Server Cache —

/

t

20% j

“.~
o 10 20 30 4“ 5“ 60

Per-Client Memory Cache Size (MB)

Figure 7. Remote in-memory cache hit rates for local misses.

AFS xFS

Packets 1,411,504 1,968,242

I Overhead 180MB 252 MB

Data Bytes 15,251 MB 7,222 MB

I Write Through I 8,096MB I “MB \

Other Data 7,154MB 7,222 MB

Total Bytes 15,431 MB 7,474 MB

Figure 8. Network traffic for xFS and AFS from all sources.
The total bytes transferred is an estimate formed by adding the
total data bytes transfemed plus 128 bytes per request to reflect
protocol overhead and control information. The packet count for
xFS reported here differs from the number of messages reported in
Figure 3 because Figure 3 only considered traffic to and from the
server.

transfemed out of the cluster to less than 20% of AFS’S total traffic,

a consideration when clusters are separated by gateways or WANS.

Finally, we note that overall client load is increased only

slightly even though clients shoulder considerably more responsi-

bility in xFS than in AFS, for instance by supplying data to other

clients. The xFS protocol increases the total amount of file system

work done by clients by 107o for the measured workload. The

increase in client load is small because most of a client’s load

comes from local block reads and writes which are unchanged in

xFS. Further, although xFS increases the load on each client to

handle data requests from other clients, the reduced write through

activity largely offsets this increase. This fraction would be smaller

still if the trace included the even larger amount of file system

activity that is purely local, such as reads that hit the client’s in-

memory cache. Figure 10 shows that the demands on clients are

not greatly altered by the xFS protocol.

AFS xFS
I

Central Server 15,431 MB 58 MB

Other Out Cluster NIA 2,902 MB

In Cluster N/A 4,514 MB

Figure 9. Total network traffic over different parts of the
network. The total includes both data and a 128 byte per-packet
header. In a WAN or large-scale environment the connection to
the central server or to other clusters may be slower than the
network within a cluster.

3,

AFS –

2.5 ~ xFS .

22
%
‘1.5 .
g
z
c1 ..-
2

0.5

00
02 04 06 08

Cli’ent Load Level (1 Se~ond Inter~als)

Figure 10. Cumulative distribution of one-second load levels
at clients. The average client processor is active doing file
system activity for less than three minutes per day. The xFS and
AFS client loads are almost indistinguishable.

I I I I (

Protocol Write Read Delete Attr. Other Total

AFS 0.429 0.453 0.014 0.104 0.000 1.000

+ no write through 0.113 0.496 0.014 0.102 0.003 0.728

+ client-to-client 0.113 0.175 0.014 0.102 0.015 0.418

+ write ownership 0.032 0.175 0.014 0.102 0.015 0.337

+ clusters (full xFS) 0.018 0.073 0.013 0.043 0.006 0.153

Figure 11. Server load by type of activity and protocol. The AFS line indicates the server load stemming from write closes, read
opens, deletes, attribute operations, and other operations. Each subsequent line shows the breakdown and total after one more part
of the xFS protocol is added. Server loads that changed significantly from the previous line are highlighted.

156

5.2 Protocol Breakdown

In the prewous section, we considered the aggregate effect of

all four optimlzatlons studied. Here we consider their individual

effects. We conclude that each of the optimization contributes sig-

nificantly to the performance of the xFS protocol. Figure 1I sum-

marizes the load as each part of the xFS protocol is added to the

system. This section explains the benefits of each of the strategies

in more detail

Simply eliminating write through from AFS would reduce the

server load by 277c for this workload. The server load associated

with closing files that have been written would be reduced by

nearly a factor rf four because clients only need to send a small

notification message to the server rather than transmitting the mod-

ified tile in one or more larger messages. However. the server load

associated with supplying read misses is increased slightly as the

server endures write backs of modified files that other clients want

to read. 1070 of the bytes that were written to the server by AFS are

later read and show up as increased read load. Another small load,

in the category Other. comes from write throughs that must even-

tually be made to free cache space.

Utilizing client-to-chent data transfers reduces the server load

by an amount equal to 0.31 times the original AFS load. This

reduction comes from the elimination of data transfers through the

server on read opens. Note, however, that the work in the category

Other is increased slightly. This increase is from messages clients

send when they free space by discarding files from their caches.

The server must be informed when even clean files are discarded

so that it doesn’t forward read requests to a client no longer cach-

ing the desired data.

Write ownership reduces the number of messages processed

by the server, and therefore server load. by an additional 2570 com-

pared to the client-to-client line. Figure 12 indicates that over 80%

of the messages notifying the server that a file has been closed are

eliminated using write ownership.

Cluster servers reduce messages of all types by intercepting

requests that would have been handled by the central server. Clus-

ter servers reduce the server load for reading files and reading

attributes by forwarding requests that can be satisfied within the

cluster. This read forwarding is the primary benefit of cluster serv-

ers. The number of write close messages is also reduced, and this

reduction comes from two sources that combine to reduce server

load by 0.014 times AFS’S load. First, a few write closes transfer

ownership between chents of the same cluster. These writes are

handled by the cluster server, reducing central server load by 0.003

times AFS’S original load. More significantly, the cluster server

acts to fan out invalidation packets from the central server. One

invalidation packet from the central server to the cluster server is

sufficient to invalidate all data copies in the cluster. These invalida-

Notify Invalidate
Protocol Server Client

no write through 291,198 46,015

I +ownership I 50,423 j 46,015 I

Figure 12. Write close messages without and with write
ownership. Norifv Server messages tell the server to invalidate
any other cached copies of a file. It invalidates files with
Invalidate Client messages.

tions reduce the central server load by 0.()11 times the original

load, The load of delete messages and Other messages processed

by the central server is also reduced slightly. Some delete mes-

sages, invalidating multiple copies of the same file in caches in one

cluster, are eliminated because the cluster server distributes these

messages to the appropriate clients in the cluster. Orher messages,

are reduced when a file discarded from a cache is still cached in

some client in the cluster: In that case the server may still forwardl

requests for that file to the cluster and so need not be notified of the

change. Finally. note that the four cluster servers’ loads ranged

from 0.05 to 0.20 as a fraction of the AFS server load. In other

words. they have about the same load as the xFS central server.

We also considered extending the strategy of write ownership

of files to include ownership of directory sub-trees to allow us to

avoid notifying the server of all file creations and deletions. If a

client owned a du-ectory, it would notify the server of file creations

and deletions when ownership of the dn-ectory containing the file

was lost. This strategy would exploit the common case of files

being created. used. and deleted without ever being seen by

another client. Our simulations did not measure the benefits of

directory ownership, but they allow us to place an upper bound on

the benefits by noting that of the 0.018 load for write closes, 0.009

was for newly created files and of the 0.013 load for deletes, 0.012

was for messages notifying the server of the delete. If all of these

messages could be omitted. the total server load would be reduced

by 0.021 umts, a 14% reduction from the xFS protocol m this unre-

alistically optimistic case. We conclude that this improvement

would not justify the considerable added complexity of the

approach. If some of the other sources of load were reduced fur-

ther, this reduction would be a more significant fraction of the

remaining load, and this declslon would have to be reexamined.

6 Challenges for Decentralized Operation
Although the xFS protocol’s reliance on client disk caches

improves scalability, it introduces three potential challenges for

reliable operation. We must provide backup that scales with the

number of clients; we must ensure that the files are highly avail-

able despite being distributed over many disks: and we must pro-

vide security guarantees so that unauthorized clients cannot read or

change data they store. We find that the data replication that is a

natural part of the xFS protocol makes backup easier and increases

availability. Also, message digests can be used to provide security

for data supplied by other clients.

6.1 Backup
xFS’S ability to manage multiple data copies in normal opera-

tion can be used to manage the backup copies of the data as well.

This simplifies the design of the system and also allows us to use

multiple backup archives to scale the backup bandwidth as the rest

of the system scales.

xFS treats each archive as another client, and the server keeps

track of the backup copies of data just as lt tracks other cached

copies. A client cache backs up a file by sending it to an archive

and telling the server about the new copy. The system must have

policies for the frequency of backup, for deciding which of the

potentially many clients caching a file is responsible for backing it

up (this decision can be made without additional communication),

and for retrieving data from the backing store.

We plan to use tertiary storage robots to manage the backup

media. Tertiary storage robots provide from hundreds of gigabytes

157

to tens of terabytes of storage with file access times measured in

tens of seconds [Katz91]. The robots provide deep storage as tradi-

tional tape systems do, but they have the added advantage that all

files are on-line m the sense that a user may access the data without

human intervention. Tertiary robots are not a requirement of xFS;

backup could be done using traditional off-line tapes. The advan-

tage of using storage robots for backup is that data may be sent to

or retrieved from the tertiary storage system without operator inte-

rvention, allowing the system to automatically provide services

such as access to old versions of files or deleted files.

Note that the server’s disk need not be backed up: the server

can reconstruct its hst of cached copies and metadata by polling

the cluster servers [Nels88].

Backup over the network exerts a small additional load on the

system. Although we did not include this load in the simulations,

its impact on performance should be small. As noted in

Section 2.2, almost all tiles are overwritten or deleted quickly and

so need not be copied from the client to the backup archive. Fur-

ther, backup may be scheduled for periods of low system load to

avoid disturbing regular system actlwty.

6.2 Availability
xFS’S second challenge is avadabdity. As the tile system 1s

spread over more machines, the probability that one of the

machines containing file system data is unavailable increases.

Availability problems are mitigated by large client caches, file rep-

lication, and the file access patterns observed in our trace. Even

higher availability could be achieved using explicit data replica-

tion.

Large client caches and file replication from caching and

backup reduce xFS’S vulnerability to unavailable clients. Large cli-

ent caches prowde some insulation—the crash of one machine wdl

often not be noticed by others [Kist92]. xFS also automatically

stores redundant copies of shared read files in different caches

increasing the avadability of those tiles, and on-line backup pro-

vides added copies of older files, These properties of xFS mean

that only a few files, those recently written but not backed up and

not read by a second chent, are vulnerable to single point failures.

Since files written by one client are seldom read by another. these

vulnerable files are seldom accessed when their writer is down.

We estimate from our trace of tile actlwty that the average cli-

ent will go hundreds of days without noticing file unavailability

stemming from the crash of another cllent. This low rate suggests

that the xFS protocol wdl not slgmticantly change data availability

which will stall be dominated by the availability of the server. For

this calculation we assumed that chents fail randomly with an

exponentially distributed mean time to failure of 30 days and an

exponentially distributed mean time to repair of one hour. We also

assumed that data was backed up to a rehable on-line tape robot

every mormng at 2 AM. Under these assumptions we found that

each day an average of 0.56 of [he 237 chents m the tmce would

try to access data that was cached only on an unavailable client.

This tigure was based on 500,000 seven day trials and has a 95%

confidence interval of +0.04. Availability could be more of a prob-

lem if write-sharing of data were more widespread than seen in our

trace. Also, if a user’s machine crashes. the user may not be able to

switch to an alternate machme to do work since modified data wdl

unavailable until the crashed machine recovers

If stronger avadabdity guarantees are needed, chent-to-client

data replication of recently modified data provides a scalable solu-

tion. Shortly after a client closes a file for writing, d would send

the data to one or more other chents [Lisk91, Birr93]. This solution

is scalable since it adds no additional server messages if the server

knows ahead of time which clients mirror writes to each other. The

copy delay chosen is a trade-off between performance and avail-

ability guarantees with longer delays significantly reducing client-

to-chent bandwidth [Bake91] while increasing the length of time

the file is vulnerable to a single point failure. In the future we plan

to investigate these trade-offs for chent-to-client transfers and also

plan to look at using striping to reduce the cost of high availability.

Our current simulations do not make additional client copies.

6.3 Security
xFS’S use of client disks to store and supply data raises two

security concerns, data confidentiality and integrity. We do not

want clients to transfer data into a cache that is not authorized to

read the data, and we do not want to accept altered data from a

malicious client on a client-to-client transfer.

We believe that m many enwronments most chents will trust

at least the other clients in the same cluster to enforce the system’s

data access rules. Communication between trusting clients does

not requu-e the steps described here.

The confidentiality of data cached on client disks is also

addressed by AFS [Saty89] and the techniques used there apply to

xFS as well, for data read by the client. xFS, however, adds one

new way that data can be brought mto a client’s cache: clients flush

data to one another as their caches fill. Since this flushing is rare,

the performance Impact of the chosen strategy will be limited, In

the extreme case, if no other clients are trusted with the data, the

data could be encrypted before It is flushed. The same chent would

have to decrypt it lf it were later accessed. More commonly, data

will only be flushed to a hrnded subset of trusted chents, for

instance only to clients In the same cluster and administrative

domain.

xFS can guarantee data integrity, allowing clients to accept

data from even untrusted clients, by guaranteeing two things: that a

secure copy of each file always exists and that a chent can detect

when a file has been altered from the secure image.

To guarantee the existence of pristine data, the system must

trust the client that created the data—which it must do in any event

since it has given the client permission to modify the data—and

must trust the on-hne backup archive. The client that created the

data pins a copy in Its cache until the file N backed up to the

robotic storage. After the file is backed up, the writer is free to

flush the data, since If another chent modltie> It without permis-

sion, the system may still recover the file from the tape robot.

A client verifies untrusted data using a nre.r.wge digesr, a spe-

cial checksum that can be calculated efficiently, but for which It M

computatlonally infeasible to create different data to match

[Rlve92]. The server stores a 128-bit digest for each 64 KB data

chunk with its list of chunks cached at the clients. When It for-

wards a client’s request for data, it Includes the digest for the pris-

hne data in the forwarding packet. The digest in the forwarding

packet is protected using an encrypted digital signature [NIS92].

The protected part of the forwarding packet would also Include a

request identifier to protect against playback attacks. The chent

supplying data forwards the protected digest along with the data.

The onglnal chent then verifies the data supplled against the origi-

nal digest. If the file is corrupt, the chent asks the server for a copy

from another source.

158

Because the work of computing digests is done at the clients,

digests do not severely impact server scalability. Digests can be

supplied to clients reading data using no additional network pack-

ets and they are updated at the server only when file write owner-

ship is lost. When the server forwards a data read request, it must

encrypt a short message including the digest and request identifier

and append that message to the forwarding packet. If the work of

encrypting this message is small compared to sending the packet,

digests will not increase server load for read requests. (If encryp-

tion is hard compared to sending a message, the unprotected digest

may be sent directly to the client requesting the read in a separate

message.) Our simulation assumes that the cluster servers are

trusted by the clients in the cluster, so once a cluster server knows

the digest for a particular file chunk, the cluster server may for-

ward the digest to the appropriate client. Digests only change when

a file is written, so clients only calculate a new digest and send it to

the server when they lose write ownership.

We simulated message digests assuming that the signature

encryption is cheap compared to sending a message. In that case

the only additional server load is receiving 15,510 digest updates

when write ownership is lost. This increases server load by less

than 170 of AFS’S total server load.

Message digests do not severely impact response time. We

measured the bandwidth to compute the MD4 digest on a DEC

Alpha AXP 3000/400 to be 13.3 MB/s. To be consistent with the

other processor speeds used in this paper. we simulated MD4 cal-

culations using our measured DECstation 5000/200 MD4 band-

width of 2.5 MB/s. Even if ciients calculate a message digest on all

data received, trusting no other clients, the read open time for files

is 28 ms, just 2 ms slower than the 26 ms read open time reported

in SectIon 5 for xFS without message digests. Since the MD4 cal-

culation bandwidth exceeds the bandwidth of the network, the

impact to performance is minimal. This approach will become

even more attractive if processor speed improvements continue to

outpace 1/0 system improvements.

7 Related Work

This paper evaluates the effectiveness of a file system that

combines the strategies of eliminating write through, chent-to-cli-

ent transfers, write ownership, and clustering. The fusion of these

strategies has produced a system that we believe will scale in size

and across wide area networks. This section surveys some other

combinations of these schemes that have been suggested as meth-

ods to achieve scalable tile systems.

The Andrew file system. AFS. was designed with scalability

as a main criteria [Howa88, Saty90]. Andrew based scalabihty on

the use of, first, large on-disk client caches to reduce tile reads

from the server. and second, callbacks to reduce the number of pro-

tocol messages handled by the server. xFS is also based on large

on-disk client caches and callbacks but generalizes their use using

four additional techniques.

The mass storage system reference model [Coyn93] decou-

ples location and name service from the actual storage of data. The

model defines a name server and locatlon server that locate the

storage server that actually manages the bitfile. Goldick et al.

[Gold93] have implemented an AFS-based storage system which

allows data to reside in up to 32 separate locatlons. In xFS each cli-

ent acts as a storage server, and server and cluster servers together

act as a two-level location server. This study indicated that this

division greatly reduced the load on the central resource, the ce)n-

tral server.

Sprite [Nels88] uses delayed writes to the server to reduce

server load. The diskless Sprite clients, however. must write data

through to the server within about 30 seconds to reduce vulnerabil-

ity to crashes. xFS’S extends delayed writes to a no write through

pohcy by using the clients’ local disks.

Blaze and Alonso [Blaz91, Blaz92] suggest dynamically

building hierarchies for widely shared data. Once a server has sup-

plied a threshold number of copies of a tile, the server will refuse

to supply the data to any more clients. Instead, the request will be

forwarded to a client already caching the file. Clients acting as

intermediate servers are also responsible for keeping callback

information on the files they have supplied to other caches. Thle

authors also suggest a number of strategies which clients may use

to guess which other client has desired data without going to the

server. These hinting techniques could be applied to an xFS imple-

mentation.

Muntz and Honey man [Munt92] studied the effect of putting

an intermediate data server between the central server and the cli-

ents in an Andrew system. They found that the hit rates at the inter-

mediate server were surprisingly low. Client caches of 40 MB,

small for an on-disk cache, reduced the intermediate cache hit rate

to under 20% for both traces studied. The reason is that it is diffi-

cult to give the intermediate server a big enough cache to hold sig-

nificant amounts of data not found in client caches. Because of this

resuh, xFS is designed with intermediate servers that field only

consistency requests: the intermediate servers do not store data,

We believe it M feasible to prowde enough storage on the interme-

diate servers to hold all of a cluster’s consistency information

The Frolic system [Pang92, Sand92] implements replication

of files among cluster servers. When a chent accesses data from a

remote cluster, Frolic creates a copy of the data in the local cluster.

Clients use a different protocol, such as NFS, to access data from

the local cluster server. Frolic cluster servers differ from xFS clus-

ter servers in that Frolic cluster servers act as intermediate data

caches between the clients and remote servers while xFS’S cluster

servers merely monitor the location of file copies within the clus-

ter. Frolic’s concept of a “locating server” responsible for tracking

the current owner of a file is simdar to xFS’S use of the central

server. The authors studied the behavior of shared tiles using a syn-

thetic workload and found that cluster replication improved perfor-

mance and server load for shared files unless the “degree of cluster

locality” was low; clusters do not perform well If files are read by

one cluster and qruckly invalidated by another.

8 Conclusions

In this paper, we present and evaluate the xFS caching proto-

col, designed to improve network file system scalability by taking

full advantage of clients’ processors. memories, and disks. All files

are stored at the clients and all data transfers go directly from client

to client. The server is used only to coordinate transfers among the

clients. xFS reduces the server load necessary for this coordination

by using write ownership and clustering, m most cases allowing

clients and cluster servers to avoid interacting with the central

server.

159

We evaluated the performance of IFS using a trace-driven

simu]atlon of 237 clients, We found that xFS reduced server load

by 85% compared to AFS by eliminating server data transfers and

by reducing the number of messages to and from the server by

68% By movmg data storage and data transfer responsibilities to

the cllents, xFS makes It possible to build a large network file sys-

tem using only commodity desktop workstations. even for the file

server

Acknowledgments
We would Ike to thank Matt Blaze for providing us with hls

rpcspy and nfstrace tools; these formed the basis for our trace pro-

cessing tools. We would also hke to thank John Hartman and the

anonymous referees whose comments were very helpful in

Improving this paper.

References

[Arch86] James Archibald and Jean-Loup Baer. Cache Coherence
Protocols: Evaluation Using a Multiprocessor Simulation Model,
ACM Transactions cm Computer Systems. 4:273–298, November
1986.

[Bake9 I] Mary G. Baker, John H. Hartman, Michael D, Kupfer,
Ken W. Shirrlff. and John K. Ousterhout Measurements of a
Distributed File System. In Proc. of the 13th Syrnposinnz on
OPeratrrrg Systettts Prirzctples. pages 198–2 12, October 1991.

[Birr93] Andrew D. Birrell, Andy Hlsgen, Chuck Jerlan, Timothy
Mann. and Garett Swart. The Echo Distributed Fde System,
Technical Report 111, Digital Equipment Corp. Systems
Research Center, 1993

[Blaz91] Matt Blaze and Rafael Alonso. Long-Term Caching
Strategies for Very Large Distributed Fde Systems. In Proc. of
the Sumt~zer 1991 USENIX, pages 3–15, June 1991.

[Blaz92] Matt Blaze and Rafael Alonso Dynamic H1erarchlcal
Caching in Large-Scale Distributed File Systems. In F%oc. oj the
12th [nterncmona[Con$ on Dl~tribured Cf}rnpating Systems,

pages 521–528, June 1992.

[Blaz93] Matt Blaze. Cachtng in Large-Scale Distributed File

Systems. PhD thesis, Princeton Umversity, January 1993.

[Chen93] Peter M. Chen and David A, Patterson. A New Approach
to 1/0 Performance Evaluation–Self-Scaling 1/0 Benchmarks,
Predicted 1/0 Performance. In Proc. of 1993 ACM SIGMETRICS,
pages 1-12, May 1993.

[Coyn93] Robert A. Coyne and Harry Hulen. An Introduction to the
Mass Storage System Reference Model, Version 5, In T}t,e/fth
IEEE Symposium on Mass Storage S> stems, pages 47–53, April
1993.

[Gold93] Jonathan S, Goldtck, Kathy Benmnger, Woody Brown,
Christopher Kmby, Christopher Maher, Daniel S. Nydick, and
Bdl Zumach. An AFS-Based Supercomputing Environment. In
Tweljth IEEE Symposium on Mass Storage Systems, pages 127-
132, April 1993.

[Hage92] Erik Hagersten, Anders Landin, and Seif Har]dl. DDM-
A Cache-Only Memory Architecture. IEEE Compufer. 25(9):45–
54, 1992.

[Henn90] John L. Hennessy and Dawd A. Patterson. Computer
Archztectare A Quantltati\,e Approach. Morgan Kaufmann
Publishers, Inc., 1990.

[Hitz90] David Hitz, Guy Harris, James K. Lau, and Allan M.
Schwartz, Using UNIX as One Component of a Llghtwelght
Distributed Kernel for Multiprocessor Fde Servers, In Proc. of
the Winter 1990 USEN[X. pages 285–296, 1990,

[Howa88] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scale and Performance in a Distributed File
System, ACM Transactions on Comparer Systems. 6(1):5 1-81,

February 1988.

[Katz9 1] Randy H. Katz, Thomas E. Anderson, John K,
Ousterhout, and Dawd A. Patterson. Robo-Line Storage: Low
Latency High Capacity Storage Systems Over Geographically
Distributed Networks. Sequoia 2000 Technical Report 91/3,
University of Califorma. September 1991.

[Kist92] James J, Klstler and M. Satyanarayanan. Disconnected
Operation in the Coda File System, ACM Transactions on

Compater Systems, 10(1):3–25, February 1992.

[Lazo86] Edward D, Lazowska, John Zahorjan, David R. Cheriton,
and Winy Zwaenepoel. File Access Performance of Diskless
Workstations, ACM Transactions on Computer S~stems.

4(3):238-268, August 1986.

[Leno90] D, Lenoski, J, Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Protocol for
the DASH Multiprocessor. In Proc. of the 17th International
Symposium on Corrzpurer Archirectare, pages 148–1 59, May
1990.

[Lisk91] Barbara Lnkov, SanJay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrma, and Michael Williams. Repllcatlon m the
Harp File System In Proc. of the 13th Sympo.wan on Operating

Symettzs Pri;zczp/es. pages 226–238. October 1991.

[Mogu87] J. Mogul. R. Rashid, and M. Accetta. The Packet Filter:
An Effzcient Mechamsm for User-Level Network Code. In Proc.
of the 1 I th ACM Swnposiam on Operating Systems Prmclp[es,

1987,

[Munt92] D. Muntz and P. Honeyman. Multi-level Caching in
Dlstrlbuted File Systems or Your cache ain’t nuthin’ but trash. In
Proc. <~ the Witzter 1992 USENIX, pages 305-313, January 1992.

[Nels88] Michael N. Nelson, Brent B. Welch, and John K.
Ousterhout. Caching in the Sprite Network File System. ACM
Transactiotz.! OF1Compater Systems, 6(1), February 1988.

[NIS92] The Digital Signature Standard Proposed by NIST.
Conznzunicatiuns of the ACM, 35(7).3640, July 1992.

[Pang92] James Y,C. Pang, Deepinder S, Gall. and Songnian Zhou,
Implementation and Performance of Cluster-Based File
Rephcation m Large-Scale Distributed Systems. Technical
report, Computer Science Research Institute, Uruversity of
Toronto, August 1992.

[Rlve92] R, Rivest. The MD4 Message-Digest Algorithm. Request
for Comments 1320, Network Working Group, 1S1, April 1992.

[Rost93] E. Rosti, E. Smirni, T. D. Wagner, A. W. Apon, and
L.W, Dowdy. The KSR 1: Experimentation and Modeling of
Poststore, In Proc. of 1993 ACM SIGMETRICS, pages 74–85,
1993.

[Sand85] Russel Sandberg, Dawd Goldberg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Design and Implementation of the Sun
Network Fllesystem. In Proc. of the Summer 1985 USENIX.
pages 119-130, June 1985.

[Sand92] Harjmder S, Sandhu and Songnian Zhou. Cluster-Based
Fde Replication m Large-Scale Distributed Systems. In Proc. of
1992 ACM SIGMETRICS, pages 91-102, June 1992.

[Saty89] Mahadev Satyanarayanan. Integrating Security in a Large
Distributed System. ACM Transactions on Compater Systems,
pages 247–280, August 1989.

[Saty90] Mahadev Satyanamyanan. Scalable, Secure, and Highly
Available Distributed File Access. IEEE Computer, pages 9–2 1,
May 1990.

[Spas94] Marjana Spasojevic and M. Satyanarayanan. A Usage
Profde and Evaluation of a Wide-Area Distributed File System.
In Proc. of the Winter 1994 USENLY, January 1994.

[Thom87] James Gordon Thompson. Eficient Analysis of Cachzng

Systems. PhD thesis, Umversity of California at Berkeley, 1987.

[Wolf89] Joel Wolf. The Placement Optimization Problem: A
Practical Solution to tbe Disk File Assignment Problem, In Proc.

of 1989 ACM SIGMETRICS, pages 1–1O, May 1989.

160

