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ABSTRACT

This paper considers the problem of how to implement a
file system on Storage Class Memory (SCM),that is directly
connected to the memory bus, byte addressable and is also
non-volatile. In this paper, we propose a new file system,
called SCMFS, which is implemented on the virtual address
space. In SCMFS, we utilize the existing memory manage-
ment module in the operating system to do the block man-
agement and keep the space always contiguous for each file.
The simplicity of SCMFS not only makes it easy to imple-
ment, but also improves the performance. We have imple-
mented a prototype in Linux and evaluated its performance
through multiple benchmarks.

1. INTRODUCTION

In this paper, we focus on non-volatile memory which can
be attached directly to the memory bus and is also byte ad-
dressable. Such nonvolatile memory can be used in the com-
puter system for the main memory as well as for persistent
storage of files. The promising nonvolatile memory tech-
nologies include Phase Change Memory(PCM)[21], mem-
ristor[24], and offer low latencies that are comparable to
DRAM and are orders of magnitude faster than traditional
disks.

The emerging of nonvolatile memory technologies bring
many new opportunities for researchers. The emerging non-
volatile memory can be attached to memory bus, thus reduc-
ing the latencies to access persistent storage. These devices
also enable processor to access persistent storage through
memory load/store instructions enabling simpler and faster
techniques for storing persistent data. However, compared
to disk drives, these devices usually have much shorter write
life cycles. A lot of work has been done on how to reduce
write operations and to implement wear leveling on such de-
vices [19, 28, 15, 14]. Since SCM’s write endurance is usually
100-1000X+ order of NAND flash, the lifetime issues are ex-
pected to be less problematic. In this paper, we investigate
how the characteristics of SCM devices should impact the
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design of file systems. SCM devices have very low access
latency, which is much better than the existing other persis-
tent storage devices and we consider them attached to the
memory bus directly (as shown in Figure.1).

To use SCM as a persistent storage device, the most straig-
htforward way is to use RamDisk to emulate a disk device on
the SCM device. Then it becomes possible to use a regular
file system, such as Ext2Fs, Ext3Fs, etc.. The traditional
file systems assume the underlying storage devices are 1/O-
bus attached block devices, and are not designed for memory
devices. In this approach, the file systems access the storage
devices through generic block layer and the emulated block
1/0 operations. The overhead caused by the emulation and
the generic block layer is not necessary, since a file system
specially designed for memory devices can be built on top of
the memory access interface directly. In the traditional stor-
age hierarchy, the additional overhead is ignorable since the
latency to access storage devices is much higher than that to
access memory. When the storage device is attached directly
to the memory bus and can be accessed at memory speeds,
these overheads can substantially impact performance and
hence it is necessary to pay attention to avoid such over-
heads when ever possible. In addition, when storage devices
are attached to the memory bus, both the storage device
and the main memory will share system resources such as
the bandwidth of the memory bus, the CPU cache and the
TLB. In this case, the overhead of file systems will impact
the performance of the whole system, and file systems for
SCM should consider these factors. In our file system, we
will eliminate unnecessary overheads in the hierarchy.

Another choice is to modify the existing memory based
file systems, such as tmpfs [23], ramfs. These file systems
are designed to use main memory to store the files, and are
not for persistent storage devices. So, these file systems do
not harden any data on persistent devices to let the system
restore the data from rebooting. All the metadata are main-
tained by the in-memory data structures, and the file data
are stored in the temporarily allocated memory blocks. It is



not harder to design a new file system from scratch than to
adapt these file systems to SCM devices.

In this paper, we propose a new file system - SCMFS,
which is specifically designed for SCM. With consideration of
compatibility, this file system exports the identical interfaces
as the regular file systems do, in order that all the existing
applications can work on it. In this file system, we aim to
minimize the CPU overhead of file system operations. We
build our file system on virtual memory space and utilize the
memory management unit (MMU) to map the file system
address to physical addresses on SCM. The layouts in both
physical and virtual address spaces are very simple. We
also keep the space contiguous for each file in SCMFS to
simplify the process of handling read/write requests in the
file system. We will show, through results based on multiple
benchmarks, that the simplicity of SCMFS makes it easy
to implement and improves the performance. We focus on
building a file system on a single processor in this paper. Our
approach can be extended to larger, multiprocessor systems
through distributed shared memory.

The paper makes the following significant contributions:
(a) proposes a new file system for Storage Class Memory,
(b) presents the details of a prototype implementation on
Linux and (c) evaluates its performance by using both micro
benchmarks and application level benchmarks.
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Figure 2: File systems in operating systems.

The remainder of this paper is organized as follows. Sec-
tion 2 gives details of the related work. Section 3 describes
the design of SCMFS and our prototype implementation.
Section 4 presents the results of the evaluation. In section
5, we discuss about some limitations of SCMF'S and present
the future work. Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

A number of file systems have been designed for flash de-
vices([1, 26]). BPFS [7] is proposed as a file system de-
signed for non-volatile byte-addressable memory, which uses
shadow paging techniques to provide fast and consistent up-
dates. It also requires architectural enhancements to provide
new interfaces for enforcing a flexible level of write order-
ing. Our file system aims to simplify the design and elimi-
nate the unnecessary overhead to improve the performance.
Since there is no kernel level implementation of BPFS, we
did not compare our performance to BPFS. DFS[10] is the
most similar file system to our file system. DFS incorporates
the functionality of block management in the device driver
and firmware to simplify the file system, and also keeps the
files contiguous in a huge address space. It is designed for
a PCle based SSD device by Fusionlo, and relies on specific

features in the hardware.

A number of projects have previously built storage sys-
tems on non-volatile memory devices. Rio[6] and Conquest
[9] use a battery-backed RAM in the storage system to im-
prove the performance or provide protections. Rio uses the
battery-backed RAM to store the file cache to avoid flushing
dirty data, while Conquest uses it to store the file system
metadata and small files. In the eNVy storage system [27],
the flash memory is attached to the memory bus to imple-
ment a non-volatile memory device. To make this device
byte addressable they designed a special controller with a
battery-backed RAM buffer. Our work assumes that non-
volatile memory is large enough for both data and meta-
data and focuses on leveraging memory management infras-
tructure in the system. A data structure level approach
to achieve data consistency on non-volatile memory is de-
scribed in [25].

Solutions have been proposed to speed up memory ac-
cess operations, to reduce writes, and for wear-leveling on
PCM devices. Some of these solutions improve the lifetime
or the performance of PCM devices at the hardware level
[12, 13]. Some of them use a DRAM device as a cache of
PCM in the hierarchy. [20] presents a page placement pol-
icy on memory controller to implement PCM-DRAM hybrid
memory systems. Several wear-leveling schemes to protect
PCM devices from normal applications and even malicious
attacks have been proposed [15, 16, 22, 28]. Since our work
focuses on the file system layer, all the hardware techniques
can be integrated with our file system to provide better per-
formance or stronger protection.

Data deduplication based approaches have been proposed
for reducing writes to SSDs at the device level [5, 8, 18] and
for employing SSDs in deduplication file systems [4].

3. SCMFS

In this section, we present the design of SCMFS and a
prototype implementation on Linux 2.6.33 kernel.

3.1 Design

In this work, we aim to design a file system for SCM de-
vices. With traditional persistent storage devices, the over-
head brought by 1/0 latency is much higher than that of
file system layer itself. So the storage system performance
usually depends on the devices’ characteristics and the per-
formance of I/O scheduler. However, in the case that storage
device is directly attached to the memory bus, the storage
device will share some critical system resources with the
main memory. They will share the bandwidth of the mem-
ory bus, the CPU caches and TLBs for both instruction and
data. We believe that the lower complexity of the file system
can reduce the CPU overhead in the storage system and then
improve the total performance. Our design is motivated by
the need to minimize the number of operations required to
carry out file system requests, in such a system.

3.1.1 Reuse Memory Management

Current file systems spend considerable complexity due
to space management. For example, Ext2fs spends almost
2000 SLOCs (source lines of code) on it. Since SCM will
be visible through memory bus, it is possible to reuse the
memory management module within the operating system
to carry out these functions. Memory management has hard-
ware support in the form of TLB and MMU caches to speed



up operations of translating from virtual addresses to physi-
cal addresses, providing protection mechanisms across users
etc. It seems natural to exploit this infrastructure to speed
up file system operations as well when storage will be acces-
sible through memory bus. SCMFS is designed to reuse the
memory management infrastructure, both in the hardware
and the Operating System. It is expected that such a de-
sign would benefit from the future enhancements to memory
management infrastructure within the processor, through in-
creased TLB sizes and MMU caches.

In our design, we assume the storage device, SCM, is di-

rectly attached to CPU, and there is a way for firmware/software

to distinguish SCM from the other volatile memories. This
assumption allows the file systems be able to access the data
on SCM in the same way as normal RAM. With this as-
sumption, we can utilize the existing memory management
module in the operating system to manage the space on
the storage class memory. As shown in Figure. 2, regu-
lar file systems are built on top of the generic block layer,
while SCMFS is on top of the modified memory management
module.

When the file system relies on the MMU for mapping vir-
tual addresses to physical addresses, these mappings need
to be persistent across reboots in order to access the data
after a power failure, for example. It is not sufficient to
allocate the page mapping table on the SCM since these
mappings can be cached at various locations before being
written to memory. We need to immediately harden the
address mappings whenever space is allocated on SCM. We
made enhancements to the kernel for this purpose, as ex-
plained later in Section 3.4.
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Figure 3: Indirect block mechanism in Ext2fs

3.1.2 Contiguous File Addresses

Current file systems employ a number of data structures
to manage and keep track of the space allocated to a file.
The file systems have to deal with the situation that a large
file is split into several parts and stored in separate locations
on the block device. For example, Ext2fs handles this by
using indirect blocks, as shown in Figure.3. This makes
the process of handling the read/write requests much more
complicated, and sometimes requires extra read operations
of the indirect blocks.

In order to simplify these data structures, we design the
file system such that the logical address space is contiguous
within each file. To achieve this, we build the file system on
virtual address space, which can be larger than the physi-
cal address space of the SCM. We can use page mapping to
keep all the blocks within a file to have contiguous logical
addresses. In SCMFS, with the contiguity inside each file,

we do not need complicated data structures to keep track of
logical address space, and simply store the start address and
the size for each file. This mechanism significantly simplifies
the process of the read/write requests. To get the location
of the request data, the only calculation is adding the offset
to the start address of the file. The actual physical loca-
tion of the data is available through the page mapping data
structures, again leveraging the system infrastructure.

As described above, putting the file system on virtual ad-
dress space can simplify the design and reduce overheads.
However, it also has a side affect that it may cause more
TLB misses. Operating systems sometimes map the whole
memory in the system to a linear address space using a larger
page size (e.g., 2MB), resulting in smaller number of TLB
misses. In our current implementation, to minimize the in-
ternal fragmentation we use a page size of 4K bytes. Hence,
we may incur more TLB misses than if we were to employ
linear mapping of the virtual address space corresponding
to the file system. We will see its impacts in Section 4.

3.2 File System Layout

Figure. 4 shows the layout of both virtual memory space
and physical memory space in SCMFS. The “metadata” in
physical memory space contains the information of storage,
such as size of physical SCM, size of mapping table, etc. The
second part of the physical memory is the memory map-
ping table. The file system needs this information when
mounted to build some in-memory data structures, which
are mostly maintained by memory management module dur-
ing runtime. Any modification to these data structures will
be flushed back into this region immediately. Since the map-
ping information is very critical to the file system consis-
tency, all the updates to this region will be flushed immedi-
ately by using the procedure “clflush_cache_range” described
in Section 3.6. The rest of the physical space is mapped into
virtual memory space and used to store the whole file sys-
tem.
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Figure 4: Memory space layout

In the virtual memory space, the layout of SCMF'S is very
simple and similar to existing file systems, and it consists of
three parts. The first part, as in the regular file systems, is
the super block, which contains the information about the
whole filesystem, such as file system magic number, version
number, block size, counters for inodes and blocks, the total
number of inodes and blocks, etc.. The second part is the
inode table, which contains the fundamental information of
each file or directory, such as file mode, file name, owner id,
group id, file size in bytes, the last time the file was accessed
(atime), the last time the file was modified (mtime), the time
the file was created (ctime), start address of the data for the
file, etc.. The first item(with inode number 0) in the inode
table is the root inode that is always a directory. All the con-
tent of the files in the file system are stored in the third part.
In our prototype, the total size of virtual memory space for



super block

dirt file1 file2

inode table

1001

directory-fi inode number \

null file ordinary file
file_siz mapped_siz —-file_size—
mapped_siz irtual_siz mapped_si
irtual_siz irtual_si
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SCMFS is 2*7 bytes (range: fFf000000000000 - fFTTFHTL),
which is unused in original Linux kernel. The space can be
larger if we re-organize 64-bit virtual address space. The
structure of SCM file system is illustrated in Figure.5. In
SCM file system, directory files are stored as ordinary files,
except that their contents are lists of inode numbers. Be-
sides ordinary files and directory files, in SCMFS, there is
an additional type of file, null file, which will be described
in 3.3. There is also a pointer to the start address of inode
table in the super block. In the inode table, we use a fixed
size of entry, which is 256 bytes, for each inode and it is very
easy to get a file’s metadata through its inode number and
the start address of the inode table.

With the layouts, the file system can be easily recovered
or restored after rebooting. First we check if the “metadata”
is valid through the magic number and version number, and
use the information in the “metadata” and “mapping table”
to build the mapping between the physical addresses and
the virtual addresses. Once we finish this, we can get the
information about the file system from the super block in
the virtual address space. It is noted that both the physical
and the virtual address in the mapping table need to be rel-
ative instead of absolute to provide the portability between
different machines and systems.

3.3 Space Pre-Allocation

In regular file systems, the data blocks are allocated on de-
mand. The space is allocated to the files only when needed,
and once any file is removed, the space allocated for it will
be deallocated immediately. Frequent allocation and deal-
location can invoke many memory management functions
and can potentially reduce performance. To avoid this, we
adopted a space pre-allocation mechanism, in which we cre-
ate and always maintain certain amount of null files within
the file system. These null files have no name, no data,
however have already been allocated some physical space.
When we need to create a new file, we always try to find a
null file first. When a file shrinks, we will not de-allocate the
unused space. And when we need to delete an existing file,
we will not de-allocate its space but mark it as a null file.
Through the space pre-allocation mechanism, we can reduce
the number of allocation and deallocation operations signif-
icantly, and expect to boost the file system performance.

To support this mechanism, we need to maintain three
“size”s for each file. The first one, “file_size” , is the ac-
tual size of the file. The second one, “virtual size” is the
size of the virtual space allocated to the file. The last one,
“mapped_size”, is the size of mapped virtual space for the

file, which is also the size of physical space allocated to the
file. The value of “virtual_size” is always larger than or equal
to that of “mapped_size”, whose value is always larger than
or equal to that of “file_size”.

The space unused but mapped for each file is reserved
for later data allocations, and potentially improves the per-
formance of further writing performance. However, these
spaces are also likely to be wasted. To recycle these “wasted”
spaces, we use a background process. This method is very
similar to the garbage collection mechanism for flash based
file systems. This background thread will deallocate the un-
used but mapped spaces for the files when the utilization of
the SCM reaches a programmable threshold, and it always
chooses cold files first.

3.4 Modifications to kernel

In our prototype, we have done some modifications to orig-
inal Linux kernel 2.6.33 to support our functionalities. First,
we modify the E820 table, which is generated by BIOS to re-
port the memory map to the operating system[2]. We added
anew address range type “AddressRangeStorage”. This type
of address range should only contain memory that is used to
store non-volatile data. By definition, the operating system
can use this type of address range as storage device only.
This modification make sure the operating system has the
ability to distinguish SCM from normal memory device.

Second, we add a new memory zone “ZONE_STORAGE”
into the kernel. A memory zone in linux is composed of
page frames or physical pages, and a page frame is allo-
cated from a particular memory zone. There are three mem-
ory zones in original Linux: ZONE_DMA is used for DMA
pages, “ZONE_NORMAL” is used for normal pages , and
“ZONE_HIGHMEM?” is used for those addresses that can
not be contained in the virtual address space(32bit platform
only). We put all the address range with type “Address-
RangeStorage” into the new zone “ZONE_STORAGE".

Third, we add a set of memory allocation/deallocation

functions, nvmalloc() /nvfree(), which allocate/deallocate mem-

ory from the zone “ZONE_STORAGE”. The function nvmal-
loc() derives from vmalloc(), and allocates memory which is
contiguous in kernel virtual memory space, while not neces-
sary to be contiguous in physical memory space. The func-
tion nvmalloc() has three input parameters: size is the size
of virtual space to reserve, mapped_size is the size of vir-
tual space to map, write_through is used to specify if the
cache policy for the allocated space is write-through or write-
back. We also have some other functions, such as nvmal-
loc_expand() and nvmalloc_shrink(), whose parameters are



same as that of nvmalloc(). The function nvmalloc_expand|()
is used when the file size increases and the mapped space is
not enough, and nvmalloc_shrink() is used to recycle the
allocated but unused space.

All the modifications involve less than 300 lines of source
code in kernel.

3.5 Garbage Collection

As described above, the mechanism of pre-allocation is
used to improve the speed of appending data to files. How-
ever it can result in wasting space when we pre-allocate space
for files and may not write anymore data to them. To recy-
cle the wasted space, we provide a garbage collection mech-
anism. Using a garbage collection in a file system is normal,
especially for the flash file systems. To minimize its impact
on the system performance, we implemented this mecha-
nism in a background kernel thread. When the unmapped
space on the SCM is lower than a threshold, this background
thread will try to free the unnecessary space, that is mapped
but not used. During the garbage collection, it will check
the number of null files first. If the number exceeds a pre-
defined threshold, it will free the extra null files. If we need
to free more, this thread will consider the cold files first,
that have not been modified for a long time, then the hot
files. We can easily classify the cold/hot file through the
last modified time. This thread also takes the responsibility
of creating null files when there are too few null files in the
system.

Even though our current system doesn’t implement any
wear leveling functions, we expect to incorporate wear lev-
eling into a background process that can work with the
garbage collection thread.

3.6 File System Consistency

File system consistency is always a big issue in file sys-
tem design. As a memory based file system, SCMFS has a
new issue: unsure write ordering. The write ordering prob-
lem is caused by CPU caches that stand between CPUs and
memories [7]. Caches are designed to reduce the average
access latency to memories. To make the access latency as
close to that of the cache, the cache policy tries to keep
the most recently accessed data in the cache. The data
in the cache is flushed back into the memory according to
the designed data replacement algorithm. And the order
in which data is flushed back to the memory is not neces-
sarily the same as the order data was written into cache.
Another reason that causes unsure write ordering is out-of-
order execution of the instructions in the modern proces-
sors. To address the problem of unsure write ordering, we
can use a combination of the instructions MFENCE and
CLFLUSH. This combination has been implemented with
the function “clflush_cache_range” and used in the original
Linux kernel. The instruction MFENCE is used to serialize
all the load/store instructions that were issued prior to the
MFENCE instruction. This instruction guarantees that ev-
ery load/store instruction that precedes it is globally visible
before any load or store instruction that follows it. The in-
struction CLFLUSH is used to invalidate the cache line that
contains the specified address from all levels of the processor
cache hierarchy. By using the function “clflush_cache_range”,
we can provide the ensured write order to any range of ad-
dresses. Our design doesn’t assume the availability of any
hardware or architectural mechanisms (such as epochs in

BPFS[7]) beyond what is currently available.

In SCMF'S, we always use the function “clflush_cache_range”
when we need to modify the critical information, including
“metadata”, “superblock”, “inode table” and “directory files”.
This simple mechanism will provide metadata consistency.
As to the data consistency, we flush the CPU cache peri-
odically. This provides similar guarantees as the existing

regular file systems.

4. EVALUATION

To evaluate our ideas, we have implemented a prototype
of SCMFS in Linux. This prototype consists of about 2700
source lines of code, which is only 1/10 of that of ext2fs in
Linux. In this section, we present the results by using some
standard benchmarks.

4.1 Bechmarks and Testbed

To evaluate SCMFS thoroughly, we use multiple bench-
marks. The first benchmark, IOZONE [3], is a synthetic
workload generator. This benchmark creates a large file,
and issues different kinds of read/write requests on this file.
Since the file is only opened once in each test, we use the
benchmark IOZONE to evaluate the performance of access-
ing file data. The second benchmark, postmark [11] is an
I/0 intensive benchmark designed to simulate the operation
of an e-mail server. This benchmark creates a lot of small
files and performs read/write operations on them. We use
this benchmark to evaluate SCMFS’s performance on small
files and metadata. In the experimental environment, the
test machine is a commodity PC system equipped with a
2.33GHz Intel Core2 Quad Processor 8200, 8GB of main
memory. We configured 4GB of the memory as the type
“AddressRangeStorage”, and used it as Storage Class Mem-
ory. The operating system used is Fedora 9 with a 2.6.33
kernel.

In all the benchmarks, we compare the performance of
SCMEF'S to that of other existing file systems, including ramfs,
tmpfs and ext2fs. Since ext2fs is designed for a traditional
storage device, we run ext2fs on ramdisk, which emulates a
disk drive by using the normal RAM in main memory. It is
noted that ramfs, tmpfs and ramdisk are not designed for
persistent memory, and none of them can be used on storage
class memory directly.

4.2 I0ZONE Results

Using IOZONE, we have evaluated the sequential and ran-
dom performance, and the results are shown in the Figure.6
(a,b) and Figure.7(a,b) respectively. We also used the per-
formance counters in the modern processors, through the
PAPI library [17], to see the detailed performance infor-
mation related to CPU’s functional units, including L1/L2
cache miss rate, Data/Instruction TLB misses. We show
this information in the rest of Figure.6 and Figure.7.

In these figures, we can see that the performances of all the
file systems decreases dramatically when the record length
is more than 1 megabytes. This is because that when record
length is too large, L2 cache miss rate and Data TLB misses
increases significantly, as shown in the Figure.6(g,h,i,j) and
Figure. 7(g,h,i,j).

We have noticed that the memory based file systems, in-
cluding ramF's, tmpFs and SCMFS, performed generally
much better than Ext2Fs on Ramdisk. For example, per-
formance is doubled in all the workloads with the record
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Figure 7: IOZONE results(Random workloads)



lenth 4k bytes in these file systems compared to Ext2Fs on
Ramdisk. The reason is that Ext2 file system is created
on the generic block layer and has much higher complex-
ity than the memory based file systems, as we describe in
Section 3. Simplicity of the hierarchy significantly decreases
the size of instruction set. As shown in Figure.6(c,d k,l)
and Figure.7(c,d,k,1), memory based file systems have much
lower instruction cache miss rate and instruction TLB misses
than Ext2 file system. For example, in the random read
workload with 4k bytes record length, the L1 instruction
cache miss rate is 0.0134 in Ext2Fs and 0.000042 in SCMFS
while in the random write workload with 4k bytes record
length, it is 0.0093 in Ext2Fs and 0.000061 in SCMF'S. Com-
pared to tmpfs and ramfs, SCMFS also has much lower in-
struction cache miss rate, especially in write workload. For
example, in the random write workload with 4k bytes record
length, the L1 instruction cache miss rate is 0.0169 in ramfs,
0.0105 in tmpfs, and 0.000061 in SCMFS. In both sequen-
tial and random workloads, SCMFS shows significant ad-
vantages on instruction cache misses, which makes SCMFS
performs beyond the other file system in most workloads.

We also notice that in the random/sequential write work-
load, Ext2 file system performs better than SCMFS when
the record length was between 64k and 512k bytes. We be-
lieve this is because SCMFS has much higher TLB misses
than Ext2 file system, as shown in Figure. 6(j) and Fig-
ure. 7(j). The reason why SCMFS has much more TLB
misses than the other file systems is we operate the data in
SCMFS on virtual address space while the others employ
device level linear address space. Modern processors usually
support a feature, Page Size Extension (PSE) that allows for
the pages with larger size than the traditional 4KB. In our
environment, the address space SCMFS resides in is mapped
by using 4 KB pages while the linear address space by 2 MB
pages. To confirm it is the large page size that reduces data
TLB misses in Ext2 file system, we ran the same workload
again with PSE disabled. In the results in Figure. 8, we
can see that, without PSE, the TLB misses in the both file
systems are comparable and SMCMF'S performs better than
Ext2 file system with all the request sizes.
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Figure 8: IoZone results with PSE disabled(random
workload).

We also have done experiments with IOZONE by using
multiple threads. Figure.9 shows the result where we use
normal read()/write() interfaces, while Figure.10 shows the
results with mmap() interfaces. When we use map() in-
terface, we enable XIP features for both the file systems.
We can see, in both cases SCMFS performs better than
Ext2Fs and obtains higher throughput with more threads.
Another observation is that using mmap()/bcopy() does not
perform beyond normal read()/write() interfaces. Through

our investigation, we believe this is also caused by high TLB
misses. In Ext2fs on Ramdisk, using mmap() will map the
address into user address space, which is not using large
page size. By using performance counters, we find that the
number of TLB misses with read()/write() interfaces is only
around 200(Ext2fs) or 4,000(SCMFS), while it is more than
2,000,000 with mmap() interfaces in the same workload.
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Figure 9: Iozone results with multi-thread (Random
workload)
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Figure 10: IOZONE results with multi-thread, using
mmap (Random workload)

It is observed from Figure. 9 that SCMFS obtains up
to 7GB/s read throughput, about 70% of the memory bus
bandwidth of 10GB/s on our system. It is observed that the
read throughput generally saturates at twice the saturation
throughput of writes, since writes require two memory op-
erations compared to one operation on read requests in the
IOZONE benchmark.

4.3 Postmark Results

We show the results of postmark in Figure.11l. We use
postmark to generate both read intensive and write intensive
workloads. The file size in the workload is varied between
4k and 40k bytes. In each workload, we created 10,000 files
under 100 directories and performed 400,000 transactions.
We again used the PAPI library to investigate the detailed
performance information.

In this test, we not only have evaluated original SCMFS,
but also SCMFS with pre-allocation mechanism, as described
in 3.3, and with file system consistency, as described in 3.6.
We do not include these with the IOZONE workload, since
IOZONE workload operates on one file and does not exhibit
much difference in performance with these mechanisms.

In the figures, we can see that the performance of all the
file systems is close to each other in the Postmark work-
load. Postmark workload has many more metadata opera-
tions than the IOZONE workload and hence these metadata
operations dominate the file sysem performance. Since the
files in the Postmark workload are small, the possibility to
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use indirect blocks in Ext2fs is very low, and SCMF'S doesn’t
have much advantage over Ext2fs. Through the results, we
can see that SCMFS still has lower instruction cache miss
rate than Ext2fs, especially in the write workload. Even
though SCMFS has higher data TLB misses, SCMFS pro-
vides higher performance beyond ext2fs.

When we add the pre-allocation mechanism, the read per-
formance of SCMFS drops slightly and the write perfor-
mance improves. The reason why the read performance
drops is that the file system allocates more space than needed
and the benchmark spend more time on initialize the files.
As we describe in Section 3.3, the pre-allocation mechanism
helps reduce the time to allocate space for new data when
appending the files. It improves the write performance by
about 5% as shown in Figure.11(b). In the last configura-
tion, we add the support of file system consistency that is
described in Section 3.6. As anticipated, the performance
of SCMFS drops significantly when write ordering issues are
addressed. In the write workload, SCMFS still performs
better than Ext2fs by about 22%. In the read workload,
even though the content of the files are not changed, the
latest access time of each file needs to be updated. Each
time the file metadata gets udpated, the costly function
“clflush_cache_range” is called to flush the cache. That is
why the read performance decreases significantly. It is noted
that Ext2fs on ramdisk does not support metadata consis-
tency as SCMF'S does.

In the Postmark workload, the saturation throughputs are
lower than observed earlier with the IOZONE workload, be-
cause of higher metadata operations involved in the Post-
mark workload. It is observed that the TLB misses are
significantly higher in the Postmark workload compared to
the IOZONE workload.

S. DISCUSSION AND FUTURE WORK

In this research work, we have implemented a file system
designed for Storage Class Memory and showed some ad-
vantages compared to existing file systems. However, this
file system has some disadvantages and limits, and we will
consider them in our future work.

In our current experiment environment, the size of simu-
lated SCM is very small(4GB), so the size of required map-
ping table is also very small. The size of mapping table will
become very large when the SCM is scaled to tens or even
hundreds of Gigabytes. The large mapping table will sig-
nificantly increase the time to mount the entire file system.
To address this problem, we can delay the memory map-
ping process, which means only the virtual address space for
metadata and inode table will be mapped during the time of
mounting the file system. All the other address spaces will
be mapped in background after the file system is mounted.
If a request to an unmapped file is received, a page fault
will be triggered. In the page fault handler, we will read
the SCM mapping table and map the address. To achieve
this, we also need to maintain bitmaps (or other compressed
data structures) for MM to indicate those physical addresses
and virtual addresses that are already used. The bitmaps
are also loaded to MM module during the mount procedure.
Another potential issue the large scale of SCM may cause
is that the TLB cannot cover enough range of memory and
results in many TLB misses. We may use superpages to
increase the coverage of TLB and decrease the TLB misses
that require expensive address translations.

In current implementation, we reserve a large virtual space
for SCMFS and did not consider the extreme case of frag-
mentation, in which there is enough physical space but there
is no contiguous virtual space for a new file. In the future
work, we consider to add defragmentation of virtual address
space into the thread of garbage collection.

Most SCM technologies have limits on write cycles to in-
dividual memory locations. In our current work, we did not
incorporate any algorithms for wear leveling of the under-
lying SCM. We plan to include this as part of allocation
process in the future.

6. CONCLUSION

In this paper, we have presented the design of SCMFS,
a new file system specially for the storage class memory.
SCMFS utilizes the existing memory management module
in the operating system to help the block management, and
keeps the space for each file always contiguous in the vir-
tual address space. The design of SCMFS simplifies its im-
plementation, and improves the performance, especially for
small size requests. We also have discussed the limits of
SCMFS and our future work.
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