
This research was supported by Sun Microsystems Laboratories.

Operating System Benchmarking in the Wake ofLmbench: A Case Study of
the Performance of NetBSD on the Intel x86 Architecture

Aaron B. Brown
Margo I. Seltzer

Harvard University
{abrown,margo}@eecs.harvard.edu

Abstract
The lmbench suite of operating system microbenchmarks provides
a set of portable programs for use in cross-platform comparisons.
We have augmented thelmbench suite to increase its flexibility and
precision, and to improve its methodological and statistical opera-
tion. This enables the detailed study of interactions between the
operating system and the hardware architecture. We describe mod-
ifications to lmbench, and then use our new benchmark suite,
hbench:OS, to examine how the performance of operating system
primitives under NetBSD has scaled with the processor evolution
of the Intel x86 architecture. Our analysis shows that off-chip
memory system design continues to influence operating system
performance in a significant way and that key design decisions
(such as suboptimal choices of DRAM and cache technology, and
memory-bus and cache coherency protocols) can essentially nul-
lify the performance benefits of the aggressive execution core and
sophisticated on-chip memory system of a modern processor such
as the Intel Pentium Pro.

1 Introduction
As modern applications become increasingly dependent on multi-
media, graphics, and data movement, they are spending an increas-
ing fraction of their execution time in the operating system kernel.
A typical web server, undoubtedly today’s hottest server applica-
tion, can spend over 85% of its cycles running operating system
code [4]. Other multimedia, commercial, and GUI workloads
spend between 20% and 90% of their instructions in the kernel as
well [4][6][10]. Amdahl’s law tells us that if we want these modern
applications to run quickly, the operating systems must run quickly
as well. However, most of the performance analysis that has driven
processor and system design has been directed towards applica-
tion-level performance as quantified by the SPEC benchmarks,
which have been shown to execute fewer than 9% of their instruc-
tions within the kernel [6]. Therefore, if we want to know which
hardware to tune to make the OS perform better, thereby improv-
ing the performance of OS-dependent applications, it is critical
that we understand the hardware and architectural basis of OS per-
formance.

There are three standard approaches to quantifying and under-
standing OS performance: macrobenchmarking (i.e., running actual
applications), profiling, and microbenchmarking. Macrobench-

marks, although useful for measuring end-to-end performance on a
specific workload, involve too many variables to form a foundation
for understanding the hardware basis of OS performance. Kernel
profiling can be useful for determining the performance bottlenecks
of an OS running a specific workload, but as a general purpose tech-
nique it has limited applicability because it requires often-unavail-
able source code for the OS kernel. This leaves microbenchmarks.

Until recently, the only widely-available OS microbenchmark
suite was a set of tests developed by Ousterhout to measure the per-
formance of the Sprite operating system [12]. Ousterhout’s bench-
marks isolate a number of kernel primitives and, when run across
multiple platforms, provide some indication of the dependence of
OS performance on machine architecture. However, they do not in-
clude enough detailed tests to characterize the capability of the un-
derlying hardware and to use that characterization to understand the
performance of higher-level kernel primitives. In 1995, McVoy im-
proved the microbenchmark state-of-the-art with the introduction
of his lmbench package: a suite based on a broad array of portable
OS microbenchmarks capable of measuring both hardware capabil-
ities (e.g., memory bandwidth and latency) and OS primitives (e.g.,
process creation and cached file reread) [11]. Through its detailed
tests, lmbench offered the possibility of decomposing operating
system primitives into their hardware-dependent components, thus
providing the tools necessary to develop an understanding of the re-
lationship between architectural features and operating system per-
formance.

On its own, however,lmbench is just a set of tools; for us to
use it as the basis for understanding operating system performance,
we needed to develop a benchmarking methodology: a means of us-
ing the tests and their results to build a decomposition of perfor-
mance from high-level primitives down to hardware details. To see
if this was possible, we undertook an in-depth study of the perfor-
mance of the NetBSD operating system running on the Intel x86 ar-
chitecture. We chose NetBSD for its openness and its multi-
platform support: having the source code meant that we could use
kernel profiling to verify our techniques, and its multi-platform
support provided the possibility of future cross-architecture com-
parisons. We selected the Intel x86 architecture as our subject ar-
chitecture due to its breadth: in its evolution from the i386 through
the Pentium Pro, the Intel x86 architecture has progressively in-
cluded more and more of the advanced features that characterize a
modern architecture, including pipelining, superscalar execution,
and an out-of-order core with an integrated second-level cache.

As we usedlmbench to probe into the details of NetBSD’s per-
formance and its interaction with the x86 architectural features, we
found that it had several shortcomings as a tool for the detailed sci-
entific study of OS-hardware interaction. Most notably, it did not
provide the statistical rigor and self-consistency needed for detailed
architectural studies. To resolve these shortcomings, we decided to
reviselmbench into a suite of tests that would be useful for both
cross-platform comparison and detailed system analysis—we
wanted to fulfill thelmbench promise of providing a set of tools ca-

pable of illuminating the inner workings of an operating system in
order to bring to light how that operating system’s performance de-
pends on the hardware upon which it runs. Sincelmbenchprovides
a sufficiently complete set of tests to cover a broad range of operat-
ing system functionality, our modification efforts were directed at
making the existing tests more rigorous, self-consistent, reproduc-
ible, and conducive to statistical analysis.

In this paper we first detail the modifications that we made to
lmbench, then proceed to demonstrate how we applied our new
benchmark suite, “hbench:OS,” to the problem of understanding, at
the most detailed levels, the dependence of OS performance on ar-
chitectural features of the Intel x86 platform.

The rest of this paper is organized as follows. In Section 2, we
discuss the revisions we made tolmbench. Section 3 describes the
methodology that we developed for usinghbench:OS to analyze
system performance. Section 4 presents the NetBSD case study,
and we conclude in Section 5.

2 Revisinglmbench
As we began to applylmbench to our analysis of NetBSD/x86 per-
formance, we encountered both minor problems (we found the out-
put format of the benchmarks difficult to analyze) and more
substantial problems (with a reasonable compiler, the test designed
to read and touch data from the file system buffer cache never actu-
ally touched the data). Our biggest concerns, however, were with
the benchmarks’ measurement and analysis techniques: we were
not confident that the methodology used in a number of tests was
rigorous enough to produce accurate, reproducible results. In the
following sections we document the difficulties that we encoun-
tered and the methods that we used to solve them. The original
lmbench tests that are used in this paper are summarized in Table
1; we refer the reader to McVoy’s originallmbench paper [11] for a
more detailed description of the benchmark tests discussed.

For the remainder of this paper, we uselmbench to refer to the
original lmbench–1.1test suite, andhbench:OSto refer to the mod-
ified test suite. Also, we will refer to the on-chip cache as the L1
(first level) cache and the secondary cache as the L2 (second level)
cache. Note that the Pentium Pro integrates the L2 cache into the

same package as the CPU, while earlier CPUs use an external L2
cache.

2.1 Timing Methodology
Lmbench performs all of its timing using thegettimeofday()
system call to sample the system time before and after the opera-
tion that is being measured. On systems that do not have (or use)
hardware microsecond timers, the resolution ofgettimeof-
day() is only that of the system clock—as coarse as 10 ms in
some cases. One particularly severe real-life example that demon-
strates the problems imposed by a coarse-grained timer can be
seen in the DEC Alpha 21164 running Digital UNIX 3.2F; the res-
olution of gettimeofday() on such systems is 1 ms. This is
far too coarse to accurately time individual low-latency events or
to measure high bandwidths, as some of thelmbench tests attempt
to do. For example, thelmbenchTCP connection latency bench-
mark times individual connection requests through the loopback
interface; as these take much less than 1 ms,lmbench reports a 0
microsecond connection latency on the Alpha. Similarly, the mem-
ory bandwidth benchmark times a single buffer read; if the test is
run with buffers small enough to fit in the L1 or L2 cache,lmbench
on the Alpha reports infinite bandwidth.

We made two modifications to avoid the timer resolution con-
straint imposed bygettimeofday() . First, we modified each
benchmark to run its tests in an internal loop, timing the entire loop
and reporting the average time (total time divided by number of it-
erations). While many of thelmbenchlatency tests already used
such internal loops, the loops were run an arbitrary, predetermined
number of times, causing scalability problems on different-speed
systems. To fix this, we modified the internal loops to run for a min-
imum of one second, calculating the number of iterations dynami-
cally. The dynamic calculation of the iteration count ensures that
the running time of the benchmark will exceed any reasonable timer
resolution by a factor of 10 or more, regardless of the system or
CPU being used. In addition, the inclusion of internal iteration with
the bandwidth tests makes possible precise measurement of the
memory and copy bandwidths to the L1 and L2 caches.

For benchmarks where the measurement is destructive and can
only be taken once (for example measuring the virtual memory and
TLB overhead in reading a memory mapped region), the loop-and-
average method is not effective. For these tests, we had to appeal to
a hardware-specific solution to gain the timing accuracy needed:
we introduced hooks to allow hardware cycle counters (which tick
at the CPU’s internal clock speed) to replacegettimeofday()
for timing. Currentlyhbench:OSonly supports the Pentium and
Pentium Pro counters, but adding support for other architectures
(such as the Alpha or SuperSPARC) is not difficult. Note, however,
that if an architecture supports no hardware counters/timers, it is
not possible to measure such destructive events accurately.

Adding the hardware-timer hooks also significantly enhances
the flexibility of the hbench:OS package, as the high-resolution
timers givehbench:OS the capability of measuring events with low
latencies without the need to run the event in a loop, thus allowing
collection of cold-cache performance numbers. When using the
gettimeofday() timing method, only warm-cache results can
be measured, as the loops that are required for accuracy also allow
the benchmark to run entirely from the cache.

Our last modification to the timing routines was to include
code to measure and remove the overhead introduced by the timing
mechanism (either thegettimeofday() system call or the in-
structions to read the hardware counters). Removal of this timer
overhead is essential, especially when using the hardware timers to
measure single low-latency events. When combined with the use of
the hardware counters, this allows for precise timing measure-
ments: on a 120 MHz Pentium, for example, our timings are accu-
rate to within one clock cycle, or 8.3 ns.

Test Description
Memory read/write
bandwidths

Determines the bandwidth to memory by
timing repeated summing of a large array.

bcopy() bandwidth Determines the memory bandwidth
achieved by the bcopy() memory copy
routine.

File reread bandwidth Measures the bandwidth attainable in
reading cached files from the system
buffer cache.

TCP bandwidth Measures the bandwidth attainable
through an already-established TCP con-
nection through the loopback interface.

Cached mmap-read
bandwidth

Measures the bandwidth attainable when
reading from a cached file mapped into
the process’s address space

Process creation Measures the latencies of three different
methods of process creation: via a simple
fork(), fork()+exec(), and system().

Signal handler installa-
tion

Measures the latency of installing a new
signal handler from a user process.

TCP connection
latency

Measures the latency of setting up a TCP
connection across the loopback interface.

Table 1: Summary of a subset of the originallmbench bench-
marks [11].

2.2 Statistical Methodology
With the timing irregularities solved through iteration and the use
of hardware counters, we discovered another shortcoming in
lmbench’s methodology: it was inconsistent in its statistical treat-
ment of the data. Several of the benchmarks reported the result of
one measurement, others reported the average of multiple repeated
measurements, and yet others reported the minimum of multiple
repeated measurements. We wanted to run each test a number of
times to obtain more statistically sound results, but with the goal of
applying a consistent policy to the data analysis. To achieve this
goal, the benchmarks were each restructured to make a single tim-
ing measurement. The tests are run multiple times by a driver
script (each run in a new process), and the result from each run is
appended to a file. Since our reformulation of the tests preserves
the value from each run of the benchmark, we have divorced the
data analysis policy from the benchmark itself.

The most-used statistical policy inlmbenchis to take the min-
imum of a few repetitions of the measurement; this is intended to
pick out the best possible result by ignoring results contaminated by
system overhead. However, in doing so it can pick out results that
are flukes—especially when the measurement involves subtracting
an overhead value, as in the context-switch latency benchmark. If
the actual overhead on a specific run is lower than the pre-calculat-
ed overhead, an abnormally good result will be obtained when the
pre-calculated overhead is removed from the result. To avoid these
problems, in most cases we take ann%-trimmed mean of the re-
sults: we sort the results from a benchmark, discard the best and
worstn% of the values, and average the remaining (100–2n)%. n is
typically 10%. With this policy, we discard both the worst values
resulting from extraneous system overhead as well as the overly-
optimistic results.

For certain benchmark tests, however, a simple trimmed mean
is not sufficient to capture all of the important features of the re-
sults. This is particularly noticeable when the results of a test do not
approximate a normal distribution, but are (for example) bimodal.
Such cases are easily detected by their large standard deviations,
and since all data is preserved, it is easy to view the actual distribu-
tion of the data to determine the best interpretation. We encoun-
tered this problem in measuring L2 cache bandwidth, as cache
conflicts within our test buffer produced a bimodal distribution
where the true bandwidth was represented by a large, narrow peak
and the false (conflict) bandwidth was represented by a lower peak
with larger spread. In this case, we merely increased the percentage
that was trimmed from the data in order to isolate only the true
bandwidth peak.

Finally, we have modified the benchmarks (where possible) to
perform one iteration of the test before beginning the real measure-
ment. Since we run most of the tests in loops anyway, we expect
warm-cache results. Running the test once before commencing
measurement ensures that the caches are primed and that any need-
ed data (e.g., files in the buffer cache) are available.

Note that in gathering the results in this paper, we ran each
benchmark (each of which runs a large number of internal itera-
tions) fifty times on all machines but the386-33and486-33 (due to
limited access to the hardware, only five iterations were performed
on these machines), and we report the 10% trimmed average across
these iterations. Standard deviations are represented by error bars in
the graphs; in all cases standard deviations were less than 1% (and
are frequently not visible in the graphs) except in the file reread
benchmark, which produced standard deviations of less than 5%.

2.3 Increased Parameterization
In order to make thelmbenchtests more amenable to our investiga-
tions, we made several modifications to increase the flexibility of
the benchmarks by making them more parameterizable. For exam-

ple, we modified the pipe, TCP, and file-reread bandwidth tests to
accept a transfer size as an argument in order to investigate the
effect of write-back caches on small-buffer transfers. We also
modified the memory read/write/copy bandwidth tests to allow for
measurement of the L1 and L2 cache bandwidths. Finally, we
modified the process creation benchmark to allow for measure-
ment of both dynamic and statically-linked processes.

2.4 Context Switch Latency
Measuring context switch latency is particularly challenging, as
the latency of a context switch is not very well-defined. In the
strictest sense, context switch latency is the time that it takes for
the OS to suspend and save the hardware state of a running process
(e.g., registers, stack pointer, page table pointers), select a new pro-
cess to run, load the new process’s saved hardware state, and then
begin executing it.Lmbench uses a looser definition of context
switch latency: in addition to the above components of context
switch time, it includes the latency that results from faulting the
working set of the new process into the CPU’s cache. This cache-
filling overhead is not strictly a part of context-switch time, for it
only occurs when the two processes collide in the cache; thus, it is
a function of the sizes of the processes’ working sets and the OS’s
page-mapping policy, and not of the hardware or of the OS’s con-
text-switch code. Whatlmbench measures is closer to what a user
might see for context-switch time with several large, data-intensive
processes than to the raw context-switch speed of the OS.

Although measuring cache conflict overhead is useful (espe-
cially for estimating context-switch time for large processes),lm-
bench’s context switch benchmark demonstrates that there are
problems with this approach that make it infeasible for a portable
context switch benchmark. The most significant problem occurs
when the operating system does not support intelligent page color-
ing, i.e., it chooses physical addresses for virtual pages randomly1.
To understand why this is a problem forlmbench, we need to inves-
tigate howlmbench collects its context switch latency data.

The lmbench context switch latency benchmark measures the
time to pass a token around a ring of processes via pipes; to dupli-
cate the effect of a large working set, each process sums a large, pri-
vate data array before forwarding the token, thereby forcing the
pages of the array into the cache. When the total time for this oper-
ation is divided by the number of processes in the ring,lmbench is
left with a number that includes the raw context-switch time, the
time to fault the array into the cache, the time to sum an already-
cached array, and the time to pass a token through a pipe. The latter
two factors are measurement overhead and must be removed. To do
so, lmbenchpasses a token through a ring of 20 pipes within one
process, summing the same data array each time the token changes
pipes, then divides by the number of times the token went through
a pipe. The problem with this approach is that the test assumes that
summing the buffer produces no unnecessary cache conflicts, for
the summing overhead should not include any cache-fill time.
However, if the virtually-contiguous pages of the buffer are ran-
domly assigned to physical addresses, as they are in many systems,
including NetBSD, then there is a good probability that pages of the
buffer will conflict in the cache, even when the size of the buffer is
smaller than the size of the caches [3]. Thus the overhead will con-
tain some cache-fill time, and as a result might be too high; if the
actual context switch test obtains good page mappings, the over-
head may even be so high that whenlmbench subtracts it from the
total time to get just the context-switch latency, the resulting (re-
ported) context switch latency is negative or zero. A similar prob-
lem exists if the overhead-measurement test obtains good page

1. It is also this random page-mapping policy that introduces the somewhat
large (5%) standard deviations that we see in the file reread benchmark.

mappings while the real context switch latency test obtains conflict-
ing mappings; here the overhead will be too small, and the reported
context switch latency will be too large.

Because withlmbench there is no guarantee of reproducible
context-switch latency results in the absence of OS support for in-
telligent page coloring, we decided, inhbench:OS, to restrict the
test to measure only the true context switch time, without including
the cost to satisfy extra cache conflicts or to fault in the processes’
data regions, as these can be approximated from the cache and
memory read bandwidths. To this end, we introduced a new context
switch latency benchmark to supplement the existinglmbench test.
We did not replace thelmbench test completely, as it can be useful
in estimating user-visible context-switch latencies for applications
with a known memory footprint, and for determining cache associa-
tivity. In our new test, context switch latency is a function of the
speed of the OS in selecting a new process and changing the hard-
ware state to run it. To accomplish this, we carve each process’s
data array out of a large region shared between all the processes in
the ring. To compute the overhead fornproc processes, we measure
the time to pass a token throughnprocpipes in one process, sum-
ming the appropriate piece of the shared region as the token passes
through each pipe. Thus we duplicate exactly what the real context
switch test does: we use the same memory buffers with the same
cache mappings, and touch them in the same order. When we sub-
tract this overhead from the context switch measurement, we are
left with the true context switch time plus any hardware-imposed
overhead (such as refilling non-tagged TLBs and any cached data
that got flushed as a result of the context switch but not as a result
of faulting in the process). With these modifications, we can obtain
results with a standard deviation of about 3% over 10 runs, even
with large processes, and without having to flush the caches. In
contrast, on the same machine,lmbench reports results with stan-
dard deviations greater than 10%.

2.5 Memory Bandwidths
In the interest of consistency, we made some modifications to the
benchmarks that touch, read, or write memory buffers. The
lmbench bandwidth tests use inconsistent methods of accessing
memory, making it hard to directly compare the results of, say
memory read bandwidth with memory write bandwidth, or file
reread bandwidth with memory copy bandwidth. The tests that
read memory primarily use array-offset addressing to iterate
through the buffer, while the write and copy-based benchmarks
dereference and increment pointers. On pipelined or superscalar
architectures, using array-offset addressing produces address gen-
eration interlocks (due to the implicit add), while using pointers
can cause false data dependency interlocks. The difference
between the two approaches is evident upon examination of the
compiler’s output for the two benchmarks: gcc (on the x86) imple-
ments the array-offset addressing in the C statements
(ebx[0]=1; ebx[1]=1;) as:

movl $1, (%ebx)
movl $1, 4(%ebx),

while a similar example using pointers (*ebx++ = 1; *ebx++
= 1;) is implemented as:

movl $1, (%ebx)
addl $4, %ebx
movl $1, (%ebx)
addl $4, %ebx.

Depending on how the processor’s pipeline handles interlocks, the
two methods can produce different timings. For example, on the
Alpha processor, memory read bandwidth via array indexing is
26% faster than via pointer indirection; the Pentium Pro is 67%
faster when reading with array indexing, and an unpipelined i386
is about 10% faster when writing with array indexing. To avoid
errors in interpretation caused by these discrepancies, we con-

verted all data references to use array-offset addressing. In addi-
tion, we modified the memory copy bandwidth to use the same size
data types as the memory read and write benchmark (which use the
machine’s native word size); originally, on 32-bit machines, the
copy benchmark used 64-bit types whereas the memory read/write
bandwidth tests used 32-bit types.

3 hbench:OS as a Scientific Tool: Philosophy
and Methodology
The previous section described the means by which we were able
to convertlmbench into a more rigorous analytical tool. Before
proceeding to describe how we used our new tool for detailed mea-
surements of several x86 systems, let us pause for a moment to
consider why such a tool is useful. Much of system measurement
today is done at only one point on the continuum of abstraction
that stretches from the silicon of the hardware through the operat-
ing system and up to the interface presented by user applications.
However, it is important to try to characterize an entire system,
from hardware features to application performance.hbench:OS is
a first step toward this ultimate goal: it allows for the characteriza-
tion and analysis of the part of the performance continuum reach-
ing from the hardware to the performance of the OS and OS-
dependent applications, and provides a foundation for future work
to extend the analysis to the level of user applications.

However,hbench:OS used in a vacuum will not provide the
information needed to understand the interactions and performance
characteristics of a given system. Thus we next propose a method-
ology for analyzing and interpreting its results. The benchmarks in
hbench:OS can be roughly divided into two layers: one that quanti-
fies hardware capabilities (such as memory bandwidth), and anoth-
er that measures the primitive functionality that is exported from
the kernel to applications (such as system calls, process creation,
and file/network access). When these layers are combined with the
hardware at the bottom and OS performance at the top, a hierarchi-
cal structure emerges. Figure 1 depicts this hierarchical structure as
a pyramid of relationships between layers representing components
of OS performance. Our goal in creating a methodology for
hbench:OS was to provide a means of reconstructing the interde-
pendencies in the pyramid. Thus, when the methodology is applied,
the result is a decomposition of the performance of the highest-level
kernel primitives (those seen by kernel-dependent applications)
into the performance of the underlying hardware; such a decompo-
sition can then be used to predict which architectural features influ-
ence OS performance.

Our methodology consists of two steps: first, usinghbench:OS
to measure performance at each level of the pyramid while varying
features of the hardware; and second, using the changes in hard-
ware as well as software analysis (via hardware counters, software
profiling, or code analysis) to relate the performance of primitives
in a given layer to the performance of layers above and below it.
Once the interaction between each pair of adjacent layers is under-
stood, the pyramid of performance dependencies can be recon-
structed.

In many cases, thehbench:OS tests provide enough detail
about the individual layers of the pyramid so that such a reconstruc-
tion is possible: both bulk data transfer primitives and process cre-
ation primitives can be decomposed using the pyramidal model. In
the other cases, wherehbench:OS does not provide detailed bench-
marks to quantify the hardware capabilities used by a higher-level
primitive, it is necessary to bypass the middle layer of the pyramid
and determine directly the hardware dependence of each test. These
results can be gleaned from the information obtained by analyzing
how the results of a particular benchmark change when the hard-
ware is varied in a controlled manner (i.e., when only one compo-
nent of the system is changed at a time). We found this technique

especially useful for relating the lowest-levelhbench:OS primitives
(such as memory read bandwidth) to features of the hardware archi-
tecture.

4 An hbench:OS Case Study: The Perfor-
mance of NetBSD on the Intel x86 Platform
With both our new benchmark suite and a methodology for using it
in hand, we returned to our original task of studying the architec-
tural basis of OS performance on the Intel x86 architecture. For
our subject OS, we chose NetBSD 1.1, a derivative of the CSRG
4.4BSD-Lite release [5], which shares a common ancestry with
many of today’s commercial UNIX implementations. For our sys-
tems, we selected eight machines: a 386, two 486’s, four Pentiums,
and one Pentium Pro. The hardware details of these machines are
given in Table 2. All of our machines ran the same NetBSD-
1.1PL1 “GENERIC” kernel; we did not optimize the kernels for
their target platforms, for we were particularly interested in the
effects of hardware evolution on operating system performance in
the absence of processor-specific optimizations.2

Comparisons between benchmark results from various subsets
of our test machines reveal dependencies on features of the CPU ar-
chitecture and the memory system. For example, comparing the
100 MHz Endeavor Pentium with the 100 MHz Premiere-II Pen-
tium reveals the effect of pipelining the L2 cache and installing
EDO memory; similarly, comparisons between the 90, 100, and
120 MHz Endeavor Pentiums reveal the effects of increasing the
CPU clock rate while holding the memory system constant. The

2. This issue is especially important for portable OS’s that may not be
tuned for a particular architecture (e.g., Linux, Windows NT, UNIX), as
well as for OS software that can reasonably be expected to outlive the hard-
ware for which it was originally optimized (e.g., Windows 3.x).

specific comparisons that we used and the conclusions that we drew
are detailed in the following sections.

4.1 Bulk Data Transfer
We begin our study with an example of the primary methodology
discussed above, the decomposition of application-level OS primi-
tives all the way down to hardware capabilities. The most illumi-
nating example of this is the case of bulk data transfer. We choose
bulk data transfer as an illustrative metric since it is an essential
component of the performance of bandwidth-sensitive applications
such as web servers and multimedia/network video applications.
When running a heavily-used web server, bcopy is the most-fre-
quently called kernel function, accumulating more than 21% of the
total in-kernel time. Even typical development work involves large
amounts of bulk data transfer: our kernel profiling results under
NetBSD indicate that the kernel can spend as much as 23% of its
time in bcopy while supporting a mix of editing, compiling, debug-
ging, and mail.

Applications that rely on bulk data transfer use one of three
methods to access their data: reading from a file in the file system,
sending and receiving data on a TCP connection, or mapping a file
into their address space. Since each of these data-access methods
involves a significant number of memory accesses, we can base our
decomposition on thehbench:OS tests that measure the hardware
memory read, write, and copy bandwidths. If we ignore the effects
of disk and network latency (since we run all of our disk tests within
the buffer cache and all of our network tests on the loopback inter-
face), we arrive at the decomposition shown in Figure 2. There is
also a CPU computation component in each of the application-level
primitives; it is most significant in the TCP test due to the complex-
ity of protocol encapsulation and checksumming.

Hardware Bandwidth Capabilities
The hardware’s ability to move data is a function of the main mem-
ory speed, the memory bus bandwidth, the size of the L1 and L2
caches, the write policy of the caches (e.g., write-back, write-
through, write-allocate), and the processor’s ability to efficiently
use these resources (i.e., via pipelining or reordering memory
operations). It is not possible to directly measure any one of these

Figure 1: Decomposition of OS performance viahbench:OS
primitives. The performance of OS-dependent applications (such
as web servers) can be decomposed into high-level OS-provided
services and primitives, which can in turn be decomposed into
low-level kernel primitives, which can again be decomposed into
hardware capabilities. In many cases,hbench:OS’s suite of tests
allows us to measure and relate the lower three levels of this hier-

Hardware Capabilities: CPU

Low-level primitives:

OS
Performance

OS-Dependent Applications

 and Memory System

e.g., bcopy, mmap, fork

High-level OS
primitives:

e.g., process creation

Name-MHz Caches
Features

Memory/
Bus-MHz Processor

386-33 no L1
64K async. L2

70 ns
33 MHz

i386DX

486-33 8K combined L1
256K async. L2

60 ns
33 MHz

i486DX

486-66 60 ns
33 MHz

i486DX2

Endeav-90 16K split L1
512K pipeline-
burst L2

60 ns EDO
60 MHz

Pentium
(i430FX chipset)

Endeav-100 60 ns EDO
66 MHz

Pentium
(i430FX chipset)

Endeav-120 60 ns EDO
60 MHz

Pentium
(i430FX chipset)

Prem-100 16K split L1
512K async. L2

70 ns
66 MHz

Pentium
(i430NX chipset)

Pro-200 16K L1, 256K
L2, both write-
back and on-chip

60 ns EDO
66 MHz

Pentium Pro
(i440FX chipset)

Table 2: Features of Test Machines.Note that the 100 Mhz Pen-
tiums run the memory bus at 66 MHz as opposed to the 60 MHz of
the other Pentium processors. Unless otherwise noted, all L1
caches are write-through.

features;hbench:OS measures the interaction of all the compo-
nents of a particular system. However, by using comparisons
between different system configurations, we can measure how
each component affects performance.

The hbench:OS tests that can be used to quantify the hard-
ware’s capability for bulk data transfer, i.e., those which measure
the bottom layer of Figure 2, are the raw memory bandwidth tests,
which measure effective software read and write bandwidths—the
attainable bandwidths when array-addressing operations (needed to
index through memory) are inserted between each memory refer-
ence. Although the raw hardware transfer bandwidths are potential-
ly higher, the software bandwidths are more representative of what
is attainable by actual code.

Figure 3 plots the peak raw bandwidths for reading from and
writing to both caches and main memory of several of the test ma-
chines. The almost 4-fold improvement in L2 and main memory
read performance between the486-66 and thePrem-100 is due to
increased bus bandwidth and bus burst capability. The Pentium sys-
tem has a 64-bit data bus, twice as wide as the 486’s 32-bit bus; in
addition, the Pentium supports burst transfers from the system’s
fast page mode DRAM, while the 486 does not. The measured write
performance only doubles from the486-66 to thePrem-100, be-
cause the older chipset on the Premiere system does not burst writes
to DRAM; only the wider path to memory plays a role in the speed-
up compared to the 486.

The write performance of theEndeav-100 doubles that of the
Prem-100 because of the Endeavor motherboard’s pipeline-burst
L2 cache and EDO DRAM. The pipeline-burst cache can latch
three out of every four memory references in one bus cycle each
and then burst them off to the DRAM. This explains why the main
memory write bandwidth is comparable to the L2 cache’s inherent
read bandwidth—the pipelined cache is hiding much of the already-
low DRAM latency from the CPU. Note that on theEndeav-120,
which shares the same memory subsystem as theEndeav-100and
Endeav-90, the DRAM and L2 read bandwidths are higher than ex-
pected from comparison with theEndeav-90, since the processor is
clocked at an integral multiple of the memory bus speed. This al-
lows theEndeav-120 to utilize more of the bus bandwidth (61% vs.
54% for theEndeav-100, as determined with the Pentium hardware
event counters) since CPU and bus cycles coincide more frequent-
ly.

It is interesting to note that in the raw memory bandwidth tests,
the dual-issue capability of the Pentium is being very poorly uti-

lized. We instrumentedhbench:OS with the Pentium’s built-in
hardware counters, and discovered that when memory is accessed
by summing an array using array-offset instructions, less than 0.1%
of the memory instructions are parallelized. Similar results are
found when the built-in string opcodes are used. Parallelism can be
increased to nearly 50% by using pointer arithmetic to step through
the array. In this case, each pointer increment is issued along with
a memory reference, and is essentially free; however, two memory
references are never issued simultaneously. In addition, this extra
parallelism is introduced at the cost of an extra stall cycle on each
memory access due to address generation interlocks. Thus both
methods of memory access provide approximately the same perfor-
mance, so we predict that memory intensive workloads may profit
less than expected from the superscalar architecture of the Pentium.

This conclusion also raises the interesting issue of the useful-
ness of micro-optimizing compilers for the OS kernel. We experi-
mented with the PCG version of pgcc (an adaptation of the GNU
gcc compiler that performs aggressive instruction scheduling for
the Pentium pipelines) and discovered that pgcc’s optimizations
had essentially no effect on the performance of the memory-inten-
sive benchmarks, even when the memory accesses were explicitly
coded (as opposed to using the built-in string operations). The prob-
lem is that the hardware itself does not allow dual-issue of memory
references in the cases we tested, and thus no instruction scheduling
policy could improve performance in these cases.

Returning to the data in Figure 3, we see that the most spectac-
ular feature is the performance of the Pentium Pro system. ThePro-
200 exhibits a strange combination of impressive across-the-board
memory bandwidth, except for uncharacteristically poor main
memory write bandwidth. ThePro-200’s nonblocking write-back
L1 cache gives it an extreme performance advantage over the Pen-
tiums on small cached reads and writes. ThePro-200L2 cache also

Raw Memory
Read Bandwidth

Raw Memory
Write Bandwidth

Bcopy
Bandwidth

Cached mmap()
Read Bandwidth

Cached File
Read Bandwidth

TCP Loopback
Transfer Bandwidth

Application
Primitives

Kernel
Primitives

Hardware
Primitives

Figure 2: Decomposition of Application Data-access Primi-
tives. All of the application-level data primitives for bulk data
access depend on the hardware’s memory read bandwidth since
they all touch data. File reading interposes the extra overhead of a
cross-protection-domain bcopy to move the requested data to user-
space buffers; TCP transfer interposes three bcopy’s as it shuffles
the data through the loopback interface and between user and ker-
nel space.

M
em

or
y

B
an

dw
id

th
 (

M
B

/s
ec

)

0

200

400

600

800

L1$ Read
L1$ Write
L2$ Read
L2$ Write
DRAM Read
DRAM Write

486-66 Endeav-90 Endeav-100 Prem-100 Endeav-120 Pro-200

Figure 3: Raw Memory Bandwidth. The 64-bit, burst-capable
memory bus of the Pentiums produces a factor of four improve-
ment in L2 and DRAM read memory bandwidth from the i486
architecture. The combination of pipeline-burst cache and EDO
DRAM gives theEndeav-100 a significant performance advantage
over the Prem-100; its higher memory bus clock allows the
Endeav-100 to outperform its 90 and 120 MHz siblings. The Pen-
tium Pro exhibits exceptional cache performance and good mem-
ory read bandwidth (due to its out-of order prefetching memory
unit), but suffers on memory writes due to an unnecessary cache
coherency protocol that prevents back-to-back bus write transac-
tions.

significantly outperforms that of the Pentiums, as the Pentium Pro
runs its on-chip, lockup-free L2 cache at the CPU clock speed, as
opposed to the system bus speed. Also, while the Pentiums’ non-
write-back caches access memory on every write, the Pentium
Pro’s write-back caches are intelligent enough to combine writes
into cache-line-sized increments, resulting in cached write perfor-
mance that nearly equals cached read performance, as the write-
back cache is not forced to read a line before writing to it. The as-
tounding cache performance on thePro-200 suggests that write-
back caches offer a major performance advantage to those applica-
tions that perform bulk data transfer in small, cache-sized chunks,
for example, the size of a typical HTML file.

Along with its high cache performance, thePro-200 also
sports exceptionally high main memory read bandwidth. In fact, the
216 MB/s that it achieves approaches the 226 MB/s theoretical
maximum bandwidth out of 3/2/2/2-clocked EDO DRAM on a 66
MHz bus. The reason for this exceptional performance is twofold.
First, the Pentium Pro sports an out-of-order execution engine that
is capable of reordering memory reads and removing the data de-
pendencies implicit in the benchmark. By using register renaming
and speculative memory reads, the Pentium Pro can implicitly
batch and prefetch data reads, thus allowing it to issue memory
reads as fast as the external memory system can handle them. Sec-
ond, and more importantly, the Pentium Pro’s pipelined, transac-
tion-based system bus allows it to issue consecutive back-to-back
data read transactions without incurring bus turn-around time and
transaction set-up costs [8]. In contrast, the Pentium executes all
memory operations in sequence, inserts extra data dependency
stalls due to its small register set, and negotiates for the system bus
on each read request.

ThePro-200’s main memory write bandwidth, in contrast, is
exceptionally low—almost 18% slower than the write bandwidth of
theEndeav-100, a system with identical DRAM and the same bus
speed. To determine why this was the case, we instrumented the
benchmark with the Pentium Pro’s built-in hardware counters [9].
For each 32-byte line of data written by the CPU, the counters indi-
cate that two bus transactions take place: a writeback transaction
and a read-for-ownership (RFO) transaction. The writeback is ex-
pected, since as the CPU stores a line into the cache it must displace
an existing dirty line from a previous write. The RFO on the line
about to be written is used to guarantee cache-coherency: the CPU
must ensure that no other CPU in the system has a dirty copy of the
line it is about to write. However, there is no need for a read-for-
ownership transaction in our case, as thePro-200 is a single-pro-
cessor system, and thus there are no other CPUs that could contain
a dirty line; there is similarly no need to read the entire line, as we
have seen in the L2 cache bandwidth that the write-back cache is in-
telligent enough not to load a line that is about to be entirely rewrit-
ten. Thus by interspersing a RFO transaction between each write,
the available bus bandwidth drops significantly, as the CPU must
renegotiate for the bus on each write, instead of performing back-
to-back writes (as it does in the read case). Also, there is the bus
overhead of the read-for-ownership transaction itself, and the bus
turn-around time needed to switch between the transactions. Thus
it seems that requiring the demonstrably high overhead of a RFO-
based cache coherency protocol even when there is only one CPU
in the system is a suboptimal design, as it severely cripples the
available memory write bandwidth on the Pentium Pro.

It appears that Intel may have attempted to compensate for this
design by including an undocumented “FastStrings” flag in one of
the Pentium Pro’s control registers: when FastStrings are enabled,
the RFO transactions are converted to Invalidate transactions (so
the cache does not read the new line but merely invalidates it in oth-
er CPUs). However, on a single-CPU system the Invalidate trans-
action is still unnecessary since there is only one cache on the bus.
Additionally, this feature only improves DRAM write bandwidth

slightly (about 5%) and only when certain string instructions are
used to perform the write; converting the RFOs to Invalidates does
not remove the bus transaction and renegotiation overhead, the ma-
jor factor in the low DRAM write bandwidth.

Kernel and Application Bandwidth Primitives
From thehbench:OS measurements of the hardware capabilities of
each machine, we can now generalize to the kernel primitive,
bcopy, and from there to the application primitives such as file
reread and TCP throughput. If each primitive were completely
dependent on the memory subsystem, we would expect to see sim-
ilar patterns as were discovered with the hardware primitives; any
deviation from these hardware patterns should indicate that the
primitive showing the deviation has a non-memory-system depen-
dent component.

The primary kernel primitive relied upon by bulk-data appli-
cation primitives isbcopy, used to transfer data around the kernel
and between kernel and user space. Our bcopy benchmark uses the
libc bcopy routine (identical to kernel bcopy in NetBSD) to copy
both cached and uncached buffers in user space; this routine uses
the x86 string instructions to efficiently move data. In the ideal
case, we expect the results of the bcopy benchmark be one-half of
the harmonic mean of the read and write bandwidths for each ma-
chine, since each byte copied requires one read and one write. How-
ever, when reads and writes are combined into copies, unexpected
interactions can develop and cause the measured copy bandwidth to
exceed or fall short of the half-harmonic mean prediction. These are
the more interesting cases, as they illustrate optimizations or flaws
in the hardware design, and how such design characteristics affect
performance. In Figure 4, we present the results of the non-cached
bcopy test along with the half-harmonic means calculated from the

D
R

A
M

 C
op

y
B

an
dw

id
th

 (
M

B
/s

ec
)

0

10

20

30

40

50

60
Measured
Predicted

486-66 Endeav-90 Endeav-100 Prem-100 Endeav-120 Pro-200

Figure 4: bcopy Bandwidth (2MB buffers). The memory sys-
tems determine performance on this benchmark: the predicted
bcopy results (one-half of the harmonic mean of the read and write
memory bandwidths) track closely with the measured numbers.
When the 100 MHz Pentium is scaled to account for its higher bus
clock rate, all the Endeavor-based Pentium systems achieve identi-
cal bcopy bandwidths, independent of processor speed. ThePrem-
100, with a slow memory system, attains only half the bandwidth
of the identical processor with a newer memory system (Endeav-
100). The Pro-200’s dismal memory write bandwidth leads to
unexceptional bcopy performance; the actual performance falls far
short of the predicted performance because of bus turnaround time
not accounted for in the read bandwidth.

raw bandwidth results in Figure 3; the cached bcopy results are sim-
ilar. For all systems but thePro-200, the graph shows the expected
result that bcopy bandwidth is directly correlated with the raw
memory bandwidths. The measured results slightly exceed the pre-
dictions in most cases because the CPU (executing the x86 string
operations) can issue the reads and writes back-to-back, without de-
coding and executing explicit load and store instructions.

Those machines with poor raw write bandwidth suffer in the
bcopy test, since both read and write bandwidths have an equal in-
fluence on the copy bandwidth: for example, although it uses the
same processor, thePrem-100 achieves only half the bcopy band-
width of theEndeav-100. This again demonstrates the effectiveness
of an enhanced memory subsystem with a pipelined L2 cache and
EDO DRAM at improving performance of operations requiring the
movement of large quantities of data. The disappointing write per-
formance of the Pentium Pro memory system on large buffers com-
pletely negates the advantages of its advanced cache system,
resulting in bcopy performance that is actually worse than that of
some of the Pentiums. ThePro-200’s copy bandwidth also falls far
short of our prediction, since, when copying, the processor cannot
issue back-to-back reads on the system bus, and must alternate read,
write, and read-for-ownership transactions; each new transaction
requires setup and negotiation overhead. Again, enabling Fast-
Strings on the Pentium Pro has little effect (less than 1%) because
the extra coherency transaction is still present.

With this understanding of bcopy, we move on to consider the
application-level data-manipulation primitives: cached file read, lo-
cal TCP data transfer, and mmap()’d file read. We will only consid-
er the first two methods here; full details on mmap()’d file read can
be found in a more detailed report on this system comparison [2].
From the decomposition presented earlier in Figure 2, we expect
that a significant component of the attainable bandwidths for each
of these primitives is due to a dependence on the memory system,
and thus we expect that the architectural changes that have en-
hanced memory system performance (such as faster, wider busses
and pipelined caches) will enhance the performance of these prim-
itives as well. We now examine each of these three bandwidth mea-
surements in order to determine if this is the case, or if other factors
besides the memory system are involved.

The hbench:OS file reread benchmark measures the band-
width attainable by an application reading data from a file present
in the kernel’s buffer cache; we used 64KB read requests for this
test. For each byte transferred in this test, NetBSD performs one
memory read from the kernel’s buffer cache, one memory write to
the user buffer, and a final memory read as the benchmark touches
the byte. This is one more memory read than the bcopy test, so one
might expect file reread to be significantly slower than bcopy. Sim-
ilarly, the TCP bandwidth test involves transferring 1MB in-mem-
ory buffers over the local loopback interface. In this test, each byte
transferred must be copied three times, so we expect at least a 3-fold
performance degradation relative to bcopy.

The results for these two benchmarks on several of our test
machines are shown in Figure 5 along with predicted results de-
rived from the bcopy test and raw bandwidth tests. The TCP band-
widths show the expected pattern: the relative performance is
comparable to that of bcopy, while the magnitude is approximately
one-third that of bcopy. As expected, there is a partial CPU depen-
dency, since TCP’s checksumming and encapsulation require more
processing than bcopy; the Pentium Pro’s out-of-order execution
allows it to overlap some of the computation and memory referenc-
es involved in the TCP processing, giving it a slight performance
edge. However, it is clear that the memory system still dominates
TCP transfer bandwidth.

The file reread results also show similar relative performance
to the bcopy results, with the exception of the Pentium Pro. Al-
though the predicted bandwidth again far exceeds the actual due to

bus turnaround time that was not included in the raw read band-
width, this machine still far outclasses the Endeavor-based Pen-
tiums on this test despite its slower main memory system and poor
bcopy performance. The reason for this is that the 64KB transfer
buffers all lie entirely in the fast write-back L2 cache for the dura-
tion of the benchmark. If the read request size is increased to 1MB,
larger than the 256KB L2 cache, the performance drops by a factor
of two, as the buffers fall out of the L2 cache. The same effect can
be seen in the TCP bandwidth test: using 64KB socket buffers in-
stead of the default 1MB buffers increases performance 200% from
the value in Figure 5. These results suggest that a fast write-back L2
cache can provide a significant advantage to an application that pro-
cesses large amounts of data using a single bufferthat fits within the
L2 cache; if the buffer is large or if the application does not reuse
the same buffer repeatedly, the overhead of faulting-in cache lines
over a slow bus significantly reduces the write-back advantage.

Thus, in the case of the bulk data transfer primitives that an
OS-dependent application might use, our decomposition is com-
plete: the user-visible primitives of cached file reread and TCP data
transfer are nearly entirely dependent on the memory system, and
therefore it is features of the memory system that will most affect
the performance of these primitives. The Endeavor-based Pentium
results imply that for high-bandwidth applications, a main memory
system based on fast DRAM technology (such as EDO memory) is
essential. ThePro-200’s performance suggests again that eliminat-
ing unnecessary cache-coherency and bus transaction overhead will
increase its performance greatly. It also suggests that intelligent,
non-blocking, write-back caches are a net performance win both
when reading large amounts of data and when handling data in units
small enough to be cached, despite the delays that can be incurred
in fetching lines upon write. In fact, analysis of these benchmarks

486-66 Endeav-90 Endeav-100 Prem-100 Endeav-120 Pro-200

B
an

dw
id

th
 (

M
B

/s
ec

)

0

20

40

60

80

100

120

File Reread
File Reread (pred.)
TCP Local
TCP Local (pred.)

Figure 5: File Reread (64k buffers) and TCP Bandwidth (1MB
buffers) Performance. File reread requires three memory refer-
ences for each word of data read: a two-reference copy from the
buffer cache to user space, and a final read as the user program
touches the data transferred. The predicted file reread numbers
were derived from this decomposition. The measured results fall
short of the predictions due to cache contention and system-call
overhead, and (for thePro-200) extra bus negotiation cycles. The
TCP benchmark performs three copies with buffers greater than
the size of the cache, so in all cases we see about the predicted
value, one-third times the bcopy bandwidth. ThePro-200 performs
better than predicted due to increased performance on the packet-
checksumming component of the benchmark.

with the Pentium Pro hardware counters shows that, while transfer-
ring large amounts of data, the Pentium Pro rarely needs to read en-
tire lines before writing into them, as the cache is intelligent enough
to accumulate line-sized writes. Thus we conclude that large im-
provements to the CPU’s execution unit (as in thePro-200) may
have a much less visible effect on high-bandwidth applications than
small improvements in the memory subsystem (i.e., the use of a
non-blocking write-back or pipeline-burst cache). Since multime-
dia applications and even the X Windows server transfer large
quantities of data via the application primitives we have considered
here, making these simple memory-system optimizations is crucial
to attaining high performance.

4.2 Process Creation
With the bulk data transfer primitives as an example of how
hbench:OS can perform a full performance decomposition from
the bottom up, we now move on to consider the case of an OS
primitive for which we can create a top-down decomposition with
hbench:OS. The primitive that we will consider is process creation,
because UNIX users and applications treat processes as the funda-
mental unit of work on the system; similarly, many server applica-
tions fork a new process for each request that they receive. Process
creation consists of two components. Afork duplicates the cur-
rently running process and anexec overwrites the current process
with the newly created process. Executables may be statically
linked or dynamically linked; dynamically linked executables must
resolve their library references at exec time.hbench:OS measures
three methods of process invocation: a simple fork, a fork and
exec, and process invocation via the shell. We run each of the two
latter tests twice, measuring both static and dynamic linking of the
target program (“hello-world”).

In order to isolate each component of process creation, we de-
compose the more complex operations (e.g., process creation via
/bin/sh) into the fundamental operations that we can measure. By
subtracting fork latency from the combined fork and exec, we de-
rive exec latency. The /bin/sh case is somewhat more complicated
in that it consists of:

• fork current process,
• exec /bin/sh,
• fork /bin/sh, and
• exec hello.
If the shell and our target program were of comparable size,

we would expect the /bin/sh case to be twice as slow as fork and ex-
ec. However, /bin/sh is significantly larger than our target program,
so its fork and exec latencies are greater than those of the target pro-
gram, causing the total /bin/sh latency to be somewhat greater than
twice the combined simple fork and exec times.

We begin our analysis of these results with the one process
creation metric thathbench:OS directly exposes: the cost of a fork,
represented by the lowest sections of the bars in Figure 6. Compar-
ing the fork cost across the suite of test machines reveals that the
fork cost is primarily dependent on the memory system, although it
does have a small clock-speed or CPU dependent component. Both
the486-33 and the486-66 (which share the same memory system)
demonstrate approximately the same fork latency; the486-66 is
slightly faster, highlighting the small CPU component. Similarly,
thePrem-100, with its slower memory system, exhibits larger fork
latency than its Endeavor-based counterpart. The Pentium Pro out-
performs the Pentium due to both the CPU component of the test
and the small-write-biased nature of the test: a fork on NetBSD/x86
involves building and zeroing a page table structure that fits in the
Pentium Pro’s write-back L2 cache.

Next we consider the exec latency, which we decomposed
from the high-levelhbench:OS tests by subtracting the fork latency
from the fork+exec latency. The same comparisons as above reveal
primarily a memory-system dependence for the static case: the OS

must demand-copy the executable from the in-memory file system
buffer cache. In this case, the CPU dependent component is mini-
mal, and most likely results from the actual execution of the hello-
world program. The exec latency in the dynamically-linked case
has quite a different pattern. First, the latency is exceptionally large
due to the cost of loading and mapping the shared libraries. We still
observe a significant memory-system dependency, but the CPU de-
pendent component has grown due to the need to build and initial-
ize jump tables for the libraries. This is again evident in
comparisons between the486-33 and 486-66, and between the
Prem-100 and theEndeav-100: in the first case, the486-66 outper-
forms the486-33, but not as much as pure CPU scaling would sug-
gest; in the second, the 100 MHz Pentium on the Endeavor
motherboard outperforms the same chip on the Premiere mother-
board. Again, since the benchmark fits in its L2 cache, thePro-200
performs well on this test, but still not significantly better than the
Endeavor Pentiums.

Finally, having used the high-levelhbench:OS tests to extract
the fork and exec latencies, we use these results to complete our de-
composition by analyzing the overhead imposed by using the shell
to invoke the hello-world process via the system() routine. If we
consider the decomposition in Figure 6, we see that the /bin/sh
overhead includes only the time involved in exec’ing /bin/sh and
forking /bin/sh; the original fork to start the shell and the exec of
hello-world are already accounted for. Comparing the /bin/sh over-
head across the various test machines, we again see a heavy mem-
ory system dependency, just as we saw for the statically-linked fork
and exec latencies. This is because the fork and exec components
of the /bin/sh overhead are directly related to these fork and static-
exec latencies, since under NetBSD, /bin/sh is statically linked.
However, the magnitude of the /bin/sh overhead is significantly
greater than the magnitude of the static hello-world fork and exec;
this is because the shell binary is almost seven times larger than the
statically-linked hello-world binary, so the memory component in-

La
te

nc
y

(m
s)

0

25

50

75

100

125

150
Fork
Exec
/bin/sh

Left bar: statically-linked processes
Right bar: dynamically-linked processes

486-66
386-33

Endeav-100

Prem-100
Endeav-120

Pro-200
486-33

Figure 6: Process Creation Latencies.The total height of each
bar represents the time to run “hello-world” via /bin/sh. The left
bar in each group corresponds to the case where “hello-world” is
statically linked; the right bar corresponds to a dynamically-linked
“hello-world”. The total process creation latency decomposes into
three fundamental latencies: the latency of a simple fork(), the
latency to exec() the hello-world process, and the latency intro-
duced by the shell (which consists of the time to exec() /bin/sh and
the latency of the fork() performed by /bin/sh). These are indicated
by the subsections of each bar.

volved in paging in the executable and initializing its mappings is
proportionally larger. When “hello-world” is dynamically linked,
the shell overhead is only slightly larger due to the extra overhead
of managing the shared library mappings when starting the shell.

Thus, in process creation, we have an example of an alternate
method of performance decomposition viahbench:OS: in this case,
we began with the measured performance of high-level operations
(process creations) and massaged these data to extract the perfor-
mance of the primitive operations upon which the high-level oper-
ations are based (such as fork and exec latencies). We then applied
our cross-platform comparison technique to understand the hard-
ware basis for the performance of the low-level primitives. The in-
escapable conclusion is that, yet again, the memory system
dominates performance: all of the primitive latencies, and the high-
level process creation latencies, depend primarily on the memory
system, and include only a small CPU-dependent component. Thus
the Pentium Pro’s performance margin over the Pentium systems is
due not to its advanced out-of-order core, but rather to its speedy
on-chip cache system.

4.3 Signal Handler Installation
Finally, we present an example case in whichhbench:OS fails to
offer the tools for any multilayer performance decomposition: this
is the case of signal handler installation, again a frequently-used
function in modern applications (the Apache web server executes
this system call, on average, three times per accepted connection,
according to our profiling results). We show how, in this case, our
alternate methodology of cross-architecture comparison allows us
to obtain useful results even where thehbench:OS tests are lack-
ing. Figure 7 plots the results from this benchmark on some of our
test machines.

The results indicate that, with the exception of thePro-200,
signal handler installation latency is entirely dependent upon CPU
clock rate within each CPU class. TheEndeav-100 andPrem-100
both perform almost the same number of installations per second
despite their disparate memory systems; the486-66 doubles the

486-33’s performance, and theEndeav-120 performs about 120/90
more installations per second than theEndeav-90. Comparisons be-
tween CPU classes suggest that there is a subtle performance de-
pendence on more than the raw instruction execution rate: the 386
achieves less than half the performance of the 486 at the same clock
speed, and the 486s obtain only about half the performance that a
Pentium would at the same clock rate. This suggests that the perfor-
mance of signal handler installation, in fact, depends on the L1
cache speed: the 386 has no L1 cache, so its performance is halved
compared to the 486; the 486 requires two stall cycles to access data
in its L1 cache compared to the Pentium’s one cycle, accounting for
the factor of two performance gain in the Pentium class. This hy-
pothesis is confirmed by source code analysis, profiling, and anal-
ysis with the Pentium hardware counters: the signal handler
installation system call spends the bulk of its time copying small,
easily-cacheable data structures to and from user space. The only
mystery that remains, then, is thePro-200 result, which is 27%
worse than would be expected based on cycle time alone, and 42%
worse than would be predicted based on thePro-200’s L1 cache
bandwidth. Without the underlying low-level tests that a full de-
composition might offer, we have no way to understand this anom-
alous result, and can only speculate that for some reason, perhaps
when the OS switches from user to kernel mode, some internal CPU
state (such as the branch target buffers) is being flushed, or else the
CPU is incurring more unnecessary cache-coherency overhead.
Even the Pentium Pro hardware performance-monitoring counters
do not shed light on this bizarre result.

Thus, in the case of signal handler installation, we see that we
can obtain generally useful results even whenhbench:OS does not
include the capability to decompose the performance of the inter-
esting high-level functionality into lower-level primitives. Here, we
can conclude that lower-latency L1 caches are the key to improving
signal handler installation performance. However, we are left at a
loss when anomalous results (such as thePro-200’s) appear, since
we have no lower-level tests to use as a basis for understanding the
unexpected results.

5 Conclusions
With the modifications that we made to support increased parame-
terization and statistical rigor,hbench:OS succeeds in most cases
as a tool for detailed analysis and decomposition of the perfor-
mance of operating system primitives. In our example cases of
bulk data transfer and process creation latency,hbench:OS pro-
vided enough detailed tests to build a hierarchical decomposition
of performance from the complex, application-visible primitives at
the top to the hardware and architecture at the bottom. Where
hbench:OS failed to provide the tools for such a decomposition, as
in the case of signal handler installation, our alternate methodol-
ogy of cross-machine comparison was able to uncover the general
architectural features upon which the OS primitive in question
depended. However, in these cases the tools provided by
hbench:OS are still inadequate: to fully understand anomalous
results requires more information than the high-level benchmarks
can provide. We feel that it will be possible to apply profiling tech-
niques to such high-level primitives to determine their perfor-
mance decomposition; from these profiling results a benchmark
could then be constructed to isolate, and characterize in terms of
hardware performance, each of the individual dependencies.

When we applied ourhbench:OS-based analysis techniques to
NetBSD, we were surprised to find that, for nearly all high-level OS
primitives upon which modern applications depend, it is the mem-
ory system, and especially the access path to the off-chip memory
system, that dominates performance. Particularly intriguing were
the results from thePro-200, the Pentium Pro-based machine. De-
spite major improvements to the processor’s execution pipeline and

In
st

al
la

tio
ns

 p
er

 s
ec

on
d

(t
ho

us
an

ds
)

0

50

100

150

200

250

300

386-33
486-33

486-66
Endeav-90

Endeav-100

Prem-100
Endeav-120

Pro-200

Figure 7: Signal Handler Installation. This graph plots the num-
ber of signal handler installations that each of our test machines
can perform in one second. The results seem to scale with the CPU
clock rate, but the factor of two performance difference between
the 386-33 and the486-33, and a similar jump from the 486’s to
the Pentiums, suggests that the results of this test are determined
by L1 cache performance.

cache subsystem compared to the Pentium, the Pentium Pro did not
significantly outperform the Endeavor-based Pentiums on many of
the tests. In fact, the addition of multiprocessor coherency support
and transaction-based bus protocols into the CPU, and the resulting
poor external memory system bandwidth, seem to have essentially
negated any performance advantage that the CPU’s advanced exe-
cution core provides. Essentially, Intel’s multiprocessor optimiza-
tions have crippled the performance in single-CPU systems.

Also illuminating was the comparison between the Endeavor-
and Premiere-based Pentiums; the Endeavor, with pipeline-burst
cache and EDO support, outperformed the Premiere system by
nearly a factor of two in many cases, MHz for MHz. While re-
searchers have known for several years that a high-performance
memory subsystem is important to OS performance [1][12][13], it
seems that, at least for the x86 architecture, the industry’s focus on
the processor’s pipeline and cache subsystem has been misdirected.
For example, Intel’s high-end Pentium server motherboard, theXx-
press, eschews the advantages of EDO or synchronous DRAM for
a large 1MB L2 cache since the larger cache produces higher
SPECmark ratings [7]; our results indicate that to improve the per-
formance of OS-dependent server applications, Intel would have
done better by engineering a higher-performance EDO DRAM-
based system than by focusing on the caches.

High-bandwidth OS-dependent applications have become
common—witness the explosion in the number of web servers run-
ning today. It is time for vendors to turn their focus from SPEC-
marks and application-level performance to OS performance. Tools
such as thehbench:OS suite offer a solid foundation for evaluating
OS performance, and can bring to light surprising facts about the
design of today’s systems, as we have seen in our analysis of Net-
BSD on the x86 platform. It is tools such as these that will provide
the understanding of the architectural dependence of OS perfor-
mance necessary to build tomorrow’s high-performance hardware.

6 References
[1] Anderson, T., Dahlin, M., Neefe, J., Patterson, D., Roselli,
D., Wang, R., “Serverless Network File Systems,”Proceedings of
the Fifteenth Symposium on Operating System Principles,Copper
Mountain, CO, December 1995, 109–126.

[2] Brown, A., “A Decompositional Approach to Performance
Evaluation,” Technical Report TR-03-97, Center for Research in
Computing Technology, Harvard University, 1997.

[3] Chen, B., Bershad, B., “The Impact of Operating System
Structure on Memory System Performance,”Proceedings of the
Fourteenth ACM Symposium on Operating System Principles,
Asheville, NC, December 1993, 120–133.

[4] Chen, B., Endo, Y., Chan, K., Mazieres, D., Dias, A., Seltzer,
M., Smith. M., “The Measured Performance of Personal Computer
Operating Systems,”Proceedings of the Fifteenth Symposium on
Operating System Principles, Copper Mountain, CO, December
1995, 299–313.

[5] Computer Systems Research Group, University of Califor-
nia, Berkeley, “4.4BSD-Lite CD-ROM Companion,” O’Reilly and
Associates, 1st Edition, June 1994.

[6] Gloy, N., Young, C., Chen, J., Smith, M., “An Analysis of
Dynamic Branch Prediction Schemes on System Workloads,”Pro-
ceedings of the International Symposium on Computer Architec-
ture, May 1996.

[7] Gwennap, L., “Pentium PC Performance Varies Widely,”
Microprocessor Report, 2 October 1995, 14–15.

[8] Intel Corporation,Pentium Pro Family Developer’s Manual,
Volume 1: Specifications, Order number 242690-001, Mt. Pros-
pect, IL, 1996.

[9] Intel Corporation,Pentium Pro Family Developer’s Manual,
Volume 3: Operating System Writer’s Manual, Order number
242692-001, Mt. Prospect, IL, 1996, Appendix B.

[10] Maynard, A., Donnelly, C., Olszewski, B., “Contrasting
Characteristics and Cache Performance of Technical and Multi-
User Commercial Workloads,”Proceedings of the Sixth Interna-
tional Conference on Architecture Support for Programming Lan-
guages and Operating Systems, San Jose, CA, October 1994,
145–157.

[11] McVoy, L., Staelin, C., “lmbench: Portable Tools for Perfor-
mance Analysis,”Proceedings of the 1996 USENIX Technical
Conference, San Diego, CA, January 1996, 279–295.

[12] Ousterhout, “Why Aren’t Operating Systems Getting Faster
As Fast as Hardware?”Proceedings of the 1990 Summer USENIX
Technical Conference, Anaheim, CA, June 1990, 247–256.

[13] Rosenblum, M., Bugnion, E., Herrod, S., Witchel, E., Gupta,
A., “The Impact of Architectural Trends on Operating System Per-
formance,”Proceedings of the Fifteenth Symposium on Operating
System Principles, Copper Mountain, CO, December 1995,
285–298.

