
The Instrumentation of Muhics

JEROME H. SALTZER
Massachusetts Institute of Technology,* Cambridge, Mass.

AND

JOHN W. GINTELL
General Electric Company,** Cambridge, Mass.

An array of measuring tools devised to aid in the implementa-
tion of a prototype computer utility is discussed. These tools in-
clude special hardware clocks and data channels, general
purpose programmed probing and recording tools, and spe-
cialized measurement facilities. Some particular measurements
of interest in a system which combines demand paging with
multiprogramming are described in detail. Where appropriate,
insight into effectiveness (or lack thereof) of individual tools is
provided.

KEY WORDS AND PHRASES: instrumentation, performance measurement,
multiprogramming systems, measuring tools, system analysis, multics, meter-
ing, event tracing, demand paging, script driven measurement
CR CATEGORIES: 2.44, 4.32, 4.39, 4.42

In the construction of a modern, complex computer
operating system, sophisticated tools are needed to meas-
ure what is going on inside the system as it runs. The list
of hardware and software tools and techniques used for the
measurement of Multies is interesting both from the point
of view of what has proved to be important to measure
and what has not. Multics is a project whose intent is to
explore the implications of building a comprehensive com-
puter utility. The specific goals of 15~ultics are described in
a series of papers written in 1965 [1]; briefly, the objective
is to create a computer operating system centered around
the ability to share information in a controlled way and
permitting application to a wide variety of computational
jobs. A spectrum of user services, including a hierarchical
file organization, sharing of information in core memory,
dynamic linking of subroutines and data, parallel process-
ing, and device-independent input /output facilities, char-
acterizes the system and contributes to a complexity tha t
makes careful instrumentation mandatory.

Two implementation techniques used in Multics call for
specialized measurements. The first of these is a multi-
programmed multiprocessor organization, chosen to facili-
tate continuous operation of the utility and for ease of

Presented at the Second ACM Symposium on Operating System
Principles, Princeton, New Jersey, October 1969. Work reported
herein was supported in part by Project MAC, an MIT research
program sponsored by the Advanced Research Project Agency,
Department of Defense, under Office of Naval Research Contract
Nonr-4102 (01).
* Department of Electrical Engineering and Project MAC.
** Cambridge Information Systems Laboratory.

system scaling. The second technique is exploitation of an
ability to begin executing a program which is not com-
pletely loaded into primary memory: this technique, usu-
ally named demand paging, is intended to exploit and
encourage a tendency of programs to localize their refer-
ences to primary memory in any given period of time.
Since these two techniques when applied simultaneously
require interacting multiparameter controlling algorithms,
measurements must be made to check on the resulting
performance and to allow adjustment of the parameters.

Multics, as a research project, contains new ideas and
new combinations of old ones. As a result, in its design
there have been a dismayingly large number of choices to
be made: strategies, algorithms, parameter settings, and
emphasis on importance of design and speed of individual
modules. Since the presumption was made at the start
that some wrong choices would be inevitable, there has
been an emphasis on integrated instrumentation from the
earliest design of the system. The result has been an ability
to rapidly identify bottlenecks. In particular, two effects
have been observed:

• Frequently, the best guesses by system programmers as
to the cause of some performance problem have been proven
wrong by the detailed measurements. Each such surprise,
while possibly affecting the programmer's ego, has saved
work redesigning or streamlining a module which was not
causing the trouble. Of course, the record has not been
perfect: some unimportant modules have been redesigned
in spite of (or for lack of) instrumentation results.

o~J[any otherwise undetected performance problems
have been discovered in exploring instrumentation output.
Probably because of normal variations of response in
interactive systems, a flaw which degrades average re-
sponse time by 20 percent may not be recognized immedi-
ately as such by console users. I t frequently takes a
healthy factor of two before the user realizes something is
wrong.

The measuring techniques described here have been
directed primarily toward understanding what goes on
inside the operating system, rather than on measuring
" throughput ," system capacity, or the characteristics of
system load. This direction is part ly because of the re-
search nature of the Multics project and part ly because
when an operating system provides a large variety of user
services its capacity depends on what exactly the users
choose to do, making any single measure of capacity sus-
pect. There are a substantial number of other projects
which have tackled the throughput measurement problem
[2, 3, 41.

Many of the measurement techniques used on Multics
are not new. They are mentioned anyway, because it is the
array of techniques used together which has been valuable,
and also the relative importance of various techniques, old
and new, is different in the hSultics environment than
elsewhere. One should not presume that all the measure-
ment techniques described here were thought out in ad-
vance, though many were. Much of the experience in

V o l u m e 13 / Number 8 / August, 1970 C o m m u n i c a t i o n s o f t h e ACM 495

measuring Multics has been discovering what additional
measuring facilities were needed.

We begin by describing three hardware tools which aided
in construction of measuring facilities. Then eight general
programmed measuring facilities are described. This is
followed by a brief discussion of the built-in instrumenta-
tion used to monitor multiprogrammed demand paging.
After a description of techniques for obtaining controlled
measurements, a few observations about measurement of
operating systems conclude the discussion.

Hardware Too l s for I n s t r u m e n t a t i o n

Before describing the programmed measurement tech-
niques used in Multics, one must know of three hardware
tools provided by the General Electric 645 computer on
which Multics is currently implemented. These three are:
a program readable calendar clock which provides a uni-
form and precise time base for all measurements; a memory
cycle counter in each central processor; and an externally-
driven input /output channel which permits another com-
puter to monitor the contents of the GE-645 primary
memory.

The calendar clock consists of a 52-bit register which
counts microseconds and is readable as a double-precision
integer by a single instruction from any central processor.
This rate is in the same order of magnitude as the instruc-
tion processing rate of the GE-645, so that timing of 10-
instruction subroutines is meaningful. The register is wide
enough that overflow requires several tens of years; thus it
serves as a calendar containing the number of microseconds
since 0000 GMT, January 1, 1901.

There are three advantages to this hardware clock de-
sign compared, say, with a software clock simulated by a
processor interval timer (a technique which requires no
extra hardware in most present-day computers):

• The simplicity of usage of the hardware clock aids both
supervisor and user procedures.

• In a multiprocessor system there is no question as to
which processor is maintaining the simulated clock (and
no problem of separately maintained and potentially un-
synchronized clocks).

• Confidence in the accuracy of the clock is easy to
gain; one does not have to worry about accuracy of special
code which compensates for interrupts or about loss of
"t icks" during register reloads.

Associated with the calendar clock is a program load-
able 52-bit time match register, which is continuously com-
pared by hardware with the calendar clock register. When-
ever a time match occurs the clock generates a "t ime
match" interrupt. Typical uses of the time match inter-
rupt include the segment usage metering described below,
triggering of periodic accounting and metering programs,
and time-out signals when dealing with input /output
devices.

The second hardware tool is simply a modification of
the ubiquitous processor interval timer; in the GE-645
this " t imer" counts the number of memory references

496 Communications of the ACM

made by the central processor rather than the number of
clock ticks. There are at least three reasons for interest in
such a measurement:

e In a multiprocessor system which exhibits inter-
ference on access to primary memory, it permits a load-
independent measure of cpu usage, for accounting purposes.

e Comparison with calendar clock readings permits
measurement of memory interference.

• Comparison with instruction counts permits a check
on the associative memory of the GE-645 central processor,
to see to what extent it reduces memory accesses for page
table words.

This tool has not yet been used in any significant way
since gross system measurements suggest tha t scratchpad
memory effectiveness is near its theoretical upper limit
and memory interference is insignificant in the present
configuration. Sustained production use of two processors
will rekindle interest in this tool.

The third hardware tool is an inpu t /ou tpu t channel
which can run in an endless loop, once initialized, without
attention from the operating system. The particular end-
less loop programmed is a "read into the address par t of
the next command" followed by a "write out repeatedly
the contents of the word whose address was just read."
The channel is connected, by a 2400 baud telephone line,
to a Digital Equipment Corporation PDP-8/338 pro-
grammable display computer. With this channel, the
PDP-8/338 program can monitor the contents of any
Multics data bases for which it knows the location and
format. The data rate involved--less than 60 words per
second--presents a negligible I /O and memory cycle load
to the GE-645 system. Since no GE-645 processor code is
executed in obtaining the data (as would be the case if
one of the system's users probed periodically into a data
base), one can be confident tha t the act of probing has not
significantly affected the measurement. This slow data
rate does make it difficult to monitor a rapidly changing
data base.

Genera l S o f t w a r e T o o l s for I n s t r u m e n t a t i o n

A number of general programmed measurement tools
have been implemented as part of Multies; eight of them
are reported here. All of these tools are built into the sys-
tem in such a way that the tool is always invocable. Thus,
any would-be observer can make observations and per-
form experiments without making system modifications
and with minimum effect on the conditions of measure-
ment. The performance degradation caused by these per-
manent installations has been both estimated and meas-
ured to be quite small.

The first, and most elaborate, of these tools is a general
metering package which records t ime spent executing
selectable supervisor modules while the system is running.
For each selected module the metering package records the
number of times the module is invoked and the total
execution time accumulated within each of a mtmber of
ranges of execution time.

Volume 13 / Number 8 / August, 1970

Four modules associated with implementation of the
Multics virtual memory [5] were intuitively felt to be po-
tential system bottlenecks and thus were chosen for initial
integration with the measurement package. The first of
these is the dynamic linking procedure, which is invcrked
when a procedure makes a symbolic reference to another
procedure or data. The second module is the missing
segment procedure which is invoked to set up the environ-
ment required for paging. The third module is the missing
page procedure which is invoked when a program refers
to a page not in primary memory. The fourth module is
the wall crossing procedure which is invoked each time the
process needs to switch from one protection ring (domain
of access) to another ring. Such a switch occurs, for ex-
ample, on each call from a user program to a supervisor
procedure.

The measurement of time spent executing a module is
complicated by two problems. The first problem is that
the central processor is multiplexed among many proc-
esses; thus something more than reading the calendar
clock at the beginning and end of execution of a module is
required to compute time spent executing in the module.
Time spent waiting for I /O operations on missing pages
or for a lock to clear is not counted as part of the module's
execution time whenever the situation permits multipro-
gramming during the wait. The second problem is that
modules may invoke other modules (including themselves)
during their operation and provision must be made for
this situation. For example, during the handling of a
missing segment both missing pages and additional missing
segments may occur, each of which must be handled in
order to proceed with the original missing segment han-
dling. The rule is that time spent in a nested module is not
charged to the nesting module if the nested module is also
being metered. By this rule it is possible to perform a
pair of experiments to learn the amount of time spent in a
nested module as a result of use of the nesting module.
For example, if one first meters both missing segment
handling and missing page handling and then later meters
missing segment handling only, the second experiment
will show missing segment handling time increased by just
the amount of missing page handling which was triggered
by missing segment handling.

A segmented system provides a simple way to detect
how time spent in the system is distributed among the
various components. The second tool, a segment utiliza-
tion metering facility, sets the calendar clock to interrupt
periodically (typically every 10 milliseconds). When the
interrupt occurs, the segment number of the segment which
was executing is used to index into an array of per-segment
counters and the appropriate counter is incremented by
one. After the system has run for a while this table can
be sorted, and the resulting distribution of segment utiliza-
tion can be printed out, listing the most popular segments
first. This facility is similar to the one described by Can-
trell and Ellison [4].

A related, third tool records on a per-segment basis the

number of missing pages and segments encountered during
execution in that segment. Both of these measurements
can be coupled to the general metering package described
earlier. If coupled, the arrays are updated only during
execution of metered modules, or possibly only when out-
side the metered modules but within a specified process.
This latter option permits detailed analysis of any user
program.

Two examples of the use of these three measurement
facilities illustrate their utility. The first significant applica-
tion of these packages was in the analysis of missing page
handling. By obtaining the time distribution function for
missing page handling and running segment usage metering
during this time only, it was possible to compute how
much time was spent in each module of the missing page
handier. A heavy imbalance of time spent in the core
management module suggested a redesign of that module.

As a second example, a user analyzing his own program
can use the packages in several ways. By requesting the
timing of all supervisor modules and then running seg-
ment utilization metering only during time outside the
metered modules, the user can deduce the central proc-
essor time expended in each of the procedures which
are part of his program. The supervisor module timing
permits him to see the cost of the specific types of modules
he is using. The per-segment missing page counters
allow him to see if one of his own segments encountered
an unexpectedly large number of missing pages--perhaps
because it uses a data structure ineffectively.

A fourth tool, different in scope from the facility de-
scribed above, counts the number of times procedures are
called. A standard call-save-return sequence is used for all
interprocedure reference in Multics. An "add-one-to-
storage" instruction is included in this sequence which
increments a counter each time a procedure is entered. This
counter enables a programmer to determine later how many
times a procedure has been called and to relate that num-
ber to the number of calls to other procedures.

A fifth tool is a software package named the Graphic
Display Monitor, the subsystem of PDP-8/338 programs
that use the previously described synchronous data channel
to interrogate locations of memory in the GE-645. Multics
obliges this display by building, during system initializt~-
tion, a table containing pointers to interesting data bases.
A set of display generating tools permit the preparation
of a new display program in a few hours time. Some stand-
ard displays have been developed to observe the traffic
controller's queues, the arrays of module execution time
distributions, and the use of primary memory. Observa-
tions of these displays have been helpful in detecting bottle-
necks in the system, and on several occasions have ex-
hibited the system passing through states previously
thought to be impossible. A more complete description of
this tool and examples of its output can be found in the
paper by Grochow [6].

Perhaps the most useful software measurement tool of
all is the sixth and simplest one: following the completion
of each typed command, the command language inter-

Volume 13 / Number 8 / August, 1970 Communications of the ACM 497

preter types a "ready message" consisting of three num-
bers. The first number is the time of day at the preparation
for printout of this ready message. The second number is
the cpu time used since the previous ready message to the
nearest millisecond. The third number is the number of
times the process had to wait for a page to be brought in.
These pieces of information, which appear automatically,
give immediate feedback to the programmer as to the
resource utilization of the command just typed. This
feedback is a valuable aid to the programmer in seeing the
influence of program changes upon performance. For cases
where there are several ways to perform the same task,
the user is given guidance as to which is more economical.
For example, there are two text editors currently available
on Multics; the cheaper one is readily apparent and thus
generally the chosen editor.

Perhaps the most significant drawback to providing
powerful system facilities such as a large virtual memory
and a full PL/1 compiler is the ease with which even a
sophisticated system programmer can unintentionally trig-
ger unbelievably expensive operations. One of the prin-
cipal Multics tools to fight back at misuse of virtual
memory as though it were real memory is a missing page
tracing package. In this package, the missing page handler
retains in a ring buffer the segment and page number and
the time of day of the last 256 missing pages of the process
under measurement. Printing out the contents of the
ring buffer following execution of some library program is
often very revealing, since it provides evidence of which
were the different pages the program touched. This tracing
package frequently reveals that a large working set is the
result of unnecessary meandering in the path of control of
a program. The list of pages touched gives a programmer
information on how to reorganize his program to improve
its locality of reference.

Finally, a second tracing package monitors the effect of
the system's multiprogramming effort on an individual
user. The general strategy here is to write a user program
which goes into a tight loop repeatedly reading the calendar
clock. Normally, successive clock readings differ by the
loop transit time. I f a larger difference occurs, it is a
result of control of the processor having been snatched
away from the loop to handle an interrupt or run another
process. These larger time differences, as well as the time
they were noted, are added to the end of a growing table
of interruptions, and the program returns to its loop.
When the table is filled, the program prints out the table,
showing the time of occurrence of each interrupt and the
length of time it took to handle it. This table helps build
confidence that the processor scheduling algorithm is work-
ing as predicted, and it occasionally discovers a mispro-
grammed data channel which is producing more frequent
interrupts than necessary. I t also provides an independent
confirmation of the time required to handle each interrupt.
This measurement is a good example of one for which a
simulated software clock would barely suffice, since the
clock simulation itself is likely to interact with the sehedul-

ing algorithm and the interrupt handlers, whose functions
are being measured. On the CTSS system, a predecessor
of Multics for the IBM 7094, the lack of a calendar clock
forced this type of measurement to be made using arrival
of words from a magnetic tape as a kind of pseudo clock.

Apart from the two techniques just described, Multies
does not have built-in general event tracing packages,
such as those reported by Campbell and Heffner [3], or
Deniston [7], or instruction jump tracing such as that of
Rock and Emerson [8]. This lack can probably be attrib-
uted to a suspicion that the volume of interesting trace-
able events in Multics would preclude intelligent analysis
with the limited manpower available; nevertheless there
have been times when a built-in general trace would have
been very handy.

Special Instrumentation for Multiprogrammed
Demand Paging

Multiprogramming has been in use for a long time in a
variety of systems. In a few words, multiprogramming
consists of keeping several programs in primary memory,
so that when one program encounters an I /O roadblock,
control of the processor can be immediately switched to
another. The objective is to keep the central processor
busy more of the time and thereby increase the rate of
job completions. This improved utilization of the processor
comes about at the expense of extra primary memory
required to hold programs which are ready to utilize a
released processor.

If the primary memory can hold only a few programs,
there will be times when all available programs are road-
blocked simultaneously. The central processor then must
idle, waiting for some program's I /O requirements to be
satisfied. This idle time we will term "multiprogramming
idle," to distinguish it from "true idle" time which occurs
when, despite space in primary memory for another pro-
gram, there is simply no customer waiting for the sys-
tem's services. We thus have two measures of central
processor utilization for which instrumentation must be
provided.

The fundamental complication introduced by the ability
to run a program without all its pages in primary
memory is that there is no longer a simple rule to deter-
mine whether or not one more program will fit. In fact,
with limits which are too generous to be helpful, there is
always room for one more program in primary memory.
Addition of another program to this "eligible set" may
either allow some otherwise idle processor time to be used
or cause the programs in the eligible set to fight over the
available memory.

Some system designers [9] have partitioned primary
memory among the eligible programs. If a program in one
partit ion is not allowed to steal space for its pages from a
program in another partition, the question of adding an-
other program to the eligible set is just like that of multi-
programming without demand paging. This strategem
breaks down when many pages are (and any page may be)

498 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 13 / N u m b e r 8 / A u g u s t , 1970

shared among several programs, as required by the objec-
tives of Multics [10]. We have therefore explored the non-
partit ioned avenue by controlling the size of the eligible
set. Control implies that there will generally be multi-
programming idle time; the decision about adding another
program to the eligible set turns on whether or not any
additional paging activity thereby introduced either wipes
out recouped idle time or causes unacceptable job delays.

A variety of special purpose meters are therefore in-
eluded as an integral part of the Multics multiprogramming
scheduler and the page-removal selection algorithm. Meas-
ures of paging activity include total processor time spent
handling missing pages, number of missing pages, average
running time between missing pages, and average length
of the grace period from the time a page goes idle until
its space is actually reused.

As a rough measure of response time for a time-sharing
console user, an exponential average of the number of users
in the highest priority scheduling queue is continuously
maintained. The exponential average is computed by a
method borrowed from signal data processing [11]. An

• integrator, I, initially zero, is updated periodically by the
formula

I ~ I*m -t- N~, 0.0 < m < 1.0,

where Nq is the measured length of the scheduling queue
at the instant of update, and m is an exponential damping
constant which determines the average distance into the
past over which the average is being maintained. In general,
the sample which was taken]c samples in the past, where

/c = 1.0/(1.0 -- m)

will have 1/e times the effect of the current sample on the
value of the integrator. The average queue length is
approximately

~ = I / k .

This averaging technique, which requires only a multiply
and an add instruction slipped into a periodic path, is an
economical way to maintain an average which does not
"remember" conditions too far into the past.

If the recent average queue length is multiplied by the
average run time in the first queue, an estimate is obtained
of the expected response time of the moment. This es-
t imate has been used on CTSS to dynamically control
the number of users who may log into the system. In
Multies, this estimate, as mentioned above, is also a guide
with which to measure effectiveness of dynamic control
of the size of the multiprogramming eligible set.

Control of Measurements: Script Driven Tests

A problem in a complex operating system is evaluating
the effect of a small change in a factor presumed to affect
performance. If the system is observed under a normal
load of usage before and after the change, fluctuations in
the nature of the load may wipe out the effect to be meas-
ured. To get around this problem, a standard "bench-

mark," or series of programs, is often devised. This bench-
mark can then be run against a new system while taking
measurements to compare with the old.

When the system under test is designed to be used
interactively from time-sharing consoles, two difficulties
are introduced:

• A load simulator must maintain a large number of
simultaneous but low density input streams.

• Each individual input stream should be somehow
representative of a human user conversing with a com-
puter system. For example, inputs should be separated by
pauses representing "think times."

Greenbaum [12] attacked this problem for Multics by
developing a program for the PDP-8 computer which,
via telephone lines to the GE-645, simulates 1 to 12 simul-
taneous interacting human users, each of which is following
a (possibly different) script of commands to be input to the
system with interspersed think time intervals.

A number of scripts have been developed, but the one
most frequently used is one which represents a user typing
in and debugging a small FORTRAN program. This script
goes as follows:

• type in program
• t ry to translate it, discovering errors
• edit the program to correct it
• translate the program, this time successfully
• rename the program
• run the program
• print the program on the user's typewriter
• list all files associated with the program
• delete the program

This script "maps into" the available command language
of a variety of time-sharing systems, and can therefore be
used as a basis for intersystem comparison of usage charges
and response time. When used on CTSS, this script pro-
duces a measured load similar to that observed by Seherr
[13] over a long period of actual use. Although the script
simulates only a very specific class of user, the mix of
system services invoked (note that actual running of the
user's program is a small part of the script) is similar to
tha t invoked by a wider class, so that if a system change
improves the performance of the script, it can be expected
to similarly improve the performance of the system under
actual load.

Because of the sheer logistic problems of extending a
telephone-line driven technique to more than a few simu-
lated users, an internal driver program for Multies has
also been developed. The driver can create as many proc-
esses as desired and have them each perform some script
(the script described above is usually used) in competition
with one another. Only a minimal change to the normal
operating conditions is required, because the Multies I /O
system provides the capability of attaching an input /
output stream to a file rather than a typewriter. Even so,
this technique has the limitation that it does not exactly
simulate real users. The I /O path to a file is inescapably
different from the path to a typewriter (especially as to

V o l u m e 13 / N u m b e r 8 / A u g u s t , 1970 C o m m u n i c a t i o n s o f t h e ACM 499

number of different pages in the working set), and the
driver program itself competes for resources at least at
the beginning and end of the test. In addition, the current
version of the internal user simulator does not insert
" think times" between commands, although addition
of this feature is contemplated. Despite these difficulties,
the internal user simulator has proven very useful because
of its simplicity of operation and repeatability of the
measurements taken while it operates. When new Multics
systems are installed, they are first required to be "cer-
tiffed" by running the user simulator as a check on both
performance and functional capability.

Observations

One conviction gained from experience with Multics,
and earlier with CTSS, is tha t building permanent in-
strumentation into key supervisor modules is well worth
the effort, since the cost of maintaining well-organized
instrumentation is low, and the payoff in being able to
"look at the meters" any time a performance problem is
suspected--or even when one is not - - i s very high. In a
large system, a kind of inertia frequently impedes quick
changes to a module such as installation of temporary
meters in response to some suspected problem.

A second conviction, arising from a variety of experiences
when an apparent performance bug turned out to be an
instrumentation bug, is that the meter readings are always
suspect. Whenever possible, an independent, perhaps gross,
measurement which can confirm some aspect of a measure-
ment in question is very worthwhile.

A third observation is tha t most system programmers are
not by training or temperament scientists, and they often
lack the patience to methodically set up an experiment
which is precisely controlled. An alarming number of
"nonexperiments" are performed, with a total useful (?)
result of (for example), "I brought the system up with a
shorter scheduling quantum, and response seemed a little
bet ter ." Although much useful information and insight
can be gained by on-line monitoring of uncontrolled live
users, use of such measurements for performance com-
parison must always be suspect since the particular user
population at any instant may be non-"average." The
rules tha t apply to all scientific measurements also apply
to measuring computer systems:

• Controlled experiments require great care, and may
be quite expensive.

• Uncontrolled experiments are uninterest ing--one must
make only one change at a time if he is to honestly evaluate
the change.

• Before embarking on an experimental change one
should first make a prediction of what measurements
should change, and then spend some time understanding
why they did not change exactly as predicted.

• One must always be on the watch for unintentional
misinterpretation of a result by a system programmer (or
his manager) who has a large personal stake in a hoped-
for outcome. One is dealing with human beings, and the
psychology of error is no different than in other situations.

Acknowledgments. Almost everyone wKo contributed to
the design of Multics has contributed at least one sugges-
tion toward its instrumentation. F. J. Corbat6 and E. L.
Glaser offered helpful suggestions on almost all aspects.
Contributions to the design of the calendar clock were made
by Chester Jones, Joseph Ossanna, and George Futas.
Victor Vyssotsky suggested the epu memory cycle counter.
Early work on the PDP-8/Mul t ics I /O channel was done
by Daniel Edwards and Thomas Skinner. The PDP-
8/338 graphic display monitor was designed and imple-
mented by Jerrold Groehow. Contributions to the fault
metering package came from Charles Clingen and David
Vinograd. Robert Rappaport and Steven Webber con-
tr ibuted to the design of metering for dynamic paging and
multiproeessor scheduling. The internal script driver was
designed and implemented by David Stone and Richard
Feiertag; the external (PDP-8) version, by Howard Green-
baum and Akira Sekino.

RECEIVED DECEMBER, 1969; REVISED APRIL, 1970

REFERENCES
1. CORBAT6, F. J., ET AL. A new remote-accessed man-machine

system. Proc. AFIPS 1965 Fall Joint Comput. Conf., Vol.
27, Pt. 1, Spartan Books, Washington, D.C., pp. 185-247.

2. DEMEIs, W. M., AND WEIZER, N. Measurement and analysis
of a demand paging time-sharing system. Proc. ACM 24th
Nat. Conf., 1969, Brandon/Systems Press, Princeton, N.J.,
pp. 201-216.

3. CAMPBELL, D. J., AND I-IEFFNER, W. J. Measurement and
analysis of large operating systems during system develop-
ment. Proc. A_FIPS 1968 Fall Joint Comput. Conf., Vol.
33, Pt. 1, MDI Publications, Wayne, Pa., pp. 903-914.

4. CANTRELL, H. N., AND ELLISON, A. L. Multiprogramming
system performance measurement and analysis. Proc.
AFIPS 1968 Spring Joint Comput. Conf., Vol. 32, MDI
Publications, Wayne, Pa., pp. 213-221.

5. BENSOUSSAN, A., CLINGEN, C. W., AND DALE¥, R. D. The
Multics virtual memory. Proc. Second ACM Symposium on
Operating System Principles, Princeton, N.J., 1969, pp.
30-42.

6. GROCHOW, J. M. Real-time graphic display of time-sharing
system operating characteristics. Proc. AFIPS 1969 Fall
Joint Comput. Conf., Vol. 35, A_FIPS Press, Montvale,
N.J., pp. 374--386.

7. DENISTON, W. R. SIPE: A TSS/360 software measurement
technique. Proc. ACM 24th Nat. Conf., 1969, Brandon/
Systems Press, Princeton, N.J., pp. 229-239.

8. ROEK, D. J., AND EMERSON, W. C. A hardware instrumentation
approach to evaluation of a large scale system. Proc. ACM
24th Nat. Conf., 1969, Brandon/Systems Press, Princeton,
N.J., pp. 229-239.

9. DENNING, P. J. Resource allocation in multiprocess computer
systems. Ph.D. thesis, Dep. of Elec. Eng., MIT, May, 1968.
(Available as MIT Proj. MAC Tech. Rep. TR-50.)

10. CORBAT6, F. J. A paging experiment with the Multics system.
In In Honor of Philip Morse, H. Feschbach, and U. Ingard
(Eds.), MIT Press, Cambridge, Mass., 1969, pp. 217-228.

11. BLACK.MAN, R. B., AND TUKEY, J. W. The Measurement of Power
Spectra. Dover, New York, 1958. (Originally appeared in
Bell Syst. Tech. J. (Jan. and Mar. 1958).)

12. GREENBAUM, ~-~. J. A simulator of multiple interactive users
to drive a time-shared computer system. S. M. thesis,
Dep. of Elec. Eng., Oct., MIT, 1968 (Available as MIT
Proj. MAC Tech. Rep. TR-58.)

13. SCHERR, A. L. An Analysis of Time-Shared Compuler Systems.
MIT Press, Cambridge, Mass., 1967.

500 Communica t ions of t h e ACM Volume 13 / Number 8 / August , 1970

