
programming
pearls

THE ENVELOPE IS BACK

The February 1984 column was about “back-of-the-
envelope” calculations. When you’re deciding
whether to add a new command to a database system,
for instance, you might want to estimate

How much programmer time is required to develop
the code?

How many disks have to be added to store addi-
tional data?

Is the current CPU fast enough to provide reason-
able response time?

Quick calculations are also useful in everyday life:
will the reduced fuel bills of a 30-mile-per-gallon car
balance a purchase price $1000 greater than a 20-mpg

car?
Since that column appeared, many readers have

contributed further ideas on the tppic. This column
presents several of those: rules of thumb useful for
programmers, techniques for quick but accurate cal-
culations, and Little’s Law (a simple rule of amazing
utility). But before we get to the technical details,
the next section provides some mental stretching
exercises.

A Warm-Up for Cool Brains
The student told me that the run time of his binary
search program was 1.83 log, N. When I asked, “1.83
what?” he thought for a minute and responded,
“Either microseconds or milliseconds - I’m not
really sure.”

The student was blissfully ignorant of a factor of
one thousand, three orders of magnitude. He
couldn’t even offer the excuse that performance
wasn’t a concern - he cared enough to calculate
three significant digits. Like too many programmers,
he suffered from what Douglas Hofstadter calls
“number numbness”: milliseconds and microseconds
are both unimaginably small time units, so why
bother distinguishing between the two? This section
provides some resensitization exercises to increase
your appreciation of orders of magnitude.

Is a factor of a thousand really such a big deal? A
microyear is about 32 seconds while a milliyear is 8.8
hours - I wish I’d let the student choose between
those two for how long he had to stay after school.

O1966ACM OOOl-0782,/66/0300-0176 750

Electricity travels about a foot in a nanosecond -
that’s a bottleneck in supercomputer design. In a
microsecond it can go across a large building, and in
a millisecond from New York to Washington, D.C.
And speaking of Washington, it seems that people
there are always forgetting the difference between a
million and a billion.

A fast sprinter can run a hundred meters in ten
seconds, for an average velocity of IO meters per
second. One thousand times that speed is faster than
the space shuttle, while one-thousandth the rate is
slower than an ant. A factor of a thousand is a big
deal, but there are bigger deals yet. Table I shows
some additional order-of-magnitude checkpoints of
velocity.’

If I describe a moving object, you can probably esti-
mate its numerical velocity pretty accurately.
Whether the object is a rocket flying through the air
or a beaver gnawing through a log, you can most
likely guess its speed to within a notch or two of its
true position in Table I. In the next section we’ll
work on intuition about computational velocity.

Performance Rules of Thumb
I don’t know how much salt costs, and I don’t really
care. It’s so cheap that I use it without regard to cost,
and when I run out I buy some more. Most program-
mers feel the same way about CPU cycles, with good
reason - they cost next to nothing.

I expect that executives at salt companies have a
different attitude toward the lowly substance. If each
American consumes a dollar worth of salt each year,
that creates a market worth a quarter of a billion dol-
lars - a ten-percent decrease in production costs
could be worth a fortune. And every now and then,

1 Table I was inspired by Powers oj Ten, by Morrison et al. (pub-
lished in 1982 by Scientific American Books]. Its subtitle is “A book
about the relative size of things in the universe and the effect of ad-
ding another zero.” It zooms in 42 factors of ten from a view 10z5

meters across (ten thousand times the diameter of our galaxy), to a
human being in a view one meter across, to a view lo-” meters
across deep within a carbon atom within the human’s hand. The
book’s jacket accurately says, “An atlas of the ‘universe and a guide
to its exploration, Powers of Ten takes the reader on an extraordinary
adventure in magnitudes. From the splendid photographs to the
poetic pages of commentary, Powers of Ten is a book to savor. a visual
odyssey in which we better comprehend not only the known world
but our own place in ii.” .

176 Communications of the ACM March 1986 Volume 29 Number 3

programmers must worry about the cost of CPU
cycles for a similar reason: some programs spend
them by the billions.

The price of salt is usually marked on the con-
tainer, but how can you determine the cost of a line
of code? Benchmarking the performance of a com-
puter system is a difficult and important task;
multimillion-dollar systems are purchased on the
basis of ten and twenty-percent differences. For-
tunately, rough estimates are easier to come by. They
may be off from their “true” values by a factor of
two, but they’re still useful.

I’ll now describe how I spent half an hour to get
ballpark cost estimates on the system I usually use, a
VAX-11/750@ running the C language and the UNIX@@
operating system. (Even if you don’t care about CPU
time, you may be interested in the design of these
simple experiments.) I started with a five-line C pro-
gram whose guts can be written in pseudocode as

N := 1000000
for I := 1 to N do ;

The UNIX system’s time command reported that it
took 6.1 seconds: each iteration of the (null) loop
therefore cost 6.1 microseconds. My next experiment
used the integer variables 1 I, 12 and 13:

N := 1000000
for I := 1 to N do 11 := 12 + 13

This code took 9.4 seconds, so an integer addition
costs about 3.3 microseconds. To test the cost of pro-

VAX and PDP are trademarks of Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.

TABLE I. Orders of Magnltude in Speed

Meters
Per Set

10-l’
10-10
10-g
10-e
10-r
10-6
10-S
10-4
10-3
10-z
10-l
1
10’
102
103
104
105
106
107
108

English
Equivalent

1.2 in/century
1.2 in/decade
1.2 in/year
1 ftlyear
1 ft/month
3.4 in/day
1.4 in/hr
1.2 ft/hour
2 in/min
2 ft/min
20 ftimin
2.2 milhr
22 milhour
220 m&our
37 mi/min
370 mi/min
3 700 mi/min
620 mi/sec
6200 mi/sec
62,000 milsec

Example

Stalactites growing
Slow continent drifting
Fingernails growing
Hair growing
Weeds growing
Glacier
Minute hand of a watch
Gastro-intestinal tract
Snail
Ant
Giant tortoise
Human walk
Human sprint
Propeller airplane
Fastest jet airplane
Space shuttle
Meteor impacting earth
Earth in galactic orbit
LA to satellite to NY
One-third speed of light

Programming Pearls

TABLE II. Cost of Mathematical Operations in C

Operation psecs

Integer operands
Addition 3.3
Subtraction 3.7
Multiplication 10.6
Division 11.0

Floating operands
Addition 10.6
Subtraction 10.2
Multiplication 15.7
Division 15.7

Conversions
Integer to float 6.2
Float to integer 11.2

Functions
Sine 790
Logarithm 660
Square root 940

cedure calls, I defined the integer function

function Sum2(A, B: integer)
return A+B;

and assigned I 1 := Sum2(12, 13) in the loop.
That took 39.4 seconds, so a function call with two
integer parameters takes about 30 microseconds.

Unfortunately, even experiments as simple as these
are fraught with potential problems. Is C addition
really that fast (3.3 microseconds), or did the
compiler notice that the same addition was done
repeatedly and therefore perform it just once, before
the loop? But if that happened, what would account
for the 3.3 microsecond delay? Maybe the new code
was aligned differently in the instruction cache, or
maybe the system was just busier. And so on and so
on.

Testing those hypotheses expanded the perfor-
mance experiments from a few minutes to half an
hour, but I’m pretty sure that the resulting estimates
are accurate to within, say, a factor of two. With that
caveat, Table II presents ballpark estimates of the cost
of several mathematical operations in this implemen-
tation of C.

It’s easy to summarize Table II: most arithmetic
operations in C cost about 10 microseconds. Integer
addition/subtraction is faster (3.6 microseconds) and
floating multiplication/division is slower (16
microseconds). But beware the evil functions!
They’re only a few characters to type, but they’re two
orders of magnitude more expensive than the other
operators.

On those rare occasions when performance matters,
I use Table II in two distinct ways. The general trend
helps me to make accurate estimates. If a routine
performs N2 steps of a few arithmetic operations
each, a C implementation will take roughly half a
minute when N is 1000. If the routine is called once

March 1986 Volume 29 Number 3 Communications of the ACM 177

Programming Pearls

a day, I won’t worry about its efficiency from now
on. If I had planned to call the routine several times
a minute in a real-time system, though, I won’t even
bother coding it ad instead search for a better solu-
tion.

Table II also highlights the expensive operations.
Budget-minded chefs can safely ignore the price of
salt if caviar is on the menu; C programmers on this
system can ignore the primitive arithmetic operations
surrounding a square root. But beware that relative
costs change from system to system. On a PDP-IO@@
Pascal compiler I once used, floating point operations
cost 2 microseconds, while square roots and integer-
to-float conversions both cost 40 microseconds (a
conversion in C costs 1 floating point operation while
a square root costs 60; in Pascal the costs are both
20). Problem 2 encourages you to estimate the costs
on your system.

a “well-known, quick and efficient means to check
geometrical or physical formulas.” The dimensions
in a sum must be the same, which is in turn the
dimension of the sum - you can add feet together to
get feet, but you can’t add seconds to pounds. The
second rule is that the dimension of a product is the
product of the dimensions. The examples above obey
both rules; multiplying

(miles+miles) X miles x miles/day = miles3/day

has the right form, apart from any constants.
Dimension tests check the form of equations.

Check your multiplications and divisions with an old
trick from slide rule days: independently compute the
leading digit and the exponent. There are several
quick checks for addition.

3142 3142 3142
2718 2718 2718

Confidence in Quick Calculations
Once you have the background data, these tricks can
increase your trust in your back-of-the-envelope cal-
culations.

+1123 -----

Two Answers Are Better Than One. The February
1984 column presented a problem I first heard from
Bob Martin: “How much water flows out of the Mis-
sissippi River in a day?” Near its mouth the river is,
say, a mile wide, roughly twenty feet deep (l/250
mile), and flows at about five miles an hour (120
miles per day). Multiplying

983 6982 6973

The first sum has too few digits and the second errs
in the least significant digit. “Casting out nines”
reveals the error in the third example: the digits in
the summands sum to 8 modulo 9, while those in the
answer sum to 7 modulo 6 (in a correct addition, the
sums of the digits are equal after “casting out” groups
of digits that sum to nine).

1 mile X l/250 mile :X 120 miles/day

Above all, don’t forget common sense: be suspi-
cious of any calculations that show that your
machine can sort an English dictionary in 6
nanoseconds.

=: l/2 mile3/day

shows that the river discharges about half a cubic
mile of water per day. When I asked Peter Wein-
berger how much water flows out, he responded, “As
much as flows in.” He then estimated that the Mis-
sissippi basin is about 1000 by 1000 miles, and that
the annual runoff from rainfall there is about one foot
(or l/5000 mile). That gives

Tubular Computations. A simple table can help keep
track of messy computations. To perform
Weinberger’s calculation (how much water flows into
the Mississippi), we first write down the three origi-
nal factors.

1000 mi llOO0 mi 1 1 mi

I 15000 yr

1000 miles x 1000 miles x l/5000 mile/year Canceling terms shows the annual outflow is

z 200 miles3/year 200 miles3 /year.

Since there are [roughly) 400 days per year, this is a
little more than half a cubic mile per day.

lpea PlrlW P%& 7VJOmi3
r

Each derivation supports the other: I’d be real
surprised if the true answer were a factor of ten away
from these estimates. If the two had been off by a
factor of a hundred, though, I’d check both deriva-
tions very carefully, think hard about the underlying
assumptions, and look for a third derivation. When I
looked up the answer in an almanac, I was only a lit-
tle surprised that it reported the flow as 0.4 cubic
miles per day - a twenty percent error was even less
than I had hoped for.

Now we multiply by the identity (well, close) that
there are 400 days per year.

F Pw@fJ Pflx pf 200 mi3 yr
lW@fJ YrJ 1400 days

Cancellation yields the (by now familiar) answer of
half a cubic mile per day.

Quick Checks. Polya devotes three pages of his How jpea PlrlW #IX PlrlW mi31 24 1
To Solve It to “Test by Dimension”; he describes it as I 159ea .Yq W days 2

170 Communications of the ACM March 1986 Volume 29 Number 3

Programming Pearls

Little’s Law
Most back-of-the-envelope calculations use obvious
rules: total cost is unit cost times number of units.
Sometimes, though, one needs a more subtle insight.
Bruce Weide of Ohio State University wrote the fol-
lowing note about a rule that is surprisingly versatile.

“The ‘operational analysis’ introduced by Denning
and Buzen (see Computing Surveys 70, 3, November
1978, 225-261) is much more general than queueing
network models of computer systems. Their exposi-
tion is excellent, but because of the article’s limited
focus, they didn’t explore the generality of Little’s
Law. The proof methods have nothing to do with
queues or with computer systems. Imagine any sys-
tem in which things enter and leave. Little’s Law
states that ‘The average number of things in the sys-
tem is the product of the average rate at which things
leave the system and the average time each one
spends in the system.’ (And if there is a gross ‘flow
balance’ of things entering and leaving, the exit rate
is also the entry rate.)

“I teach this technique of performance analysis in
my computer architecture classes. But I try to
emphasize that the result is a general law of systems
theory, and can be applied to many other kinds of
systems. For instance, if you’re in line waiting to get
into a popular nightspot, you might figure out how
long you’ll have to wait by standing there for a while
and trying to estimate the rate at which people are
entering. With Little’s Law, though, you could rea-
son, ‘This place holds about 60 people, and the aver-
age Joe will be in there about 3 hours, so we’re enter-
ing at the rate of about 20 people an hour. The line
has 20 people in it, so that means we’ll wait about an
hour. Let’s go home and read Communications
instead.’ You get the picture.”

Peter Denning succinctly phrases this rule as “The
average number of objects in a queue is the product
of the entry rate and the average holding time.” He
applies it to his wine cellar: “I have 150 cases of
wine in my basement and I consume (and purchase)
25 cases per year. How long do I hold each case?
Little’s Law tells me to divide 150 cases by 25
cases/year, which gives 6 years per case.”

He then turns to more serious applications. “The
response-time formula for a time-shared system can
be proved using Little’s Law and flow balance.
Assume N terminals of average think time Z are con-
nected to an arbitrary system with response time R.
Each user cycles between thinking and waiting-for-
response, so the total number of jobs in the meta-
system (consisting of terminals and the computer sys-
tem) is fixed at N. If you cut the path from the
system’s output to the terminals, you see a meta-
system with average load N, average response time
Z + R, and throughput X (measured in jobs per time
unit). Little’s Law says N =X x (Z + R), and solving
for R gives R = NIX - Z.”

Denning goes on to say that “Little’s Law is more

useful when augmented with the ‘forced flow law’
and the ‘utilization law’. You can then calculate
answers to questions like this: A humongous com-
puter system contains a bazillion disks, a quadrillion
CPUs, a classified operating system, and 20 terminals
of average think time 20 seconds. Its disk unit is
observed to serve 100 requests per job and runs at the
rate of 25 requests per second. What is the system’s
throughput and response time? (I get 0.25
jobs/second and 60 seconds.) These answers are exact
if the system is in flow balance, which is normally
very close to true. Any system of arbitrary configura-
tion containing a disk with those measured values
and terminals of those measured values will have the
same throughput and response time. Amazing? Only
to the extent that one does not understand the power
of the basic laws of system flow and congestion.”

Principles
The four sections in this column highlight four assets
that are often useful for programmers.

Familiarity with numbers.

Willingness to experiment.

Discipline in checking answers.
Mathematics, when you need it.

Problems
1. Make tables like Table I to illustrate factors of ten

in measures such as time, weight, distance, area
and volume.

2. Conduct experiments to measure the performance
of your computer system. Table III is a starting
point from which you may build your own list of

TABLE III. How Much Do They Cost?

CPU Time
Control flow

Statement overhead: for, while, if
Subroutine call

Arithmetic operations
Integers

Add, subtract, multiply, divide
Floating point

Add, subtract, multiply, divide
Square root, logarithm, sine

Type conversions between integer and float
String operations

Comparison and copy
I/O Time

Read/write one character/integer
Disk access
Disk accesses per database operation

Utilities
Sort 10,000 integers
Sort 10,000 20-byte strings
Search a text file for a string

March 1986 Volume 29 Number 3 Communications of the ACM 179

Programming Pearls

3.

4.

5.

6.

7.

6.

9.

10.

11.

useful quantities. Other handy facts include the
speed of your compiler (in lines of source code
per second) and the disk. space required to store a
one-byte file.

Tables 11 and 111 assume a “performance model”
in which variables are accessed in a constant
amount of time and a given instruction always
requires the same amount of time to execute.
Give examples of systems on which these and
other “reasonable” assumptions are violated.

Explain the mathematics underlying the rule of
“casting out nines” (the sum of the digits in the
summands equals the sum of the digits in the
sum, modulo nine).

Two answers are better than one, and more are
better yet. Describe several different ways to
estimate each of the following quantities:

a. The daily outflow of the Mississippi River.

b. The death rate in your city (measured in per-
cent of population per year).

c. The average number of users on your system
at various times of the day and the week.

An article on page 652 of the July 1984 Communi-
cations states that “the system handles an average
of 7,328,764 transactions a day”; comments?

[P. J. Denning] Sketch a ,proof of Little’s Law.

[P. J. Denning] Use Little’s Law to characterize
the flow of a job through a network of servers.

[B. W. Weide] Imagine a queue of customers
waiting for service. In its usual interpretation,
Little’s Law relates the average total number of
customers in the queue and in the server to the
average time a customer spends waiting in the
queue and in service. How are the average wait-
ing time in the queue alone and the average
number of customers in the queue alone related
to these quantities?

[B. W. Weide] Many computer centers still have
big mainframes that handle large numbers of
batch jobs concurrently. Some even have a mon-
itor showing the jobs awaiting execution, so you
can see where your job stands. Jobs must await
execution, of course, because there is always a
backlog of work [by Murphy’s Law, not Little’s).
Suppose the average job spends 20 seconds “in
execution” on a machine that can execute 10 jobs
concurrently, and that your job is the last of 100
“awaiting execution” (to be executed in first-in-
first-out order). About how long can you expect
to wait until your job is finished?

Determine various administrative costs in your
organization: How much does it cost to buy a
book (beyond the cover price)? To have a secre-
tary type a letter? What is the cost of floor space
(measured in dollars per square foot per year)?
What is the cost of telephone and computing sys-

Quick Calculations in Everyday Life
Back-of-the-envelope calculations about everyday
events are always good practice and good fun, and
are sometimes even useful.’ For instance, how much
money have you spent in the past year eating in
restaurants? I was once horrified to hear a New
Yorker compute that he and his wife spend more
money each month on taxicabs than they spend on
rent. And for California readers (who may not know
what a taxicab is), how long does it take to fill a
swimming pool with a garden hose?

Here’s one that stumped me for a while: what is the
volume of a typical 6-foot-tall male? (Volume doesn’t
mean cubic feet in a crowded elevator, but rather
cubic centimeters of meat.) A common response fig-
ures that the typical male is 6 feet high by 2 feet
wide by half a foot thick, for 6 cubic feet. A more
accurate estimate exploits the fact that humans are
roughly the same density as water, approximately 60
pounds per cubic foot (most swimmers float when
they inhale and sink when they exhale). A person
who weighs 180 pounds is therefore about 3 cubic
feet. If you know a person’s weight, this relation can
give you their volume to within a few percent, a feat
impossible by multiplying length by width by height.
(The February column described how Thomas Edison
used a similar trick to compute the volume of a light
bulb.]

Here are a few canned questions, but keep in mind
that spontaneous questions are usually the most
interesting.

1.

2.

3.

4.

5.

6.

If every person in your city threw a ping pong
ball into your living room, how deep would the
balls be?

What is the cost of a one-hour lecture at your
organization? Include both preparation and audi-
ence time.

How much money will Americans spend this
year on soft drinks? On cigarettes? On atomic
bombs? On video games? On the space pro-
gram?

How many words are in a typical book? How
many words a minute do you read?

How many dollars per year is the difference
between a 20-mile-per-gallon car and a 40 mpg
car? Over the lifetime of a car? What if every
driver in the United States chose one or the
other?

How much does it cost to drive your car a mile?
Don’t forget insurance.

’ A reader of a draft of this column described a trip to the super-
market he had taken three days earlier. He kept a running total as he
walked through the aisles by rounding each item to $1.00, $2.00, or
$3.00. His final tally was roughly $70.00, and he had enough confi-
dence in that estimate to look at the register tape when the clerk an-
nounced the total price of $92.00. The clerk had mistakenly entered
the product code of six oranges (number 429) as their price ($4.29);

terns? that raised a $2.00 purchase to $25.00.

180 Communications of the ACM March 1986 Volume 29 Number 3

7. How much would it cost to buy extension cords
to reach from the earth to the moon?

8. An old rule of thumb says that a human sitting in
a room radiates about 100 watts. How many
calories per day must supply that radiator?

I’d like to end with a plea to teachers. In his paper
referepced under Further Reading, Hofstadter tells
how he asked students in a New York physics class
the height of the Empire State Building, which they
could see out the window. The true height is 1250
feet, but answers ranged from 50 feet to one mile. I
recently had a similar experience after a lecture on
“back-of-the-envelope” calculations. An examination
question asked for the cost of a one-semester, fifteen-
student class section at that college. Most students
gave an answer within thirty percent of my estimate
of $30,000, but the extremes ranged from a high of
$100,000,000 to a low of $38.05.

If you’re a teacher, spare ten minutes of lecture for
this topic, then reinforce it with little examples
throughout the class. Test your success by an exami-
nation question; I bet you’ll find the answers interest-
ing.

Solutions

3.

4.

5.

8.

7.

On many microcomputer BASIC interpreters, the
cost of accessing a variable is proportional to its
position in the symbol table (variables used near
the front of the program are cheaper to access
than those first used late in execution). On
machines with instruction caches, a minor
change can slide an inner loop out of the cache
and increase total time by twenty percent. Last
week, a colleague squeezed a factor of ten from a
program I had written in a pattern-scanning
language by changing the quotation marks sur-
rounding a pattern (I didn’t appreciate a subtle
semantic distinction).

Hint: use modular arithmetic. Observe that
(lOXx+y) mod 9 = (x+y) mod 9.

One might estimate the local death rate by count-
ing death notices in a newspaper and estimating
the population of the area they represent. An
easier approach uses Little’s Law and an estimate
of life expectancy.

Some people are afraid of supplying numbers (“I
have no idea how deep the Mississippi River
is”). At the other extreme are people who gladly
supply accuracy that isn’t there (“the river is
31.415926535 feet deep”).

Peter Denning’s argument has two parts: “First,
define X=AIT, the arrival rate, where A is the
number of arrivals during an observation period
of length T. Define X=C/T, the output rate,
where C is the number of completions during T.
Let n (t) denote the number in the system at time
t in [O,T). Let W be the area under n(t), in units
of ‘item-seconds’, representing the total aggre-

Programming Pearls

gated waiting time over all items in the system
during the observation period. The mean
response time per item completed is defined as
R= W/C, in units of (item-seconds)/(item). The
mean number in the system is the average height
of n (t) and is L= WIT, in units of (item-
seconds)/(second). It is now obvious that L=RX.
This formulation is in terms of the output rate
only. There is no requirement for ‘flow balance’,
i.e., that flow in equal flow out (in symbols,
h=X). If you add that assumption, the formula
becomes L=AxR, which is the form encountered
in queueing and system theory.”

8. Peter Denning writes: “Suppose you have a net-
work of servers. Let Vi denote the mean number
of times each job uses (visits) server i. Then
v,+ .** +VN denotes the total number of job-
steps in an average job. The overall system
throughput, X0, is related to the local throughput
at server i by,the ‘forced flow’ law: Xi=V;xX,.
Let R, denote the response time experienced by a
job and L, denote the average number of jobs in
the system. Little’s formula says that the
system’s response time is R,=L,IX,. But
L,=L,+ * * * +LN, where Li is the mean number
of jobs at server i; Li =Ri X Xi, where Ri is the
mean response time per visit to server i. Using
Xi/X,=Vi from the fixed flow law, YOU get
R, = R, x V, + * * * tRNx V,. This is intuitively
true, but easily and rigorously proved using
Little’s law twice.”

9. Bruce Weide writes: “In the original case, the
‘system’ is the queue plus the server. Using the
notation of Solution 7, R is the average time a
customer spends in the queue and in service, and
&. is the average number of customers in the
queue and in service. So by Little’s Law, we
know L=RX, where X is the output rate of the
server. But X is also the output rate of the
queue, since a customer goes directly from the
queue to the server whenever another leaves the
server. Considering the queue by itself to be the
‘system’ and defining L, as the average number
in the queue and RQ as the average time spent in
the queue alone, we see that L,=R,X. The
desired relationship, then, is that the ratios L/R
and .L,IR, are equal.”

10. Bruce Weide offers this solution. “One way to
solve this problem considers two queueing sys-
tems. The first is the queue of jobs awaiting exe-
cution, and the second is the computer system
itself. By Little’s Law, the second system has the
output rate of jobs, X = L/R. Here, L=lO jobs
(because there is always a backlog of work, the
system will always have the maximum 10 jobs in
it, so IO is also the average number of jobs in the
system). The average time R=ZO seconds, so X
must be 112 job per second. This is also the
arrival rate of jobs to the second system - flow

March 1986 Volume 29 Number 3 Communications of the ACM 181

balance is satisfied because L is constant, which
means every job completing execution is immedi-
ately replaced b:y the next job. Now the output
rate of the first system must also be I/Z
job/second. We should therefore expect the 99
jobs ahead of ours to be out of the way after
about 50 seconds (actually, 99/Z). Then our job
completes 20 seconds later, for a total wait of 70
seconds.”

For Correspondence: Jon Benticy. AT&T Bell Laboratories, Room
ZC-317. 600 Mountain Ave.. Murray Hill. IUl 07974.

Permission to copy without fee all or part of this material is granted
providt:d that the copies arc not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Further Reading
The February and July 1984 columns listed several
excellent references for quick calculations. Edward
Purcell edits the monthly “Back of the Envelope”
column in the American]ournal of Physics. Douglas
Wofstadter’s “Metamagical Themas” column in the
May 1982 Scientific American is subtitled “Number
numbness, or why innumeracy may be just as
dangerous as illiteracy”; it is reprinted with a
postscript in his book Metamagical Themas, published
by Basic Books in 1985.

A First Course in Mathematical Modeling by Frank
Giordano and Maurice Weir was published by Wads-
worth in 1985. It describes many facets of mathemat-
ical “common sense” (which isn’t common enough).
Chapter 7 covers “Dimensional Analysis”; it is espe-
cially relevant to quick calculations.

ACM CONFERENCE PROCEEDINGS

ACM Symposium on Computational Geometry
Balfrr~~~~rr, Mtl., /rrrrcz 5- 7, 1985. Sponsored by ACM SIGGRAPH.
325 pages. 41 papers. ACM members. $19.00: nonmembers.
$25.00: Order #429850: ISBN #O-89791-163-6.

SIGMOD 85 International Conference on Management of Data
Ausffrf. Tm., May 28-30, 7985. Sponsored by ACM S&MOD. 457
pages. 40 papers. ACM members. $25.00: nonmembers. $35.00:
Order #4728X3: ISBN #O-89791 -160-l.

APL 85
Scuff/c, Wash., Mny 12-16, 1985. Sponsored by ACM SIGAPL.
(APL Quote Quad Vol. 15, No. 4.) 317 pages. 53 papers. ACM
members, $19.00: nonmembers. $25.00: Order #554850: ISBN
#O-89791-157-1.

17th Annual ACM SIGACT Symposium on Theory of
Computing
Prouidtvrc-r, RI., May 6-9, 7 985. Sponsored by ACM SICACT.
484 pages. 53 papers. ACM members. $27.00: nonmembers,
$35.00: Order A508850: ISBN #C-89791-151-2.

21st Annual Computer Personnel Research Conference
M7rrrrrapolis, Mirlu., May ;‘-3. 1985. Sponsored by ACM SIGBDP
and SIGCPR. 207 pages. i:3 papers. ACM members. $14.00;
nonmembers, $18.00: Order t443851: ISBN #O-89791-156-3.

1985 ACM SIGSMALL Symposium on Small Systems
Darmcrs, Mass., Ma!/ 1-3, 1985. Sponsored by ACM SIGSMALL/
PC. 260 pages. 28 papers. ACM members, $16.00: nonmembers,
$21.00: Order #609850: ISBN #O-89791-154-7.

SIGCHI 85 Human Factors in Computing Systems
Sara Frarrcisco, Co/if., April 14-18, 1985. Sponsored by ACM
SIGCHI. 244 pages. 41 papers. ACM members. $15.00:
nonmembers. $20.00: Order 4608850: ISBN #O-89791-149-0.

SIGGRAPH 84
M~rrrrrapolrs, MIIIII., \uly 23-27, 1984. Sponsored by ACM
SIGGRAPH. (Computer Graphics Vol. 18 #3.) 287 pages, 30
papers. 11 panels. ACM members. $30.00: nonmembers.
$40.00: Order K428840: ISBN #O-89791-138-5.

16th SIGCSE Technical Symposium on Computer Science
Education
Neru Or/Purls, La., Marc-/I 14-15, 1985. Sponsored by ACM
SIGCSE. 378 pages. 64 papers. ACM members. $22.00:
nonmembers. $29.00: Order 8457850: ISBN #O-89791-152-0.

1985 ACM Computer Science Conference
Nritl Orlcntls. La., March 22-14, 1985. Sponsored by ACM. 438
pages. 63 papers. 16 abstracts. ACM members. $25.00:
nonmembers. $33.00: Order 8404850: ISBN #O-89791-150-4.

For credit card orders call toll free l-800-526-0359 x75 (1-800-932-0878 x75 tn N.J.) or write
ACM Order Department, P.O. Box 64145, Baltimore, MD 21264.

March 1986 Volur?re 29 Number 3

