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THE ENVELOPE IS BACK 

The February 1984 column was about “back-of-the- 
envelope” calculations. When you’re deciding 
whether to add a new command to a database system, 
for instance, you might want to estimate 

How much programmer time is required to develop 
the code? 

How many disks have to be added to store addi- 
tional data? 

Is the current CPU fast enough to provide reason- 
able response time? 

Quick calculations are also useful in everyday life: 
will the reduced fuel bills of a 30-mile-per-gallon car 
balance a purchase price $1000 greater than a 20-mpg 

car? 
Since that column appeared, many readers have 

contributed further ideas on the tppic. This column 
presents several of those: rules of thumb useful for 
programmers, techniques for quick but accurate cal- 
culations, and Little’s Law (a simple rule of amazing 
utility). But before we get to the technical details, 
the next section provides some mental stretching 
exercises. 

A Warm-Up for Cool Brains 
The student told me that the run time of his binary 
search program was 1.83 log, N. When I asked, “1.83 
what?” he thought for a minute and responded, 
“Either microseconds or milliseconds - I’m not 
really sure.” 

The student was blissfully ignorant of a factor of 
one thousand, three orders of magnitude. He 
couldn’t even offer the excuse that performance 
wasn’t a concern - he cared enough to calculate 
three significant digits. Like too many programmers, 
he suffered from what Douglas Hofstadter calls 
“number numbness”: milliseconds and microseconds 
are both unimaginably small time units, so why 
bother distinguishing between the two? This section 
provides some resensitization exercises to increase 
your appreciation of orders of magnitude. 

Is a factor of a thousand really such a big deal? A 
microyear is about 32 seconds while a milliyear is 8.8 
hours - I wish I’d let the student choose between 
those two for how long he had to stay after school. 
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Electricity travels about a foot in a nanosecond - 
that’s a bottleneck in supercomputer design. In a 
microsecond it can go across a large building, and in 
a millisecond from New York to Washington, D.C. 
And speaking of Washington, it seems that people 
there are always forgetting the difference between a 
million and a billion. 

A fast sprinter can run a hundred meters in ten 
seconds, for an average velocity of IO meters per 
second. One thousand times that speed is faster than 
the space shuttle, while one-thousandth the rate is 
slower than an ant. A factor of a thousand is a big 
deal, but there are bigger deals yet. Table I shows 
some additional order-of-magnitude checkpoints of 
velocity.’ 

If I describe a moving object, you can probably esti- 
mate its numerical velocity pretty accurately. 
Whether the object is a rocket flying through the air 
or a beaver gnawing through a log, you can most 
likely guess its speed to within a notch or two of its 
true position in Table I. In the next section we’ll 
work on intuition about computational velocity. 

Performance Rules of Thumb 
I don’t know how much salt costs, and I don’t really 
care. It’s so cheap that I use it without regard to cost, 
and when I run out I buy some more. Most program- 
mers feel the same way about CPU cycles, with good 
reason - they cost next to nothing. 

I expect that executives at salt companies have a 
different attitude toward the lowly substance. If each 
American consumes a dollar worth of salt each year, 
that creates a market worth a quarter of a billion dol- 
lars - a ten-percent decrease in production costs 
could be worth a fortune. And every now and then, 

1 Table I was inspired by Powers oj Ten, by Morrison et al. (pub- 
lished in 1982 by Scientific American Books]. Its subtitle is “A book 
about the relative size of things in the universe and the effect of ad- 
ding another zero.” It zooms in 42 factors of ten from a view 10z5 

meters across (ten thousand times the diameter of our galaxy), to a 
human being in a view one meter across, to a view lo-” meters 
across deep within a carbon atom within the human’s hand. The 
book’s jacket accurately says, “An atlas of the ‘universe and a guide 
to its exploration, Powers of Ten takes the reader on an extraordinary 
adventure in magnitudes. From the splendid photographs to the 
poetic pages of commentary, Powers of Ten is a book to savor. a visual 
odyssey in which we better comprehend not only the known world 
but our own place in ii.” . 
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programmers must worry about the cost of CPU 
cycles for a similar reason: some programs spend 
them by the billions. 

The price of salt is usually marked on the con- 
tainer, but how can you determine the cost of a line 
of code? Benchmarking the performance of a com- 
puter system is a difficult and important task; 
multimillion-dollar systems are purchased on the 
basis of ten and twenty-percent differences. For- 
tunately, rough estimates are easier to come by. They 
may be off from their “true” values by a factor of 
two, but they’re still useful. 

I’ll now describe how I spent half an hour to get 
ballpark cost estimates on the system I usually use, a 
VAX-11/750@ running the C language and the UNIX@@ 
operating system. (Even if you don’t care about CPU 
time, you may be interested in the design of these 
simple experiments.) I started with a five-line C pro- 
gram whose guts can be written in pseudocode as 

N := 1000000 
for I := 1 to N do ; 

The UNIX system’s time command reported that it 
took 6.1 seconds: each iteration of the (null) loop 
therefore cost 6.1 microseconds. My next experiment 
used the integer variables 1 I, 12 and 13: 

N := 1000000 
for I := 1 to N do 11 := 12 + 13 

This code took 9.4 seconds, so an integer addition 
costs about 3.3 microseconds. To test the cost of pro- 

VAX and PDP are trademarks of Digital Equipment Corporation. 
UNIX is a trademark of AT&T Bell Laboratories. 

TABLE I. Orders of Magnltude in Speed 

Meters 
Per Set 

10-l’ 
10-10 
10-g 
10-e 
10-r 
10-6 
10-S 
10-4 
10-3 
10-z 
10-l 
1 
10’ 
102 
103 
104 
105 
106 
107 
108 

English 
Equivalent 

1.2 in/century 
1.2 in/decade 
1.2 in/year 
1 ftlyear 
1 ft/month 
3.4 in/day 
1.4 in/hr 
1.2 ft/hour 
2 in/min 
2 ft/min 
20 ftimin 
2.2 milhr 
22 milhour 
220 m&our 
37 mi/min 
370 mi/min 
3 700 mi/min 
620 mi/sec 
6200 mi/sec 
62,000 milsec 

Example 

Stalactites growing 
Slow continent drifting 
Fingernails growing 
Hair growing 
Weeds growing 
Glacier 
Minute hand of a watch 
Gastro-intestinal tract 
Snail 
Ant 
Giant tortoise 
Human walk 
Human sprint 
Propeller airplane 
Fastest jet airplane 
Space shuttle 
Meteor impacting earth 
Earth in galactic orbit 
LA to satellite to NY 
One-third speed of light 
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TABLE II. Cost of Mathematical Operations in C 

Operation psecs 

Integer operands 
Addition 3.3 
Subtraction 3.7 
Multiplication 10.6 
Division 11.0 

Floating operands 
Addition 10.6 
Subtraction 10.2 
Multiplication 15.7 
Division 15.7 

Conversions 
Integer to float 6.2 
Float to integer 11.2 

Functions 
Sine 790 
Logarithm 660 
Square root 940 

cedure calls, I defined the integer function 

function Sum2(A, B: integer) 
return A+B; 

and assigned I 1 := Sum2(12, 13) in the loop. 
That took 39.4 seconds, so a function call with two 
integer parameters takes about 30 microseconds. 

Unfortunately, even experiments as simple as these 
are fraught with potential problems. Is C addition 
really that fast (3.3 microseconds), or did the 
compiler notice that the same addition was done 
repeatedly and therefore perform it just once, before 
the loop? But if that happened, what would account 
for the 3.3 microsecond delay? Maybe the new code 
was aligned differently in the instruction cache, or 
maybe the system was just busier. And so on and so 
on. 

Testing those hypotheses expanded the perfor- 
mance experiments from a few minutes to half an 
hour, but I’m pretty sure that the resulting estimates 
are accurate to within, say, a factor of two. With that 
caveat, Table II presents ballpark estimates of the cost 
of several mathematical operations in this implemen- 
tation of C. 

It’s easy to summarize Table II: most arithmetic 
operations in C cost about 10 microseconds. Integer 
addition/subtraction is faster (3.6 microseconds) and 
floating multiplication/division is slower (16 
microseconds). But beware the evil functions! 
They’re only a few characters to type, but they’re two 
orders of magnitude more expensive than the other 
operators. 

On those rare occasions when performance matters, 
I use Table II in two distinct ways. The general trend 
helps me to make accurate estimates. If a routine 
performs N2 steps of a few arithmetic operations 
each, a C implementation will take roughly half a 
minute when N is 1000. If the routine is called once 
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a day, I won’t worry about its efficiency from now 
on. If I had planned to call the routine several times 
a minute in a real-time system, though, I won’t even 
bother coding it ad instead search for a better solu- 
tion. 

Table II also highlights the expensive operations. 
Budget-minded chefs can safely ignore the price of 
salt if caviar is on the menu; C programmers on this 
system can ignore the primitive arithmetic operations 
surrounding a square root. But beware that relative 
costs change from system to system. On a PDP-IO@@ 
Pascal compiler I once used, floating point operations 
cost 2 microseconds, while square roots and integer- 
to-float conversions both cost 40 microseconds (a 
conversion in C costs 1 floating point operation while 
a square root costs 60; in Pascal the costs are both 
20). Problem 2 encourages you to estimate the costs 
on your system. 

a “well-known, quick and efficient means to check 
geometrical or physical formulas.” The dimensions 
in a sum must be the same, which is in turn the 
dimension of the sum - you can add feet together to 
get feet, but you can’t add seconds to pounds. The 
second rule is that the dimension of a product is the 
product of the dimensions. The examples above obey 
both rules; multiplying 

(miles+miles) X miles x miles/day = miles3/day 

has the right form, apart from any constants. 
Dimension tests check the form of equations. 

Check your multiplications and divisions with an old 
trick from slide rule days: independently compute the 
leading digit and the exponent. There are several 
quick checks for addition. 

3142 3142 3142 
2718 2718 2718 

Confidence in Quick Calculations 
Once you have the background data, these tricks can 
increase your trust in your back-of-the-envelope cal- 
culations. 

+1123 ----- 

Two Answers Are Better Than One. The February 
1984 column presented a problem I first heard from 
Bob Martin: “How much water flows out of the Mis- 
sissippi River in a day?” Near its mouth the river is, 
say, a mile wide, roughly twenty feet deep (l/250 
mile), and flows at about five miles an hour (120 
miles per day). Multiplying 

983 6982 6973 

The first sum has too few digits and the second errs 
in the least significant digit. “Casting out nines” 
reveals the error in the third example: the digits in 
the summands sum to 8 modulo 9, while those in the 
answer sum to 7 modulo 6 (in a correct addition, the 
sums of the digits are equal after “casting out” groups 
of digits that sum to nine). 

1 mile X l/250 mile :X 120 miles/day 

Above all, don’t forget common sense: be suspi- 
cious of any calculations that show that your 
machine can sort an English dictionary in 6 
nanoseconds. 

=: l/2 mile3/day 

shows that the river discharges about half a cubic 
mile of water per day. When I asked Peter Wein- 
berger how much water flows out, he responded, “As 
much as flows in.” He then estimated that the Mis- 
sissippi basin is about 1000 by 1000 miles, and that 
the annual runoff from rainfall there is about one foot 
(or l/5000 mile). That gives 

Tubular Computations. A simple table can help keep 
track of messy computations. To perform 
Weinberger’s calculation (how much water flows into 
the Mississippi), we first write down the three origi- 
nal factors. 

1000 mi llOO0 mi 1 1 mi 

I 15000 yr 

1000 miles x 1000 miles x l/5000 mile/year Canceling terms shows the annual outflow is 

z 200 miles3/year 200 miles3 /year. 

Since there are [roughly) 400 days per year, this is a 
little more than half a cubic mile per day. 

lpea PlrlW P%& 7VJOmi3 
r 

Each derivation supports the other: I’d be real 
surprised if the true answer were a factor of ten away 
from these estimates. If the two had been off by a 
factor of a hundred, though, I’d check both deriva- 
tions very carefully, think hard about the underlying 
assumptions, and look for a third derivation. When I 
looked up the answer in an almanac, I was only a lit- 
tle surprised that it reported the flow as 0.4 cubic 
miles per day - a twenty percent error was even less 
than I had hoped for. 

Now we multiply by the identity (well, close) that 
there are 400 days per year. 

F Pw@fJ Pflx pf 200 mi3 yr 
lW@fJ YrJ 1400 days 

Cancellation yields the (by now familiar) answer of 
half a cubic mile per day. 

Quick Checks. Polya devotes three pages of his How jpea PlrlW #IX PlrlW mi31 24 1 
To Solve It to “Test by Dimension”; he describes it as I 159ea .Yq W days 2 
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Little’s Law 
Most back-of-the-envelope calculations use obvious 
rules: total cost is unit cost times number of units. 
Sometimes, though, one needs a more subtle insight. 
Bruce Weide of Ohio State University wrote the fol- 
lowing note about a rule that is surprisingly versatile. 

“The ‘operational analysis’ introduced by Denning 
and Buzen (see Computing Surveys 70, 3, November 
1978, 225-261) is much more general than queueing 
network models of computer systems. Their exposi- 
tion is excellent, but because of the article’s limited 
focus, they didn’t explore the generality of Little’s 
Law. The proof methods have nothing to do with 
queues or with computer systems. Imagine any sys- 
tem in which things enter and leave. Little’s Law 
states that ‘The average number of things in the sys- 
tem is the product of the average rate at which things 
leave the system and the average time each one 
spends in the system.’ (And if there is a gross ‘flow 
balance’ of things entering and leaving, the exit rate 
is also the entry rate.) 

“I teach this technique of performance analysis in 
my computer architecture classes. But I try to 
emphasize that the result is a general law of systems 
theory, and can be applied to many other kinds of 
systems. For instance, if you’re in line waiting to get 
into a popular nightspot, you might figure out how 
long you’ll have to wait by standing there for a while 
and trying to estimate the rate at which people are 
entering. With Little’s Law, though, you could rea- 
son, ‘This place holds about 60 people, and the aver- 
age Joe will be in there about 3 hours, so we’re enter- 
ing at the rate of about 20 people an hour. The line 
has 20 people in it, so that means we’ll wait about an 
hour. Let’s go home and read Communications 
instead.’ You get the picture.” 

Peter Denning succinctly phrases this rule as “The 
average number of objects in a queue is the product 
of the entry rate and the average holding time.” He 
applies it to his wine cellar: “I have 150 cases of 
wine in my basement and I consume (and purchase) 
25 cases per year. How long do I hold each case? 
Little’s Law tells me to divide 150 cases by 25 
cases/year, which gives 6 years per case.” 

He then turns to more serious applications. “The 
response-time formula for a time-shared system can 
be proved using Little’s Law and flow balance. 
Assume N terminals of average think time Z are con- 
nected to an arbitrary system with response time R. 
Each user cycles between thinking and waiting-for- 
response, so the total number of jobs in the meta- 
system (consisting of terminals and the computer sys- 
tem) is fixed at N. If you cut the path from the 
system’s output to the terminals, you see a meta- 
system with average load N, average response time 
Z + R, and throughput X (measured in jobs per time 
unit). Little’s Law says N =X x (Z + R), and solving 
for R gives R = NIX - Z.” 

Denning goes on to say that “Little’s Law is more 

useful when augmented with the ‘forced flow law’ 
and the ‘utilization law’. You can then calculate 
answers to questions like this: A humongous com- 
puter system contains a bazillion disks, a quadrillion 
CPUs, a classified operating system, and 20 terminals 
of average think time 20 seconds. Its disk unit is 
observed to serve 100 requests per job and runs at the 
rate of 25 requests per second. What is the system’s 
throughput and response time? (I get 0.25 
jobs/second and 60 seconds.) These answers are exact 
if the system is in flow balance, which is normally 
very close to true. Any system of arbitrary configura- 
tion containing a disk with those measured values 
and terminals of those measured values will have the 
same throughput and response time. Amazing? Only 
to the extent that one does not understand the power 
of the basic laws of system flow and congestion.” 

Principles 
The four sections in this column highlight four assets 
that are often useful for programmers. 

Familiarity with numbers. 

Willingness to experiment. 

Discipline in checking answers. 
Mathematics, when you need it. 

Problems 
1. Make tables like Table I to illustrate factors of ten 

in measures such as time, weight, distance, area 
and volume. 

2. Conduct experiments to measure the performance 
of your computer system. Table III is a starting 
point from which you may build your own list of 

TABLE III. How Much Do They Cost? 

CPU Time 
Control flow 

Statement overhead: for, while, if 
Subroutine call 

Arithmetic operations 
Integers 

Add, subtract, multiply, divide 
Floating point 

Add, subtract, multiply, divide 
Square root, logarithm, sine 

Type conversions between integer and float 
String operations 

Comparison and copy 
I/O Time 

Read/write one character/integer 
Disk access 
Disk accesses per database operation 

Utilities 
Sort 10,000 integers 
Sort 10,000 20-byte strings 
Search a text file for a string 
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3. 

4. 

5. 

6. 

7. 

6. 

9. 

10. 

11. 

useful quantities. Other handy facts include the 
speed of your compiler (in lines of source code 
per second) and the disk. space required to store a 
one-byte file. 

Tables 11 and 111 assume a “performance model” 
in which variables are accessed in a constant 
amount of time and a given instruction always 
requires the same amount of time to execute. 
Give examples of systems on which these and 
other “reasonable” assumptions are violated. 

Explain the mathematics underlying the rule of 
“casting out nines” (the sum of the digits in the 
summands equals the sum of the digits in the 
sum, modulo nine). 

Two answers are better than one, and more are 
better yet. Describe several different ways to 
estimate each of the following quantities: 

a. The daily outflow of the Mississippi River. 

b. The death rate in your city (measured in per- 
cent of population per year). 

c. The average number of users on your system 
at various times of the day and the week. 

An article on page 652 of the July 1984 Communi- 
cations states that “the system handles an average 
of 7,328,764 transactions a day”; comments? 

[P. J. Denning] Sketch a ,proof of Little’s Law. 

[P. J. Denning] Use Little’s Law to characterize 
the flow of a job through a network of servers. 

[B. W. Weide] Imagine a queue of customers 
waiting for service. In its usual interpretation, 
Little’s Law relates the average total number of 
customers in the queue and in the server to the 
average time a customer spends waiting in the 
queue and in service. How are the average wait- 
ing time in the queue alone and the average 
number of customers in the queue alone related 
to these quantities? 

[B. W. Weide] Many computer centers still have 
big mainframes that handle large numbers of 
batch jobs concurrently. Some even have a mon- 
itor showing the jobs awaiting execution, so you 
can see where your job stands. Jobs must await 
execution, of course, because there is always a 
backlog of work [by Murphy’s Law, not Little’s). 
Suppose the average job spends 20 seconds “in 
execution” on a machine that can execute 10 jobs 
concurrently, and that your job is the last of 100 
“awaiting execution” (to be executed in first-in- 
first-out order). About how long can you expect 
to wait until your job is finished? 

Determine various administrative costs in your 
organization: How much does it cost to buy a 
book (beyond the cover price)? To have a secre- 
tary type a letter? What is the cost of floor space 
(measured in dollars per square foot per year)? 
What is the cost of telephone and computing sys- 

Quick Calculations in Everyday Life 
Back-of-the-envelope calculations about everyday 
events are always good practice and good fun, and 
are sometimes even useful.’ For instance, how much 
money have you spent in the past year eating in 
restaurants? I was once horrified to hear a New 
Yorker compute that he and his wife spend more 
money each month on taxicabs than they spend on 
rent. And for California readers (who may not know 
what a taxicab is), how long does it take to fill a 
swimming pool with a garden hose? 

Here’s one that stumped me for a while: what is the 
volume of a typical 6-foot-tall male? (Volume doesn’t 
mean cubic feet in a crowded elevator, but rather 
cubic centimeters of meat.) A common response fig- 
ures that the typical male is 6 feet high by 2 feet 
wide by half a foot thick, for 6 cubic feet. A more 
accurate estimate exploits the fact that humans are 
roughly the same density as water, approximately 60 
pounds per cubic foot (most swimmers float when 
they inhale and sink when they exhale). A person 
who weighs 180 pounds is therefore about 3 cubic 
feet. If you know a person’s weight, this relation can 
give you their volume to within a few percent, a feat 
impossible by multiplying length by width by height. 
(The February column described how Thomas Edison 
used a similar trick to compute the volume of a light 
bulb.] 

Here are a few canned questions, but keep in mind 
that spontaneous questions are usually the most 
interesting. 

1. 

2. 

3. 

4. 

5. 

6. 

If every person in your city threw a ping pong 
ball into your living room, how deep would the 
balls be? 

What is the cost of a one-hour lecture at your 
organization? Include both preparation and audi- 
ence time. 

How much money will Americans spend this 
year on soft drinks? On cigarettes? On atomic 
bombs? On video games? On the space pro- 
gram? 

How many words are in a typical book? How 
many words a minute do you read? 

How many dollars per year is the difference 
between a 20-mile-per-gallon car and a 40 mpg 
car? Over the lifetime of a car? What if every 
driver in the United States chose one or the 
other? 

How much does it cost to drive your car a mile? 
Don’t forget insurance. 

’ A reader of a draft of this column described a trip to the super- 
market he had taken three days earlier. He kept a running total as he 
walked through the aisles by rounding each item to $1.00, $2.00, or 
$3.00. His final tally was roughly $70.00, and he had enough confi- 
dence in that estimate to look at the register tape when the clerk an- 
nounced the total price of $92.00. The clerk had mistakenly entered 
the product code of six oranges (number 429) as their price ($4.29); 

terns? that raised a $2.00 purchase to $25.00. 
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7. How much would it cost to buy extension cords 
to reach from the earth to the moon? 

8. An old rule of thumb says that a human sitting in 
a room radiates about 100 watts. How many 
calories per day must supply that radiator? 

I’d like to end with a plea to teachers. In his paper 
referepced under Further Reading, Hofstadter tells 
how he asked students in a New York physics class 
the height of the Empire State Building, which they 
could see out the window. The true height is 1250 
feet, but answers ranged from 50 feet to one mile. I 
recently had a similar experience after a lecture on 
“back-of-the-envelope” calculations. An examination 
question asked for the cost of a one-semester, fifteen- 
student class section at that college. Most students 
gave an answer within thirty percent of my estimate 
of $30,000, but the extremes ranged from a high of 
$100,000,000 to a low of $38.05. 

If you’re a teacher, spare ten minutes of lecture for 
this topic, then reinforce it with little examples 
throughout the class. Test your success by an exami- 
nation question; I bet you’ll find the answers interest- 
ing. 

Solutions 

3. 

4. 

5. 

8. 

7. 

On many microcomputer BASIC interpreters, the 
cost of accessing a variable is proportional to its 
position in the symbol table (variables used near 
the front of the program are cheaper to access 
than those first used late in execution). On 
machines with instruction caches, a minor 
change can slide an inner loop out of the cache 
and increase total time by twenty percent. Last 
week, a colleague squeezed a factor of ten from a 
program I had written in a pattern-scanning 
language by changing the quotation marks sur- 
rounding a pattern (I didn’t appreciate a subtle 
semantic distinction). 

Hint: use modular arithmetic. Observe that 
(lOXx+y) mod 9 = (x+y) mod 9. 

One might estimate the local death rate by count- 
ing death notices in a newspaper and estimating 
the population of the area they represent. An 
easier approach uses Little’s Law and an estimate 
of life expectancy. 

Some people are afraid of supplying numbers (“I 
have no idea how deep the Mississippi River 
is”). At the other extreme are people who gladly 
supply accuracy that isn’t there (“the river is 
31.415926535 feet deep”). 

Peter Denning’s argument has two parts: “First, 
define X=AIT, the arrival rate, where A is the 
number of arrivals during an observation period 
of length T. Define X=C/T, the output rate, 
where C is the number of completions during T. 
Let n (t) denote the number in the system at time 
t in [O,T). Let W be the area under n(t), in units 
of ‘item-seconds’, representing the total aggre- 
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gated waiting time over all items in the system 
during the observation period. The mean 
response time per item completed is defined as 
R= W/C, in units of (item-seconds)/(item). The 
mean number in the system is the average height 
of n (t) and is L= WIT, in units of (item- 
seconds)/(second). It is now obvious that L=RX. 
This formulation is in terms of the output rate 
only. There is no requirement for ‘flow balance’, 
i.e., that flow in equal flow out (in symbols, 
h=X). If you add that assumption, the formula 
becomes L=AxR, which is the form encountered 
in queueing and system theory.” 

8. Peter Denning writes: “Suppose you have a net- 
work of servers. Let Vi denote the mean number 
of times each job uses (visits) server i. Then 
v,+ .** +VN denotes the total number of job- 
steps in an average job. The overall system 
throughput, X0, is related to the local throughput 
at server i by,the ‘forced flow’ law: Xi=V;xX,. 
Let R, denote the response time experienced by a 
job and L, denote the average number of jobs in 
the system. Little’s formula says that the 
system’s response time is R,=L,IX,. But 
L,=L,+ * * * +LN, where Li is the mean number 
of jobs at server i; Li =Ri X Xi, where Ri is the 
mean response time per visit to server i. Using 
Xi/X,=Vi from the fixed flow law, YOU get 
R, = R, x V, + * * * tRNx V,. This is intuitively 
true, but easily and rigorously proved using 
Little’s law twice.” 

9. Bruce Weide writes: “In the original case, the 
‘system’ is the queue plus the server. Using the 
notation of Solution 7, R is the average time a 
customer spends in the queue and in service, and 
&. is the average number of customers in the 
queue and in service. So by Little’s Law, we 
know L=RX, where X is the output rate of the 
server. But X is also the output rate of the 
queue, since a customer goes directly from the 
queue to the server whenever another leaves the 
server. Considering the queue by itself to be the 
‘system’ and defining L, as the average number 
in the queue and RQ as the average time spent in 
the queue alone, we see that L,=R,X. The 
desired relationship, then, is that the ratios L/R 
and .L,IR, are equal.” 

10. Bruce Weide offers this solution. “One way to 
solve this problem considers two queueing sys- 
tems. The first is the queue of jobs awaiting exe- 
cution, and the second is the computer system 
itself. By Little’s Law, the second system has the 
output rate of jobs, X = L/R. Here, L=lO jobs 
(because there is always a backlog of work, the 
system will always have the maximum 10 jobs in 
it, so IO is also the average number of jobs in the 
system). The average time R=ZO seconds, so X 
must be 112 job per second. This is also the 
arrival rate of jobs to the second system - flow 
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balance is satisfied because L is constant, which 
means every job completing execution is immedi- 
ately replaced b:y the next job. Now the output 
rate of the first system must also be I/Z 
job/second. We should therefore expect the 99 
jobs ahead of ours to be out of the way after 
about 50 seconds (actually, 99/Z). Then our job 
completes 20 seconds later, for a total wait of 70 
seconds.” 
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Further Reading 
The February and July 1984 columns listed several 
excellent references for quick calculations. Edward 
Purcell edits the monthly “Back of the Envelope” 
column in the American ]ournal of Physics. Douglas 
Wofstadter’s “Metamagical Themas” column in the 
May 1982 Scientific American is subtitled “Number 
numbness, or why innumeracy may be just as 
dangerous as illiteracy”; it is reprinted with a 
postscript in his book Metamagical Themas, published 
by Basic Books in 1985. 

A First Course in Mathematical Modeling by Frank 
Giordano and Maurice Weir was published by Wads- 
worth in 1985. It describes many facets of mathemat- 
ical “common sense” (which isn’t common enough). 
Chapter 7 covers “Dimensional Analysis”; it is espe- 
cially relevant to quick calculations. 
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