
Inventory of Machine-Dependent Material

David A. Holland

V3, March 7, 2017∗

1 Preliminaries

This is a collection and also analysis of the
machine-dependent material found in an operat-
ing system. I have gone through first the OS/161
tree (as it is simple and contains almost all core
functionality) and then the NetBSD tree (which
is not simple but also is known to support a wide
variety of target platforms) and catalogued the
material. Note that it is an inventory of what I
found in a production system and not an inven-
tory of what we need for this project. (OS/161
is an instructional OS we use for teaching.)

For the purposes of at least this discussion I’m
drawing the following distinction:

• The machine is the CPU architecture.

• The platform is the system board architec-
ture.

This is based on the practical observation that at
least historically the same processor chips have
been used in many often fundamentally different
system boards. And, at least theoretically, a sys-
tem board architecture can be used with differ-
ent processor types; although in practice this is
rare. It is an approximate distinction, especially
historically; e.g. back in the Sun M68K days,
the MMU architecture was technically a prop-
erty of the system board, and today some issues
(such as cache configuration, or locating addi-
tional processor cores) span both the CPU and

∗An earlier version dated February 23, 2016 may have
circulated - that was an internal review draft. This version
has no technical changes but has been edited for compre-
hensibility and context.

the system board. However, it is nonetheless a
useful distinction.

In OS/161 the machine is mips and the plat-
form is sys161. In NetBSD... things are a bit
more complicated. Notions of machines and
platforms in the real world are complicated, be-
cause sometimes there’s a 1-1 mapping between
them and sometimes there isn’t, and also be-
cause vendors of architectures and platforms
rarely ship designs that evolve in an orderly fash-
ion. Roughly speaking NetBSD has one “port”
(separate build in the build system, and sepa-
rate set of precompiled install binaries) for ev-
ery distinct pair of system board architecture
and processor type; but the long-term goal is to
move to one “port” per processor type and just
ship different kernels for different boards. (This
is complicated by the fact that some processor
types also need multiple builds based on differ-
ent ABI definitions, and other complications and
lossage introduced by vendor issues.) There isn’t
any one thing that’s quite the same as what I’m
calling “platform”; however, the NetBSD concept
MACHINE ARCH is roughly comparable to what
I’m calling machine.

After going around multiple times I decided
the best way to organize this was to list the top-
ics twice, first grouped from an OS perspective
and with minimal discussion (just enough ma-
terial to clearly identify each item), and then
grouped by what the code generation require-
ments appear to be, with discussion as needed.

Between these lists I discuss some background
and shared material pertinent to the code gener-
ation requirements.

1



2 OS-perspective inventory

This inventory is divided along classical OS
lines: kernel-level material vs. user-level mate-
rial, with some things that are shared between
both (“common”) split out. The kernel-level ma-
terial is organized by kernel subsystem. (The de-
composition of kernel subsystems is based on my
prior work – as I was never able to publish most
of that, if anyone reads this who isn’t familiar
with it has questions or commentary on it please
contact me – hopefully the categories are self-
explanatory. Why the categories are the way they
are isn’t immediately pertinent.)

I’ve also moved bootloader and com-
piler/toolchain material to their own categories
as these are materially different from the others.

I tried dividing these lists up into machine-
dependent and platform-dependent sections;
this was not very effective, so I backed it out.

2.1 Common material

• Various standard type and type-size dec-
larations. This includes for example the
proper definition of size t.

• Standard or semi-standard MD header
files. The best example of this is the MIPS
regdefs.h, which contains cpp macros
with symbolic names for the registers. (This
material conventionally isn’t built into the
assembler.)

• Endianness. This includes both the decla-
ration of endianness and also implementa-
tions for endianness-related functions like
ntohl and htobe64.

• setjmp. Implementation of setjmp,
longjmp, and the jmp buf type. (This
might or might not be wanted in the kernel,
and the kernel version might be different
depending on the floating-point ABI...)

• Memory barrier operations. Both kernel
and userland need to be able to issue mem-
ory barriers from MI code. OS/161 has an

API for this we can use. NetBSD has a dif-
ferent (uglier) one.

• Atomic operations. Both kernel and user-
land need to be able to use some MI atomic
operations interface. NetBSD has an API for
this we can use, although it’s not free of is-
sues. We should maybe also consider using
the interface from C11, if it’s adequate and
we have a compiler that supports it.

• Goop for float.h and fenv.h. This stuff
is annoying but required for userland in or-
der to be able to build standards-compliant
software.

• Workarounds for CPU bugs. Most CPUs
have at least some bugs (e.g. the infa-
mous Pentium FDIV and f00f bugs) and
some have large numbers of glaring prob-
lems (e.g. some MIPS models); for many
there are recommended workarounds that
involve doing this or that special thing at
this or that time.

• Signal frames. Declarations for what gets
pushed on the user stack when a signal is
delivered, plus any trampoline code needed
to handle it. (The latter is “common” not be-
cause the kernel takes signals, but because
it might be necessary for trampoline code to
be linked into the kernel and mapped into
userspace.)

• Register set declarations for ptrace. A
necessary part of debugging another pro-
cess is inspecting its register state, which
is inherently MD. The declarations need to
be shared; also in practice they may need
to agree with declarations used by gdb (or
lldb), since presumably we aren’t writing a
debugger and at least gdb comes with its
own preconceived ideas.

• Register set declarations for ELF core-
dumps. (And also crashdumps.) These
might or might not be the same as the
ptrace register sets, but probably also

2



need to agree with gdb’s preconceived no-
tions.

• ELF relocation codes. The codes
and semantics of relocation types in
executable/binary files are machine-
dependent. Both the kernel and userspace
potentially need to know about these; in
particular a kernel module loader usually
needs to handle at least some relocations.

• Any asm.h header for assembly code.
Most of the hand-written assembler in
NetBSD (not so much in OS/161, but
OS/161 has much less assembler in it)
uses a collection of semiuniform macros
for things like marking symbols external.
Given that we’re attempting to just gener-
ate all the assembly code, generating such
a header (at least in a compatible fashion)
may not be useful; on the other hand, this
remains to be seen and it might be.

2.2 Kernel-level material

2.2.1 locore

This category covers exception handling and
trap logic.

• Exception entry code. The assembler code
that processor-level traps jump to.

• Trap dispatching code. The higher-level
code that interprets processor-level trap
codes and takes kernel actions based on
them.

• Signal posting code. The code that manip-
ulates trap frames to cause signals to be de-
livered on return to userspace.

• FPU context save/restore. On most plat-
forms FPU context switching is (or should
be) done lazily when needed, so it’s sepa-
rate from other processor context manipu-
lation.

• Floating point emulation. On some plat-
forms some floating point instructions al-
ways trap, and the kernel’s responsible for
doing the work. Probably we don’t need to
care about this.

• Busywait timing loop. In real life there is
stupid hardware, and some stupid hardware
has timing requirements, and often these re-
quirements lead drivers to need short unin-
terruptible timing loops. (If we’re doing x86
we need this.)

• Logic for coping with pipeline hazards.
This is not a piece of code so much as a
crosscutting concern, but it affects mostly
code in locore.

• Kernel profiling hooks. Kernel profiling
generally requires some MD logic. We might
or might not care about being able to do
kernel profiling.

• Code for handling cycle counters. Self-
explanatory.

2.2.2 thread

This category covers kernel-level (in-kernel)
threads, and also CPUs/cores and CPU handling.

• How to handle curthread/curcpu. The
best way to do this depends on properties of
the processor architecture. Ideally we’d be
able to pick this automatically rather than
have someone specify it.

• Spinlocks. Most of a spinlock implementa-
tion is MI, but the choice of exactly which
instructions to use is not. It isn’t always the
case that one should just use the atomic ops
library.

• Code for on-chip timers. Many recent
CPUs have on-chip timers meant for times-
licing and other low-latency use. These
need to be manipulated. Treating them as
devices is not necessarily a good idea as the

3



interfaces that involves tend to be heavy-
weight. They aren’t purely registers in the
RTL sense either as their state changes
spontaneously rather than in response to in-
struction execution.

• How many interrupt levels to use. Tradi-
tionally BSD kernels have many interrupt
levels; recent thinking tends to be that there
should be fewer. The set of potential inter-
rupt levels is a property of the MI kernel
code; which of these are actually distinct is
not.

• Interrupt on/off code. Generally proces-
sors have at least one on-chip interrupt
on/off switch; some processors have multi-
ple layers or on-chip support for interrupt
priorities. (This is connected to but distinct
from bus-level interrupt masking, below.)

• Interrupt wait/suspend. One of the things
one needs to be able to do is idle the current
CPU until an interrupt comes in.

• CPU halt. Another thing one needs to be
able to do is halt the current CPU.

• Thread switch code. The kernel-level
thread switch code.

• Thread start code. The kernel-level assem-
bler code that starts up a new thread.

• CPU identification logic. CPUs have fea-
ture bits and model codes and all manner of
related twaddle, and it’s usually at least nec-
essary to detect and print; sometimes the
results are important for dealing with other
things too.

• Maximum number of cpus. For sanity rea-
sons, code that deals with groups of CPUs
and such assumes there’s some maximum
number. This maximum number is normally
per-platform rather than per-machine (in
the senses above) as it depends more on
things like the maximum number of sockets

the motherboard architecture allows than it
does on anything in the CPU itself.

• How you find secondary CPUs and cores.
Some of this is platform-dependent and fol-
lows from bus and configuration logic; for
on-chip cores, at least for some processors,
it may not be.

2.2.3 vm

This category covers the virtual memory system.

• VM-related constants. There’s a number of
more or less standard constants whose val-
ues are machine-dependent; this includes
things like PAGE SIZE and also memory
layout properties like USERSTACK.

• Sizes and usage restrictions of super-
pages, if any. Most modern architectures
have some concept of superpages, but the
concepts and implementations vary widely.

• Detecting RAM size. One has to find out
somehow how much memory there is, and
also where it lives. Probing usually isn’t par-
ticularly safe. The means for doing this are
(at least normally) platform-specific rather
than machine-specific.

• Properties of different regions of RAM.
In the real world there are issues such that
some regions of RAM are better or different;
e.g. on many platforms there are bus-level
restrictions on addresses such that DMA can
be done only to some regions of memory. On
some platforms, different regions of RAM
are faster or slower for backend reasons.
And on NUMA platforms, memory regions
are bound to cores and CPUs.

• copyin/copyout. This family of func-
tions transfers data safely between kernel
and user space. The implementation de-
pends heavily on the processor design. Note
that while for many processors there’s a
tidy implementation based on setjmp and

4



longjmp, this implementation is not very
efficient... and on some processors, or some
configurations of some processors, it won’t
work at all. (Among other things, it relies
on the current userspace being mapped into
kernel space; current thinking about secu-
rity precautions and risks is that this is un-
desirable.) There are also silly processors
where one needs to use special instructions.

• Cache control logic. This includes both
the instruction-level actions for manipulat-
ing caches, and the next level up that issues
cache writebacks and invalidations needed
to support DMA... and also to cope with split
I/D caches, VIPT caches, and other follies
that the hardware world likes to foist on us.
(Open question: do we try to support VIVT
caches so we can use various old hardware
as test cases, or rule this out as too horrify-
ing?)

• VM system code and headers. The VM sys-
tem itself, or at least the MD part of it. This
includes at least what’s classically found in
a BSD pmap module and also any further
low-level MMU manipulation logic.

2.2.4 dev

This category covers devices, buses, and inter-
rupts, but does not include device or bus drivers
per se, as drivers for most peripheral hard-
ware and hardware chipsets are (rightly) consid-
ered MI. Essentially everything in this category
is platform-dependent rather than machine-
dependent.

• bus machdep.c for various buses. While
the code for e.g. PCI itself is MI, the MI code
necessarily interfaces to an MD module that
knows at the lowest level where registers
and interrupts are. We also have to figure
out which buses we need this logic for.

• bus space, bus dma and similar mate-
rial. NetBSD has an abstract bus frame-
work, which has proven very useful as this

allows a lot more driver logic to be MI than
otherwise. However, it has non-MI bits that
need to be provided.

• Interrupt identification and dispatching
code. When the trap handling code deter-
mines that what it’s got is an interrupt,
other code needs to figure out whose inter-
rupt it is and send it off to the right device or
bus driver. This category also includes any
needed logic for wiring interrupts to CPUs.

• Bus-level interrupt masking code. Simi-
larly, sometimes it’s necessary to mask spe-
cific interrupts, e.g. from bus slots with
nothing in them.

• Early console. Before the real device driver
for the system console probes and attaches,
we still potentially want to be able to print
messages to the screen. Usually one does
this via firmware, or sometimes via an ex-
tra hokey semi-driver that does the kinds of
things such firmware would do. In OS/161
there is no such thing, but that’s a corner
one can’t really cut in real life.

• Early disk I/O. (Maybe.) It might also be
necessary to know how to do disk I/O via
firmware. Certainly any bootloader would
need to know about this (but see below);
it might also be necessary to load drivers or
whatever, depending on aspects of the MI
kernel architecture we only get to choose if
we write our own kernel.

• Interface to firmware. For these opera-
tions, and also typically for power manage-
ment functions and other goop, and some-
times for probing devices, one wants to be
able to interact with system firmware.

• Drivers for any platform-specific hard-
ware. Some platforms have unique hard-
ware for which no MI driver exists and
where writing one doesn’t really make
sense. Various examples exist, mostly legacy
of one form or another.

5



2.2.5 syscall

This category covers system calls and system call
handling.

• System call argument collection. While
the system call table per se should be
machine-independent (though it isn’t in
Linux, along with many other things
demonstrating poor design) one needs
machine-dependent logic to collect system
call arguments into some form that the MI
system call entry points in the kernel can ac-
cept. What this entails depends on the sys-
tem call ABI and also to some extent on how
the MI system call material is structured.

• Trapframe updating code for syscall re-
turn. Relatedly, one needs to update the
userlevel processor state when returning
from a system call.

• Trapframe updating code for fork return.
One also needs to update the userlevel pro-
cessor state when entering userlevel in a
newly forked child process.

• ELF machine type and word-size codes.
Assuming we don’t invent a new format
for program binaries, we need to know the
proper code numbers for binaries we should
attempt to execute.

• ptrace register handling. One of the op-
erations in ptrace is to retrieve the regis-
ter state of the target process. This is inher-
ently MD. Obviously we don’t need ptrace
if we don’t bother supporting a debugger;
see below for discussion of that.

• ptrace single-step handling. Some pro-
cessors have a single-step mode, which de-
buggers will expect to be made available
through ptrace.

• Glue for foreign OS system call compat-
ibility. This means the machine-level mate-
rial needed for e.g. running Linux binaries

on NetBSD, which more or less means extra
different copies of the above material in this
category. We don’t need to care about this.

• Native 32-on-64 compatibility. Similarly,
one needs another set of logic for running
32-bit binaries on a 64-bit machine. On
some platforms with multiple ABIs there are
more combinations, too; e.g. a 64-bit MIPS
kernel theoretically ought to be able to run
N64, O64, N32, and O32 binaries in both
native and opposite endianness. We almost
certainly don’t need to care about this.

• Machine-dependent system calls. For
almost every processor type there’s at
least one or two system calls, and of-
ten they more or less need to exist for
3rd-party software to run. E.g. on mips
there’s mips cachectl; on x86 there’s
i386 iopl, and so on. Note that we need
a JVM and the JVM’s JIT is bound to need
mips cachectl...

2.2.6 main

This category covers startup and initialization
code.

• Kernel startup code. This is the assembly
code that runs between the time the boot-
loader invokes the kernel and execution
reaches the kernel’s machine-independent
main().

2.2.7 conf and mk

This category covers the system configuration
and build environment.

• Compiler and linker flags. On some plat-
forms some of the other considerations
above may lead to needing machine-specific
compiler and/or linker flags. For example,
one might want to reserve a register to hold
curthread. Also on some platforms ker-
nels should be built with non-default flags;

6



e.g. on MIPS you generally want to disable
PIC.

• Linker script. It is almost always necessary
to provide a custom linker script to link
a kernel, and the details are machine-
dependent and sometimes platform-
dependent as well.

• What to put in the kernel config. A kernel
config contains buses and devices and also
other things (file systems, network widgets,
...) and somehow we need to know what is
and isn’t relevant.

2.2.8 Other bits

• MD hooks for big in-kernel things.
NetBSD has a number of fairly big-ticket
items in the kernel that require some
amount of MD code. Examples include ddb
(the historical in-kernel debugger), kgdb
(hooks for remote gdb into the kernel), and
sljit (the JIT for BPF). Most of these we
probably don’t need, although some ker-
nel debugging support is probably desir-
able. (See discussion below.)

• Kernel module loader. A full-featured ker-
nel is capable of loading modules into the
kernel on the fly; portions of the module
loader involve relocations and are necessar-
ily MD. We don’t actually need this for this
project. (Provided we don’t end up stuck us-
ing Linux, where the module loader isn’t op-
tional.)

2.3 User-level Material

2.3.1 In core libraries

• Any user-level manifestations of cache
control logic. Most of the things that re-
quire cache manipulation happen only in
the kernel; but e.g. on MIPS, which has split
I/D caches, any kind of dynamic code gen-
eration or dynamic code loading requires
cache manipulation.

• MD bits of libm and libc floating-point
things. Basically, all the stuff that supports
using the FPU.

• Softfloat code. For some platforms you
need or want a software floating point
library. Portions of this are inherently
machine-dependent. For this project we
probably don’t care, but it depends on what
range of platforms we want to support and
in particular on what vintage platforms we
want to be able to use as test cases for ex-
pressivity.

• Profiling logic. Like kernel profiling, user
profiling requires some amount of machine-
dependent logic.

• System call entry stubs. This is the assem-
bler code that actually invokes each system
call.

• Startup code. This is the logic that sits be-
tween user program startup and the invo-
cation of main, conventionally known as
crt0 or “crtstuff”. Much, but not all, of it
is MI.

• ELF dynamic linker. Fairly significant parts
of the ELF dynamic linker are machine-
dependent.

2.3.2 In libpthread

• Thread switch code for userlevel threads.
If the thread library multiplexes user con-
texts on system contexts, it needs to do con-
text switches. (It might do this by making
system calls, but if so those system calls will
contain similar MD logic.) NetBSD’s current
thread library does not multiplex in this
fashion, but others may.

• Thread start code for userlevel threads.
Like in the kernel, to start up a thread you
typically need a small amount of MD assem-
bler to initialize registers.

7



• Further MD bits of libpthread. I am not
entirely up on what else in libpthread is
machine-dependent, and I haven’t looked
all that closely yet because pthread imple-
mentations tend to be messy.

2.3.3 Elsewhere

• Platform-dependent parts of installer.
NetBSD’s installer has per-platform logic for
things like choosing the right kind of parti-
tion tables for the disks, and knowing what
kind of disk devices are expected to appear,
and so on.

• MD bits of cpuctl. In NetBSD there’s a
cpuctl binary that can be used for turning
CPUs on and off and doing other things with
them, some of which are MD. We might or
might not need to actually implement this
in practice.

• MD bits of libkvm. This is basically code
for reading pagetables, so it should be a
small addendum to the VM system logic.

There is also in some places (e.g. openssl)
assembler code that’s there because someone
thinks (rightly or wrongly) that handwritten as-
sembler will be faster than compiler output. In
our environment all or nearly all of this can and
should just be disabled.

2.4 Bootloader

We are not doing an x86 bootloader (not un-
less by the end of the project it looks within
reach) as x86 bootloaders require many stages
and both have very tight constraints and require
doing horrible things like switching back and
forth between protected mode and real mode.
Other platforms’ bootloader situations are po-
tentially much more tractable, though. There-
fore, the relevance of the following bits is un-
clear.

• Bootloader. The bootloader itself is neces-
sarily platform-specific as it needs to know
how to talk to firmware to use the console
and read blocks from disk. Also it has to
know which blocks to read from disk, and
how to interpret them; and on some plat-
forms (e.g. x86) it has to do a series of
mode changes. Often bootloaders need to
be multiple-stage, and then they often need
to know different ways to do these things
depending on which stage they’re in. And
so on.

• Bootloader install tool. Installing a boot-
loader is also usually platform-specific, al-
though typically somewhat less so than the
bootloader code itself.

• Kernel image conversion tools. On some
systems the firmware knows how to load
kernels... or at least, bootloader images that
it thinks are kernels. But often the images
in question have to be in some legacy for-
mat like ECOFF or SunOS 4.x a.out, and
so NetBSD includes a range of tools for do-
ing these conversions, most or all of which
have at least a minimal MD component.

2.5 Compiler and toolchain

• Binutils. This means the things in GNU
binutils; an assembler and linker, and also
the other more or less trivial tools like ar
and nm and ranlib.

• Compiler. Yeah, the compiler. Unless we de-
cide to write a new OS in some other lan-
guage, we need a C compiler.

• Debugger. In theory we could get away
without a debugger: any debugging we
need to do during development using ex-
isting platforms can be done with an ex-
isting debugger using its existing MD back-
end, and in theory once we’re done, we can
reconfigure for a future platform without
needing to debug anything. In practice this

8



isn’t a great idea; even if everything we do
is perfect, it’s still reasonable to assume that
in the future someone might write a new
module of some kind and make a mistake
and want to debug it. So we should really
come up with some story for debugging.

• JVM. For this project we need to host a JVM.
Until proven otherwise we had best assume
that the JVM will need a JIT in order to per-
form adequately. Another option might be
compiling Java to native machine code, as
gcc can already do – this affects the archi-
tecture of the Java code and therefore isn’t
free but might be possible.

• Lint or other program analyzers. NetBSD
still ships and sort of maintains BSD lint,
which requires a few MD declarations. At
this point its value is questionable and we
could punt it; however, having something of
the sort (e.g. sparse or splint) is probably
worthwhile, and the cost is probably low.
(Remember that like a compiler these need
to know about the target platform even if
they run purely on the build platform.)

3 Background discussion

Some points of discussion, prior to wading into
my specific thoughts on each item.

3.1 Register transfer lists

The basic compiler technology for specifying and
reasoning about instructions (which are inher-
ently machine-dependent) is the idea of a regis-
ter transfer list: given some description of CPU
state, for each instruction provide a register
transfer list: for each element of CPU state af-
fected this specifies the output value as a func-
tion of the input state. These specifications pro-
vide the semantic meaning of each instruction;
this makes it possible for a code generator to rea-
son about the cumulative meaning of sequences
of instructions.

Since raw RTLs are large and cumbersome,
one of Norman Ramsey’s projects (λ-RTL) is a
tool for reading a more palatable and less ver-
bose source form, grinding it, and generating the
complete form as output. This is certainly a con-
cept we can use; whether we can use the existing
λ-RTL implementation or need a new one de-
pends on what we end up needing in our RTLs
and how this interacts with assumptions made
by the existing code.

Note that since compilers do not work with
the privileged and special-purpose instructions
we need to be able to handle (for things like
MMU and cache control, for dealing with ex-
ceptions, and so forth) at a minimum the RTLs
we’ll need will have a lot more stuff in them,
because of all the privileged processor state,
and some of the instruction descriptions will
be horrifically complicated compared to any-
thing a compiler normally handles. These issues
by themselves shouldn’t pose expressivity prob-
lems, though they might reveal scaling problems
in preexisting implementations.

I am not at the moment clear on how one spec-
ifies calling conventions in this environment. (I
suspect that one doesn’t, and there’s additional
stuff in Norman’s later work for handling this.)
We will need to cope with calling conventions
(for system call arguments, and also for thread
switching) but I don’t foresee anything materi-
ally different from what a compiler needs to han-
dle; and therefore, these issues are, though not
necessarily simple, at least tractable.

There are, however, other things for which
pure RTLs aren’t going to be sufficient. The first
of these is processor modes: while the processor
mode is a piece of state and can be handled like
any other piece of state, that probably isn’t ad-
equate. At a minimum we will need to be able
to use processor modes as predicates in trans-
fer lists; that is maybe ok, but we’ll also need to
be able to specify prerequisites for entering par-
ticular processor modes. In particular the long
startup sequence of an x86 goes through multi-
ple modes and requires many steps, and if we

9



want to be able to synthesize this we’ll need to
be able to treat these modes as goals and search
for sequences of instructions that result in all the
prerequisites being satisfied. We should be able
to use a theorem prover for the search; but we
need the description language to be able to char-
acterize what we need to search for.

Another thing that concerns me is that on
some processors, most notably x86, pieces of the
processor state sit in main memory. For example,
there’s a thing called the Interrupt Descriptor Ta-
ble (IDT) that among other things holds the en-
try point addresses for machine-level traps. This
lives in main memory; its address is loaded into
the processor with the lidt instruction. One
can keep track of its address easily enough; but
to model what happens on an exception, one
needs to keep track of the contents of the mem-
ory it points to. And at least in a naive world
that means the RTL specification for the x86 has
to track the state of the entire system memory,
because any access to main memory might po-
tentially update the IDT or update some chunk
of memory that is later used as the IDT. That is
unlikely to be workable; for the time being I am
not sure what to do about it. (Note that there are
four or five of these things in the processor, too,
not just one, and at least one of them is routinely
updated on the fly.)

Another issue is the state of caches. While
compilers do nowadays model caches, I don’t
think they typically do it with RTLs, and they
do it with a different goal: modeling latency. We
need to model it to know when we need to do
invalidations and writebacks. Trying to model
the complete cache state in RTL would require a
complete specification of the cache logic, which
isn’t remotely feasible for a wide variety of rea-
sons. Instead for the kind of cache operations we
need we likely want some kind of probabilistic
model that matches the way we reason about
caches when coding by hand: these addresses
may be in the cache and that’s inconsistent with
what we need to do next so we need to do a
flush.

This also doesn’t address dealing with the dif-
ferences between PIPT, VIPT, and VIVT caches,
which I would really like to handle with a sys-
tematic model as there are too many ways to get
it wrong otherwise.

It seems to me that RTLs can’t really encode
timers, so it isn’t clear how one deals with them.

And of course, to handle the VM system re-
quires representing the way a mapping is speci-
fied, which is quite different from pure processor
state. This will require some other specification
technology yet to be determined.

4 Code generation inventory

Easy stuff first.

4.1 Trivial.

The following things follow directly from very
basic properties of the processor architecture.

• Various standard type and type-size dec-
larations. For modern processors there are
basically two sets of values, one for 32-bit
processors and one for 64-bit processors.
Even if we want to support 36-bit proces-
sors and other exotica, it’s not that different
or that difficult.

• Any asm.h header for assembly code.
If we want one of these it’ll be to sim-
plify the code generators that emit assem-
bly, and more or less by definition it only
makes sense for it to contain things that are
straightforward to cope with.

4.2 Off-the-shelf technology

The following things I think can be handled with
off-the-shelf compiler technology, whether RTLs
or something else. They are not necessarily triv-
ial or straightforward, but they should at least
be tractable.

10



• Endianness. While the endianness itself is
trivial, generating the endianness-related
functions using native byte-swap instruc-
tions is less so. Still, it shouldn’t be anything
that can’t be done with standard compiler
technology.

• Memory barrier operations. Specifying
what the semantics of a memory barrier in-
struction really are in a way a code gen-
erator can reason about isn’t exactly trivial
(since it’s about concurrency and nothing
about concurrency is trivial) but in order to
generate a library of memory barrier oper-
ations with a MI interface we don’t need to
do that. We only need to do that if we want
to try to synthesize our own lock-free data
structures and that seems like its own thesis
topic.

• Atomic operations. This one is a little
harder, but for the most part I think the
same reasoning applies.

• setjmp. Everything we need to know to
emit setjmp and friends follows from the
function call ABI. This is true even if the
user and kernel versions need to be differ-
ent because of e.g. floating point registers.

• Signal frames. Like setjmp this follows
from the function call ABI. Unless we want
to try to be compatible with an existing
implementation (probably a bad idea) it’s
much the same, though in some sense dual:
you need to save all caller-save registers.
The trampoline might be a bit less trivial but
doesn’t seem fundamentally hard. Plus if it
comes to it one can do signals without tram-
polines at the cost of extra system calls.

• Signal posting code. This should be a
straightforward manipulation of trapframe
state based on e.g. knowing what slot the
program counter lives in.

• FPU context save/restore. This is much
like setjmp also: dump out some state,

reload from somewhere else. Controlling
the FPU state to make it work should follow
from RTLs. Knowing when to do it based on
traps falls under “trap dispatching code” be-
low.

• Kernel thread switch code. This is also like
setjmp.

• Trapframe updating code for syscall re-
turn.

• Trapframe updating code for fork return.
These are much the same as signal posting
code.

• Register set declarations for ptrace.

• Register set declarations for ELF core-
dumps. Both of these can just be dumped
out given the list of registers, unless we
need to be compatible with existing decla-
rations in gdb or similar; in that case we
need to have the register order as part of
the input machine description.

• ptrace register handling. This just re-
quires knowing what registers there are.

• Floating point emulation. This should be
a straightforward code generation problem.
In fact, probably we don’t have to do any-
thing at all; we should be able to take exist-
ing floating point emulation code and feed
it through our compiler. At least provided
that all we need to care about are IEEE
floats.

• Softfloat code. Same, just in userland in-
stead of in the kernel and possibly with
some ABI issues.

• MD bits of libm and libc floating-point
things. I would think this would be straight-
forward given an adequate description of
the FPU.

• Kernel profiling hooks. I’m not absolutely
sure what this entails but I think it’s mostly

11



about retrieving the caller of a stack frame,
which is standard debugger technology.

• Userland profiling logic. Likewise.

• Spinlocks. I don’t think this is any harder
than the atomic operations library; it’s just
maybe not quite the same.

• Interrupt on/off code. This should come
directly out of RTL information.

• Interrupt wait/suspend. This should come
directly out of RTL information; we just
need to be sure we can specify the seman-
tics of these instructions correctly.

• CPU halt. In the absence of a specific in-
struction this is just wait in a loop.

• System call entry stubs. This is straighfor-
ward even if it entails converting from one
function call ABI to a different system call
ABI; it just needs to know the instruction
for issuing a system call and that’s part of
the system call ABI specification.

• User startup code. This is the dual of a sys-
tem call entry stub, modulo needing to do a
few additional things; but those things are
well understood.

• Thread switch code for userlevel threads.

• Thread start code for userlevel threads.
These are different from the kernel versions
only because they work in a different con-
text; they need to do the same set of things
in each case.

4.3 Material given to us.

The following things either pretty much need to
be given to us, either directly or as some kind of
more concise form specifying what to emit from
information already known.

• Standard or semi-standard MD header
files. Taking the MIPS regdefs.h file as

an example: the names and register num-
bers in this come from the ABI definition,
which is material we necessarily have; how-
ever, the fact that the file needs to exist and
the knowledge of what needs to go into it is
something we have to be told. We could pro-
vide a way to specify additional header files
and their contents; or we could just treat
the whole file as part of the processor spec.
The former is more principled (but some-
what harder) but the latter seems perfectly
justifiable.

• Goop for float.h and fenv.h. As far as
I know (though I’m a long way from an ex-
pert on float and FPU issues) everything in
here comes straight from the FPU specifi-
cation. Which means we need enough of a
FPU specification to generate these files; but
depending on what we try to do for libm it
may be that the right way to do this is just
to provide the files, or the information for
the files, directly as part of the machine de-
scription.

• ELF relocation codes. There’s no way we
can synthesize these as they’re externally
defined. (In principle we could synthesize
a binary format and synthesize relocations
based on what the machine code needs; but
this is probably neither simple nor interest-
ing unless we want to use randomly gener-
ated machines or something like that.)

• ELF machine type and word-size codes.

• Maximum number of cpus. This pretty
much must be a direct part of the platform
description.

• Sizes and usage restrictions of super-
pages, if any. This had better just be part
of the MMU description.

4.4 Not quite off-the-shelf

• Exception entry code. In some cases this
will probably require goal-oriented mode

12



search as described above; e.g. on MIPS
before you can do anything else you have
to locate your kernel stack, which isn’t
necessarily entirely trivial. After that it’s
just dumping out registers though which is
straightforward.

• Trap dispatching code. This requires a list
of the trap codes and some specification of
their semantics. These can then be mapped
to the MI list of things that can happen at
trap time (e.g. call the interrupt dispatcher,
call the system call dispatcher, do noth-
ing, call the floating point emulator, kill the
current process with some signal, etc.) Ex-
actly what the specification of trap seman-
tics should be isn’t obvious up front but it
seems like it shouldn’t be all that difficult.

• Busywait timing loop. Generating a loop
should be straightforward; timing it per-
haps not quite so.

• Logic for coping with pipeline hazards. I
think it should be sufficient to either stick
hazard bits in the RTL state or write a list
of constraints on pairs of actions involving
particular pieces of state. The latter’s prob-
ably cleaner.

• Code for handling cycle counters. Cycle
counters are just more registers. The inter-
esting part is specifying the semantics of
what they’re counting; some of that can be
made to fall out of RTL descriptions, some
of it probably less so. However, other than
the main counter of cycles elapsed (which
we’ll want for timing if it exists) much of
this may not matter.

• Kernel thread start code. This is not quite
obvious but I think nearly all of it follows
from the function call ABI.

• ptrace single-step handling. In theory it
should be possible to find any single-step
mode in the RTL description, and then it’s
probably straightforward to enable it for

userlevel execution in the target trapframe.
This seems potentially somewhat fragile
though; or at least, once engaged it inter-
acts with the trap dispatching code and how
that plays out is not entirely obvious.

4.5 Fairly tractable

• How to handle curthread/curcpu.
There are only a handful of schemes for
this; my guess is that after digesting the pro-
cessor spec we can choose by plotting out
how one would do each, rejecting ones that
don’t work, and scoring the rest by some
fairly basic criteria.

• VM-related constants. Many of these are
basically givens (e.g. PAGE SIZE. Some of
the rest (e.g. the bounds on userspace ad-
dresses) are either wired into the proces-
sor or can be more or less just assumed
based on simple criteria. I don’t think any-
thing in here is difficult unless we’re trying
to squeeze every last advantage out, which
we aren’t.

• copyin/copyout. Given an MMU descrip-
tion that lets us reason about user addresses
vs. kernel addresses, this should be fairly
tractable: if there are special instructions
for reading from user addresses we should
be able to find them, and if there aren’t
the logic for doing it safely with ordinary
read and write instructions is pretty much
canned. There are some second-order con-
cerns about doing it efficiently in the latter
case; if we don’t care about that (true up
front, unclear later on) it reverts to an in-
stance of setjmp.

• Cache control logic. Despite my concerns
above I think modeling what we need won’t
be that hard, and given the modeling, gen-
erating cache control instructions is much
like anything else. It’s the parts of this that
are really part of the VM system that con-
cern me more; but that’s because I still don’t

13



myself really have a good handle on what a
VIPT cache does and doesn’t demand from
the VM system.

• System call argument collection. This is
not much different from other things that
are derived from function call ABIs; it’s a
bit more involved becomes sometimes part
of the arguments need to be fetched from
userspace, and because the form in which
the arguments are presented to the MI ker-
nel may need its own specification.

• Native 32-on-64 compatibility.

• Glue for foreign OS system call compati-
bility. These just mean extra copies of other
things and making sure the other things get
slotted into per-system-ABI data structures
properly. We don’t need to do this; but it’s
not expensive.

• MD hooks for big in-kernel things. Most
of these things are instances of debugger
or code generator technology and should
therefore be mostly off the shelf problems.
(If we need them at all.)

• Any user-level manifestations of cache
control logic. This is a fairly clear subset
of the kernel-level cache control problem:
at userland you either need nothing, or can
issue the same instruction you do in the ker-
nel, or if that instruction is privileged, issue
a system call. The catch is knowing what
system call to make; we can’t just make
a private one up, because in the example
of mips cachectl the call is known and
semi-standard and needs to exist for third-
party programs to work. (This doesn’t pre-
vent us from making up a private one for
our own use and providing the known one
only to third-party code, but that’s unsatis-
fying.)

• Further MD bits of libpthread. I’m not to-
tally familiar with what’s in there but I don’t
think it’s likely to be anything markedly

different from what’s needed for in-kernel
threads. The chief likely problem is dealing
with thread-local storage; but I think that
ends up being encoded into the compiler,
linker, dynamic linker, and function call ABI.

• MD bits of libkvm. As noted above, this is
a small appendix to the VM system.

4.6 Less clear

• Code for on-chip timers. Modeling timers
seems problematic, so it’s not clear how to
deal with this.

• How many interrupt levels to use. No idea
how to synthesize this, but either being told
it or always using the same number based
on MI properties of the OS seem like viable
approaches.

• Machine-dependent system calls. There’s
no way to know that e.g. somebody a long
time ago decided it would be a good idea to
make the x86 iopl instruction available to
root user-level processes. We have to be told
about these. But it’s not at all obvious how
to specify them. Probably we can think of
them as being like hypercalls in paravirtual-
ization: they have semantics expressible in
the same language as the supervisor mode
instruction set, plus some signature or call-
ing sequence. It should be possible to take
lists of declarations of that form and emit
the necessary kernel-side instructions. (And
many of these we don’t actually need to sup-
port for the software we need to run.)

• Kernel startup code. For x86 this is highly
nontrivial, because you have to wire up and
enable a lot of processor things. As dis-
cussed above this (at a minimum) requires
a goal-oriented search through modes with
a lot of steps. It interacts with the VM sys-
tem too, as one of the things that needs to
be wired up is pagetables for the kernel. But

14



at least I have some ideas about how one
might do it.

• Compiler and linker flags. It isn’t clear
to me how one deduces that compiler
and linker flags are needed. Things like
-fno-pic for mips are probably just
givens.

• Linker script. Likewise, it’s not clear how to
deduce what to put into this.

• ELF dynamic linker. In theory this is not
any worse than the MD parts of a linker,
which basically amounts to applying relo-
cations, which is straightforward. However,
the dynamic linker is a very adverse pro-
gram environment and among other things
it has its own startup code problem: it can’t
use anything from libc because it has to be
able to run first in order to load libc. I’m not
sure exactly what this entails.

• What to put in the kernel config. Like
many of the other platform-related issues it
isn’t clear either what needs to be specified
or how to specify it. However, regardless of
how hard a problem that turns out to be,
this particular part of it shouldn’t end up be-
ing rocket science.

• Platform-dependent parts of installer.
This I think ends up being mostly the same
logic as figuring the kernel config.

4.7 Some traction

• VM system code and headers.

This is pretty much the centerpiece of the
project – the part that’s nontrivial but hope-
fully not impossible. It differs from the
things for which RTLs will serve in that
it involves manipulating a mapping rather
than concrete state. (While one could treat
a 4MB 32-bit pagetable as 4MB of concrete
state, and define RTL for operations on it

this isn’t very helpful and it doesn’t charac-
terize the semantics of the mapping, which
is what the VM system needs to engage.)

Note that one can either generate a com-
plete VM system, or just (“just”) something
akin to a pmap module that plugs into a
handwritten MI VM system. Which of these
is preferable isn’t clear at this stage. Note
that this choice has significant implications
for the rest of the project: refitting a new
VM system to an existing kernel (especially
an existing legacy kernel that isn’t particu-
larly structured according to my standards)
is a big enough undertaking that assembling
a new one (even out of roughly the same
pieces) is likely a better bargain.

When I first thought up this project (well
over ten years ago) the basic approach I
had in mind was to specify a VM system
that included support for manipulating all
the known different kinds of machine-level
mappings, both forward and backward, and
then for any given platform optimize out
the ones that weren’t needed. Part of the
point of this was to reduce the redun-
dancy seen in conventional designs between
the MI forward (P to V) mapping and the
machine-level forward mapping most non-
legacy processors specify. And also, in the
case of software-fill TLB MMUs like the
MIPS, perhaps devise a single forward map-
ping that could be used efficiently both for
fast path and slow path fault processing.

In the intervening time I’ve acquired a
good bit more experience with VM sys-
tem design, and in particular the appur-
tenances required by support for copy-on-
write, memory-mapped files, and other ma-
jor features, and that reduced redundancy
no longer seems like a worthwhile goal:
while it’s to some extent technically pos-
sible, it isn’t really something one would
want; in the presence of (particularly)
memory-mapped files it becomes messy and
provides only a minimal benefit. So that’s

15



no longer in itself an argument in favor of
synthesizing the entire VM system.

However, the approach is still valid. Up-
dated a bit based on the fact that in the in-
tervening time I’ve also acquired a lot more
experience with language and compiler is-
sues, it amounts to the following:

First, write a new VM system in a high-
level domain-specific language. The lan-
guage should be high enough level that one
can do semantic optimizations, but also still
capable of representing memory; this re-
quires some delicate tradeoffs but should be
doable. Likely the language shouldn’t sup-
port heap allocation of language-level ob-
jects; in order to make that work it will
probably require domain-specific knowl-
edge of allocation contexts and scopes.

Second, write the VM system in terms of
manipulating hardware-level forward and
backwards mappings. Then, given a way to
characterize the representations (or nonex-
istence) of these mappings on a given ma-
chine, we can convert the manipulations of
these mappings to assembly code. Then we
can compile the rest of the DSL to C or as-
sembler, and that’s the result.

How one best handles concurrency in this
model is not entirely clear; one could code it
directly in the DSL, or one could try to have
the DSL compiler synthesize part or all of
the locking model. The latter is hard though
and should probably be left until the other
functionality is under control.

A related approach is to take an existing VM
system that is written in terms of “pmap”
modules (or equivalent), formalize the ex-
isting interface to the pmap layer (this will
likely involve quite a bit of cleanup and re-
structuring) and then proceed in roughly
the same fashion.

It isn’t obvious to me up front if writing new
is better or worse – writing a new VM sys-
tem is a good chunk of work, but one can

also sink huge amounts of time and effort
into trying to systematize existing material,
especially existing material with unclear ad
hoc semantics. (Also, the process of writing
a new VM system has guaranteed termina-
tion; mucking with an existing one’s pmap
interface does not. This is also an important
consideration.)

A potential bonus of the new VM system
and DSL approach is that one could also
provide switches to keep or prune and opti-
mize away the big-ticket features like copy-
on-write and memory mapped files. This of-
fers trendy advantages in the current atmo-
sphere of cloud deployments and uniker-
nels.

A different approach entirely is to treat it
as more of a code synthesis operation: in-
stead of designing in hooks for all antici-
pated MMUs and then using the machine
description to prune unnecessary logic, use
some kind of goal-directed search to bu-
lid the higher-level structure based on the
lower-level operations and structures avail-
able. This kind of thing is hard, though, and
constructs the size and complexity of VM
systems are I believe several orders of mag-
nitude beyond what anyone’s accomplished
before in practice. That doesn’t mean it can’t
be done, but there are many unanswered
questions and not very many obvious av-
enues of attack.

4.8 Totally unclear

• Detecting RAM size.

• Properties of different regions of RAM.

• How you find secondary CPUs and cores.

• bus machdep.c for various buses.

• bus space, bus dma and similar mate-
rial.

16



• Interrupt identification and dispatching
code.

• Bus-level interrupt masking code. All of
these are platform-dependent and depend
on bus- and system-board-level material
that I don’t know how to specify and haven’t
really thought much about yet.

• Early console.

• Early disk I/O.

• Interface to firmware.

• Bootloader install tool.

• Kernel image conversion tools. These are
even worse: they depend on firmware is-
sues.

• CPU identification logic.

• MD bits of cpuctl. These two are mostly
the same problem, but I’m not at all sure
how to deal with it.

• Workarounds for CPU bugs. This one I
haven’t a clue about.

• JVM. Ideally this one would be some-
one else’s problem. Unfortunately, for what
we’re doing we really need to have it and
have it working. This worries me, because
JVMs are not exactly known for being clean
or portable, and retargeting a JIT is not triv-
ial. Furthermore, using LLVM’s JIT is proba-
bly not an option; as of the last I heard (fall
2015) LLVM’s JIT was not really suitable for
this kind of use.

4.9 Hopefully someone else’s problem.

• Bootloader. x86 bootloaders in particular
are nontrivial and have horribly tight con-
straints. Synthesizing one would be a tour
de force; if I can figure out how to do it by
the late stages of the project I’m happy to
give it a shot, but I’m not optimistic about it
being possible.

• Binutils. We are in a position to be able to
provide a linker, assembler, and disassem-
bler with most likely a reasonable amount
of work and time investment. The rest of
binutils is trivial.

At the moment doing this also looks like
a good initial exercise in sorting out the
preexisting tools and techniques; those are
theoretically capable of handling such tools
already, although some gaps have already
surfaced. (These gaps appear in the space
between “an arbitrary assembler for plat-
form X” and “a drop-in replacement assem-
bler that understands the output of existing
compilers for platform X and can be used in
production”.)

There are also non-research reasons I would
like to do these tools; specifically, right now
GNU binutils is the only available option
ready for prime time and it is horrible, hor-
rible legacy code.

• Compiler.

• Debugger. We are not, however, in a posi-
tion to easily provide either a compiler or
debugger, and these items are pretty much
fundamentally off topic. I think the right
thing to do is to declare these pieces out
of scope, note that retargetability of com-
pilers and debuggers is fairly well under-
stood in practice, and use an existing retar-
getable compiler and debugger that’s rea-
sonably well engineered. Clang (based on
LLVM) fits this description for the compiler;
the LLVM debugger (lldb) is probably also
suitable. My understanding is that the as-
sembler and linker set for LLVM is not really
ready for prime time yet.

• Lint or other program analyzers. Provid-
ing the necessary MD pieces for BSD lint
is trivial. Not sure about sparse and splint;
but if they become problematic we can skip
them. Note that if we use LLVM we get both

17



clang-static-analyzer and Klee for (nearly)
free, which is an attractive proposition.

4.10 Something completely different

• Drivers for any platform-specific hard-
ware. Synthesizing drivers is a different
problem from anything else here (except
maybe the VM system, as the VM system is
sort of a driver for an idiosyncratic hard-
ware device) and it seems to me that it’s
out of scope; or at least, it’s an additional,
nontrivial, project. Judging by the speed at
which NICTA’s driver synthesis project has
been going it is not something we should
take up if I want to graduate in the next ten
years, especially since (unlike the VM sys-
tem) I don’t have any particular ideas about
how to do it. While I have pointed this out
several times, unfortunately it seems that
the message did not go through and we may
be stuck with it.

18


