
The Flux OSKit: A Substrate for Kernel and Language Research

Bryan Ford Godmar Back Greg Benson Jay Lepreau Albert Lin Olin Shivers

University of Utah University of California, Davis Massachusetts Institute of Technology

Abstract

Implementing new operating systems is tedious, costly,
and often impractical except for large projects. The
Flux OSKit addresses this problem in a novel way by
providing clean, well-documented OS components de-
signed to be reused in a wide variety of other environ-
ments, rather than defining a new OS structure. The
OSKit uses unconventional techniques to maximize its
usefulness, such as intentionally exposing implemen-
tation details and platform-specific facilities. Further,
the OSKit demonstrates a technique that allows unmod-
ified code from existing mature operating systems to be
incorporated quickly and updated regularly, by wrap-
ping it with a small amount of carefully designed “glue”
code to isolate its dependencies and export well-defined
interfaces. The OSKit uses this technique to incorpo-
rate over 230,000 lines of stable code including device
drivers, file systems, and network protocols. Our ex-
perience demonstrates that this approach to component
software structure and reuse has a surprisingly large im-
pact in the OS implementation domain. Four real-world
examples show how the OSKit is catalyzing research
and development in operating systems and program-
ming languages.

Ford, Back, and Lepreau are at the Univ. of Utah (baford,-
gback,lepreau@cs.utah.edu), Benson is at U.C. Davis (benson-
@cs.ucdavis.edu), and Shivers and Lin are at MIT (shivers,lin-
@ai.mit.edu).

Appears in Proceedings of the 16th ACM Symposium on Operat-
ing Systems Principles, October 1997, Saint-Malo, France.

This research was supported in part by the Defense Advanced Re-
search Projects Agency, monitored by the Dept. of the Army under
contract number DABT63–94–C–0058 and Rome Laboratory under
grant F30602–96–1–0343, and by the National Science Foundation
under grant CCR–9633438.

Copyright c1997 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request per-
missions from permissions@acm.org.

1 Introduction

As operating system functionality continues to expand
and diversify, it is increasingly impractical for a small
group to implement even a basic useful OS core—
e.g., the functionality traditionally found in the Unix
kernel—entirely from scratch. Furthermore, generally
only a few specific areas in an OS core are interesting
for research purposes. For example, any realistic OS,
in order to be useful even for research, must include
many largely uninteresting elements such as boot loader
code, kernel startup code, various device drivers, ker-
nel printf and malloc code, and a kernel debugger.
The necessity of writing this kind of infrastructure not
only slows down larger OS research projects, but also
greatly increases the cost of entry into OS research so
that many small but useful experiments are simply not
viable.

While it is possible to adapt existing systems, they
are generally complicated and entwined with interde-
pendencies. The OSKit, developed by the Flux research
group at the University of Utah, addresses this problem
by providing a framework and a set of modularized li-
brary code with straightforward and well-documented
interfaces for the construction of operating system ker-
nels, servers, and other core OS functionality. The OS-
Kit provides functionality such as simple bootstrapping,
a minimal POSIX environment usable in kernels, mem-
ory management suited for physical memory and its
constraints, extensive debugging support, and higher-
level subsystems such as protocol stacks and file sys-
tems. The OSKit gives a developer an immediate start-
ing point for investigating “real” OS issues such as
scheduling, virtual memory, IPC, file systems, or secu-
rity. Developers can easily replace generic OSKit mod-
ules or functions with their own, guided by research in-
terests or performance considerations. The OSKit can
be used to bootstrap unconventional operating systems
quickly, such as those for embedded systems and net-
work computers.

The OSKit is heavily used in at least three OS ker-
nels under ongoing development at different institu-

tions. Our own microkernel-based OS, Fluke [17], puts
almost all of the OSKit to use. Over half of the Fluke
kernel is OSKit code, and many of the servers and user-
level utilities that run on top of this kernel also rely
heavily on parts of the OSKit. The OSKit has also en-
hanced and accelerated our OS research by allowing us
to quickly create several prototype kernels in order to
explore ideas before investing the effort necessary to in-
corporate these ideas into the much larger primary de-
velopment system.

Research groups at MIT and U.C. Davis, represented
by co-authors of this paper, have recently adopted the
OSKit for systems-level language research. Traditional
kernels distance the language from the hardware; even
microkernels and other extensible kernels enforce some
default policy which often conflicts with a particular
language’s semantics. The OSKit provides a valuable
tool to allow advanced languages to be evaluated and
experimented with at a low level, to explore novel OS
structures enabled by such languages, and to make it
possible to obtain accurate performance measurements
without the interference of a full-scale OS. By im-
plementing Standard ML [26] directly on the hardware
using the OSKit, we are able to model hardware re-
sources with the constructs of a functional program-
ming language. Our port of SR (“Synchronizing Re-
sources”) [3], a parallel language intended for systems-
level programming but never extensively used for this
purpose, allows us to investigate the effectiveness of us-
ing a communication-oriented language for implement-
ing OS functionality. Finally, using a Java [19] virtual
machine running on the OSKit, we have prototyped a
small network computer supporting a Java-based web
server and other applications, as well as an active net-
work router that dynamically executes Java bytecode
embedded in network packets.

The rest of this paper describes the OSKit and re-
ports on our experience using it for research in operating
systems and advanced language systems. Section 2 dis-
cusses related work. Section 3 outlines the major OSKit
components, and Section 4 details the OSKit’s design
and implementation. Section 5 describes two example
network-oriented OSKit-based applications. Section 6
presents our experience with the OSKit through several
case studies. Finally, in sections 7 and 8 we present sta-
tus, future work, and conclusions.

2 Related Work

Many OS research projects have taken code from other
existing, stable systems to reduce the startup cost of OS
research: Mach [1] used device drivers from BSD and
hardware vendors, the x86 port of SPIN[10] uses device
drivers from FreeBSD, and VINO [30] takes its device
drivers, bootstrap code, and low-level support for vir-
tual memory from NetBSD. Although this approach cer-
tainly saves time, the developer must still manually take
apart the old OS, figure out all the relevant inter-module
dependencies and other requirements, and find a way ei-
ther to emulate these requirements in the new OS envi-
ronment or change the code appropriately to adapt it to
the new environment. The OSKit allows the developer
to save more time by providing common components
in a convenient form, already separated out and docu-
mented.

Recent research projects such as the exokernel [14],
SPIN, and VINO focus on creating extensible systems
which allow applications to modify the behavior of the
core OS to suit their particular needs. However, these
systems still define a particular, fixed set of “core” func-
tionality and a set of policies by which the core can
be used and extended. As the exokernel authors state,
“mechanism is policy, albeit with one less layer of indi-
rection” [14]. The OSKit, in contrast, makes no attempt
to be a useful OS in itself and does not define any par-
ticular set of “core” functionality, but merely provides a
suite of components from which real OS’s can be built.

Many real-time, embedded operating systems, such
as QNX [20] and VxWorks [35], are designed as a set
of modular components that can be statically or dynam-
ically linked with a small core kernel in various config-
urations. These systems apparently do provide a rela-
tively hospitable kernel environment for a single POSIX-
based application, such as a Java virtual machine, and
indeed industry has recently constructed a Java-based
system using VxWorks. However, the main purpose of
these embedded systems’ modularity is to allow them to
be used in very small, tightly-constrained hardware en-
vironments as well as (or instead of) in fully-equipped
workstations and PCs. All of the optional components
still rely on the basic OS environment provided by the
core kernel, and are neither designed with the intention
of making them usable in other environments nor suf-
ficiently documented to make it practical for users of
these systems to do so. For example, the VxWorks ex-
ecution environment always runs a special “exception

2

Drivers

Linux Glue

Generic Device Driver Support

Generic Device Driver Support

Glue Glue

File System

NetBSDFreeBSD

Networking

Client Operating System or

Language Run-Time System

Native OSKit Code

Encapsulated Legacy Code

Hardware

Executable
Loading

File System
Reader

Disk
Partitioning

Address Map
Manager

FreeBSD
Math Library

Minimal C Library

Malloc
Debugging

List-based
Memory Manager

Kernel Support SMP

FreeBSD Glue

Drivers

FreeBSDLinux

Figure 1: The structure of the OSKit. The shaded components in-
dicate off-the-shelf code that is encapsulated in the OSKit using glue
code. This figure shows only the approximate relationships between
components; the sizes of the regions do not correspond to the sizes
of the components.

thread” (in VxWorks terminology, a “task”), whose pur-
pose is to field messages from distressed threads, pro-
viding a safe execution environment in which to execute
cleanup code. Other VxWorks components require this
thread’s presence, so cannot easily be used in other en-
vironments.

Several object-oriented operating systems have been
created, such as Choices [12], which provides a full
operating system, and the Taligent [27] system, which
provides OS services above an underlying microkernel.
Like the OSKit, these systems attempt to provide an ex-
tensible OS structure built from customizable, replace-
able components. However, these are still operating
systems in and of themselves: they still define a basic
core OS structure and a framework within which OS
components are to be extended, and make no attempt to
allow their components to be easily separated out and
used in other widely different OS environments. Thus,
these object-oriented operating systems are comparable
in their basic design goals to the extensible and scalable
systems described above.

3 Overview of OSKit Components

In this section we provide a brief overview of several of
the most important OSKit components. For reference,
Figure 1 illustrates the overall structure of the OSKit
and the relationships between its components.

3.1 Bootstrapping

Most operating systems come with their own boot load-
ing mechanisms which are largely incompatible with
those used by other systems. This diversity of exist-
ing mechanisms is caused not so much by any fun-
damental difference in the bootstrap services required
by each OS, but instead merely by the ad hoc way in
which boot loaders are typically constructed. Because
boot loaders are basically uninteresting from a research
standpoint, OS developers generally just produce a min-
imal quick-and-dirty design, which results in each boot
loader being unsuitable for the next OS due to slight dif-
ferences in design philosophy or requirements. To solve
this problem, the OSKit directly supports the Multi-
Boot standard [16] which was cooperatively designed
by members of several OS projects to provide a sim-
ple but general interface between boot loaders and OS
kernels, allowing any compliant boot loader to load any
compliant OS. Using the OSKit, it is easy to create OS
kernels that support a variety of existing boot loaders
that adhere to the MultiBoot standard. In addition, the
OSKit includes tools that allow these MultiBoot kernels
to be loaded from older BSD and Linux boot loaders,
and from MS-DOS.

A key feature of the MultiBoot standard that makes
it highly useful to research systems is the ability of the
boot loader to load additional files, or boot modules, at
boot time along with the kernel itself. A boot module
is simply an arbitrary “flat” file, which the boot loader
does not interpret in any way, but instead merely loads
into chunks of reserved physical memory along with the
kernel image itself. Upon starting the kernel, the boot
loader then provides the kernel with a list of the physi-
cal addresses and sizes of all the boot modules that were
loaded, along with an arbitrary user-defined string asso-
ciated with each boot module. These boot modules and
their associated user-defined strings can then be inter-
preted by the kernel however it sees fit; typically their
purpose is to ease the kernel’s bootstrapping burden by
providing arbitrary data that the kernel might need to get
started, such as initialization programs, device drivers,
and file system servers.

3.2 Kernel Support Library

The primary purpose of the OSKit’s kernel support li-
brary is to provide easy access to the raw hardware facil-
ities without adding overhead or obscuring the underly-
ing abstractions. It contains a large collection of useful

3

functions and symbol definitions that are highly specific
to supervisor-mode code. In contrast, most of the other
libraries in the OSKit are often useful in user-mode code
as well, even though they are designed primarily with
kernels in mind. Also unlike the rest of the OSKit, much
of the kernel support code is necessarily architecture-
specific; no attempt has been made to hide machine-
specific details that might be useful to the client OS. For
instance, on the x86, the kernel support library includes
functions to create and manipulate x86 page tables and
segment registers. Other OSKit components can, and
often do, provide higher-level architecture-neutral fa-
cilities built on these low-level mechanisms, but the
architecture-specific interfaces always remain accessi-
ble in order to provide maximum flexibility.

The OSKit’s kernel support library is especially im-
portant on the x86 architecture, whose OS-level pro-
gramming environment is particularly complex and ob-
scure. The kernel support library takes care of setting up
a basic 32-bit execution environment (x86 processors
normally start up in a 16-bit mode for compatibility with
MS-DOS), initializing segmentation and page transla-
tion tables, installing an interrupt vector table, and pro-
viding default trap and interrupt handlers. Naturally,
the client OS can modify or override any of this behav-
ior; however, by default, the kernel support library au-
tomatically does everything necessary to get the proces-
sor into a convenient execution environment in which
interrupts, traps, debugging, and other standard facili-
ties work as expected. The library also by default auto-
matically locates all of the boot modules loaded with the
kernel and reserves the physical memory in which they
are located so that the application can easily make use of
them later on. The client OS need only provide a main
function in the standard C style; after everything is set
up, the kernel support library will call it with any ar-
guments and environment variables passed by the boot
loader. Thus, using the OSKit, a “Hello World” kernel
is as simple as an ordinary “Hello World” application
in C.

3.3 Memory Management Library

Memory management code typically used in user space,
such as the malloc implementation in a standard C li-
brary, is not generally suitable for kernels because of
the special requirements of the hardware on which they
run. Device drivers often need to allocate memory of
specific “types” and with specific alignment properties:
e.g., only the first 16MB of physical memory on PCs is

accessible to the built-in DMA controller. To address
these memory management issues, the OSKit includes
a pair of simple but flexible memory management li-
braries. The list-based memory manager, or LMM, pro-
vides powerful and efficient primitives for managing al-
location of either physical or virtual memory, in kernel
or user-level code, and includes support for managing
multiple “types” of memory in a pool, and for alloca-
tions with various type, size, and alignment constraints.
The address map manager, or AMM, is designed to
manage address spaces that don’t necessarily map di-
rectly to physical or virtual memory; it provides simi-
lar support for other aspects of OS implementation such
as the management of processes’ address spaces, pag-
ing partitions, free block maps, or IPC namespaces. Al-
though these libraries can easily be used in user space,
they are designed specifically to satisfy the needs of OS
kernels.

3.4 Minimal C Library

Mature OS kernels typically contain a considerable
amount of code that simply reimplements basic C li-
brary functionality such as printf and malloc. This
is done because the “real” C library implementations
of such functions are optimized for maximum perfor-
mance and functionality in the rich user-space envi-
ronment provided by a full-function OS, and therefore
make too many assumptions to be usable in a kernel en-
vironment. For example, a standard printf usually
relies on the full stdio package, which among other
complexities manages the mapping of file handles to file
descriptors and dynamically allocates buffer memory.

By contrast, the OSKit provides a minimal C library
designed around the principle of minimizing dependen-
cies rather than maximizing functionality and perfor-
mance. For example, locales and floating-point are
not supported, and the standard I/O calls don’t do any
buffering, instead relying directly on underlying read
and write operations. Dependencies between C li-
brary functions are minimized, and those dependencies
that do exist are documented so that individual functions
can be replaced as necessary in order to adapt the min-
imal C library to arbitrary environments.

3.5 Debugging Support

One of the OSKit’s most important practical benefits
is that, given an appropriate hardware setup, it imme-
diately provides the OS developer with a full source-
level kernel debugging environment. The OSKit’s ker-

4

nel support library includes a serial-line stub for the
GNU debugger, GDB [32]. The stub is a small mod-
ule that handles traps in the client OS environment and
communicates over a serial line with GDB running on
another machine, using GDB’s standard remote debug-
ging protocol. The OSKit’s GDB stub can be used even
if the client OS performs its own trap handling, and even
supports multithreaded debugging if the client OS pro-
vides appropriate hooks. In the future, we plan to in-
tegrate a local debugger into the OSKit as well, which
can be used when a separate machine running GDB is
not available.

In addition to the basic debugging support, the OSKit
also provides a memory allocation debugging library,
which tracks memory allocations and detects common
errors such as buffer overruns and freeing already-freed
memory. This library provides similar functionality
to many popular application debugging utilties, except
that it runs in the minimal kernel environment provided
by the OSKit.

3.6 Device Driver Support

One of the most expensive tasks in OS development
and maintenance is supporting the wide variety of avail-
able I/O hardware. Devices are tricky and often have
undocumented glitches and new hardware is constantly
being released with incompatible software interfaces.
For these reasons, the OSKit leverages the extensive
set of stable, well-tested drivers developed for exist-
ing kernels such as Linux and BSD. To avoid diver-
gence from these existing source bases and allow new
and improved drivers to be easily integrated into the
OSKit in the future, existing driver code is incorpo-
rated into the OSKit largely unmodified using an en-
capsulation technique described later in Section 4.7.
These existing drivers are surrounded by a thin layer of
OSKit glue code which allows them to be used in en-
vironments completely different from those for which
the drivers were originally written. Currently, most of
the Ethernet, SCSI, and IDE disk device drivers from
Linux 2.0.29 are included—over fifty in all—as well as
eight character device drivers imported from FreeBSD
in the same way, supporting the standard PC console
and serial port and various multi-serial port boards. Be-
cause of the OSKit’s careful packaging of these drivers,
the FreeBSD drivers work alongside the Linux drivers
without a problem. In the future we expect to incorpo-
rate drivers from other sources as well, possibly even
from popular commercial operating systems for which

hardware vendor-supplied drivers are often available.

3.7 Protocol Stacks

The OSKit provides a full TCP/IP network protocol
stack; like the device drivers, the networking code is
incorporated by encapsulation so that it can easily be
kept up-to-date. However, whereas the OSKit currently
takes its network device drivers from Linux, which is
the largest source of freely available drivers for the PC
platform, the OSKit’s network components are instead
drawn from the 4.4BSD-derived FreeBSD [24] system,
which is generally considered to have much more ma-
ture network protocols. This demonstrates a secondary
advantage of using encapsulation to package existing
software into flexible components: with this approach,
it is possible to pick the best components from differ-
ent sources and use them together—in this case, Linux
network drivers with BSD networking.

3.8 File Systems

To complete our picture, the OSKit incorporates stan-
dard disk-based file system code, again using encap-
sulation, this time based on NetBSD’s file systems.
NetBSD was chosen in this case as the primary source
base because its file system code is the most cleanly
separated of the available systems; FreeBSD and Linux
file systems are more tightly coupled with their virtual
memory systems. We are currently incorporating Linux
file systems as well, to support many diverse file system
formats, such as those of Windows 95, OS/2, and Sys-
tem V.

Our development of a highly secure file server us-
ing the OSKit’s file system provided an interesting ex-
perience with the use of such a component. The OS-
Kit file system’s exported COM interfaces are similar
to the internal VFS interface [23] used by many Unix
file systems. These interfaces are of sufficiently fine
granularity that we were able to leave untouched the
internals of the OSKit file system. For example, the
OSKit interface accepts only single pathname compo-
nents, allowing the security wrapping code to do appro-
priate permission checking. The fileserver itself, how-
ever, exports an interface accepting full pathnames, pro-
viding efficiency where it matters, between processes.
Avoiding any modification of the main file system code
greatly reduces our maintenance burden, allowing us
easily to track NetBSD releases.

5

4 OSKit Design and Implementation

In order to make the OSKit flexible enough to be used in
a wide variety of diverse environments, it was necessary
to adopt a different set of design rules than would nor-
mally be used for building kernels themselves. Often
this involves applying well-known and accepted soft-
ware engineering principles in unconventional ways.
This section describes the OSKit’s design and imple-
mentation philosophy and rationale, and provides spe-
cific examples of how they are applied.

4.1 Library Structure

The most important goal of the OSKit is to be as con-
venient as possible for the developer to use. Although
this goal has many ramifications throughout the OS-
Kit’s design, its first manifestation is in the basic lay-
out and usage pattern of the OSKit as a whole. The
OSKit is structured as a package that can be automat-
ically built and installed, in most cases, as easily as
an ordinary GNU-style application. It is self-sufficient
in that it does not use or depend on any existing li-
braries or header files installed on the system; the only
things the user must provide are the compiler, linker,
and a few other development tools. Building and in-
stalling the OSKit causes a set of libraries to be created
in a user-defined location (e.g., /usr/local/lib
and /usr/local/include) from which they can
then be linked into operating systems just like ordinary
libraries are linked into user-level applications.

The OSKit is structured this way because develop-
ers are already familiar with libraries and know how to
use them; although it is not common practice to link li-
braries into a kernel, this is simply because until now
few libraries have been designed to be usable in kernels.
Given a set of libraries designed for this purpose, it is
much easier for a developer to link in a library and use
it than to drop in a set of .c files, figure out what com-
piler options to compile them with, what header files
they need, etc. Developers can define their own source
tree layout and build environment rather than being re-
quired to integrate their sources into a predefined exist-
ing structure.

4.2 Modularity Versus Separability

While modularity is a standard software design goal, in
the OSKit it gains a new level of importance. A primary
goal of the OSKit is to allow developers to use arbitrary
components in a given situation without being forced to

use other parts of the OSKit; this means that the OS-
Kit’s components must not only be modular, but also
fully separable. For example, the client should be able
to use the OSKit’s device drivers without also having to
use the OSKit’s memory manager, even though device
drivers necessarily require some kind of memory alloca-
tion service. A traditional kernel such as BSD may be
extremely clean and modular, but is still not very sep-
arable because of extensive inter-module dependencies
which make it difficult, for instance, to use BSD’s de-
vice drivers without BSD’s memory allocator, or BSD’s
file system code without BSD’s VFS layer.

To provide full separability between components in
the OSKit, it is often necessary to introduce thin inter-
mediate “glue” layers to provide a level of indirection
between a component and the services it requires. In
many cases these layers take the form of library func-
tions with trivial default implementations, whose sole
purpose is to be overridden by the client OS when the
need arises. In other cases, the layer of indirection is
provided through the use of function pointers and dis-
patch tables which allow components to be dynamically
bound together by the client OS at run time. The former
method is generally used for services for which there is
generally only one implementation in the system, such
as putchar and malloc, whereas the latter method is
used when multiple implementations of a service must
coexist, such as the block I/O interfaces to different disk
device drivers.

4.2.1 Separability Through Overridable Functions

As an example of the first method, to allocate mem-
ory, all device driver components in the OSKit invoke
a client-supplied function called fdev mem alloc.
A default implementation of this function is provided
which uses the OSKit’s memory management library,
but this default can easily be overridden by the client
OS if it uses its own method of managing physical mem-
ory. This way, in simple situations where the client just
uses the OSKit’s defaults, everything “just works” with-
out any special action on the client’s part; however, the
client OS can obtain full control over memory allocation
and other services when needed.

4.2.2 Separability Through Dynamic Binding

As an example of the second method of ensuring sep-
arability, none of the OSKit’s file system components
have any link-time dependencies on the OSKit’s device
driver components, even though the file systems must
invoke the block device drivers in order to access the un-

6

derlying disk on which the file system resides. Instead,
when the client OS initializes an OSKit device driver,
the device driver returns a pointer to an interface to use
to access the device. OSKit interfaces will be described
in more detail later, but essentially are just opaque ob-
jects with dynamic dispatch tables similar to C++ vir-
tual function tables. Later, when initializing the OSKit’s
file system component, the client OS passes the device
driver’s interface pointer and the file system henceforth
uses that interface to invoke the driver’s services. In this
way, the client OS can bind at run time any file system to
any device driver, and neither component needs to know
how it is being used.

4.3 Component Granularity

The OSKit’s libraries each contain a number of logical
components; the client OS incorporates these compo-
nents by referencing symbols defined by the libraries,
and the linker determines which specific object files to
pull in. However, beyond this principle there is no sin-
gle, standard definition of exactly what a “component”
is or how it is used. By not attempting to force all com-
ponents into a single fixed design methodology, the OS-
Kit gains a degree of flexibility that we have found to
be essential to its success. In particular, the most natu-
ral size and granularity for components vary widely in
different parts of the OSKit, from tiny single-function
“components” such as strcpy to large components
each consisting of many modules such as the BSD file
system. To cope with such large variations in granular-
ity, there must be some corresponding variety in imple-
mentation and usage patterns. The OSKit’s libraries are
roughly divided into two main categories: function li-
braries and component libraries.

4.3.1 Function Libraries

The OSKit’s function libraries provide relatively sim-
ple, low-level services in a traditional C-language
function-oriented style. They are designed for fine-
grained use and control, generally on a function-by-
function basis, allowing the client OS to use particular
library functions while leaving out or individually over-
riding other functions. The dependencies between li-
brary functions are minimized, as are dependencies on
other libraries; where these dependencies inevitably ex-
ist, they are well-defined and explicitly exposed to the
OS developer.

For instance, the OSKit’s minimal C library pro-
vides an implementation of the well-known printf

function as well as other standard I/O services; how-
ever, these services are designed very differently from
those of traditional C libraries. A standard I/O mod-
ule traditionally acts as one big “black box” which im-
plements a broad set of high-level services on top of a
corresponding set of low-level services (read, write,
etc.), and maintains private state to implement buffer-
ing and other common features. Making use of a single
standard I/O function in an application pulls in various
internal support routines, and with them many depen-
dencies on other facilities such as memory allocation,
terminal control, etc. The standard I/O services in the
OSKit’s minimal C library, on the other hand, minimize
dependencies and internal state (e.g., they perform no
buffering), and their implementations are documented
so that the client OS can exercise full control over them.
For instance, the OSKit’s default printf function is
implemented in terms of two other functions, puts and
putchar; the default puts, in turn, is implemented
only in terms of putchar. While this implementation
would be a bug in a standard C library, in which overrid-
ing one function is not supposed to affect the behavior of
another, in the OSKit’s minimal C library it is extremely
useful because it allows the client OS to obtain basic for-
matted console output simply by providing a putchar
function and nothing else.

4.3.2 Component Libraries

Whereas the function libraries are designed for max-
imum fine-grained flexibility and controllability, the
component libraries are designed to provide large
chunks of functionality in one shot, as quickly and
conveniently as possible. They adopt a more coarse-
grained, object-oriented “black box” design philosophy
with relatively fewer public entrypoints. For example,
in the OSKit’s device driver component libraries,
each device driver is represented by a single function
entrypoint which is used to initialize and register the
entire driver. Most of the internal details of the driver
and the hardware it controls are hidden from the client
OS, which generally interacts with these components
only through common, well-defined, object-oriented
interfaces, giving the OS developer “plug and play”
control over the overall system structure. This design
increases large-scale flexibility at the expense of fine-
grained controllability: by using a particular OSKit
device driver, the OS developer gives up direct control
over the piece of hardware the driver is controlling, but
gains the ability to drop a different driver in its place

7

later on without changing anything else.

There is no clear-cut criterion defining the appropri-
ate granularity for particular components; in fact, for
some services it may be desirable to have alternative
libraries available implemented at different granulari-
ties. For example, while the OSKit’s minimal C library
serves the needs of kernels and simple applications well
by emphasizing simplicity and flexibility over function-
ality, in the future we may integrate a more traditional
C library, such as the BSD C library, as an alternative
OSKit component, to be used in situations where more
complete functionality but less fine-grained control is
needed by the application.

4.4 COM Interfaces

For usability, it is critical that OSKit components have
clean, well-defined interfaces, designed along some co-
herent set of global conventions and principles. To pro-
vide this standardization, we adopted a subset of the
Component Object Model [25] as a framework in which
to define the OSKit’s component interfaces. At its low-
est level, COM is merely a language-independent pro-
tocol allowing software components within an address
space to rendezvous and interact with each other effi-
ciently, while retaining sufficient separation so that they
can be developed and evolved independently. Besides
the obvious advantages of making the OSKit’s inter-
faces more consistent with each other and with those
widely used in component-oriented applications, COM
also brings several technical advantages described be-
low.

4.4.1 Implementation Hiding

COM is founded on the notion of interfaces, which are
comparable to Java [19] interfaces: they define a set of
methods that can be invoked on an object without pro-
viding any direct access to the object’s internal state.
COM interfaces are defined independently of the com-
ponents that implement them, ensuring that implemen-
tation and interface remain well-separated; in practice
many different implementations of a particular COM in-
terface often coexist even within a single system. As
represented in the C language, a COM interface is an
opaque structure whose actual size and content is un-
known to the client, except that its first member is a
pointer to a table of function pointers, similar to a C++
virtual function table. For example, Figure 2 shows a
slightly simplified but essentially complete definition of
the OSKit’s blkio interface, which is implemented by

each of the OSKit’s disk device drivers as well as by
other components.

typedef struct blkio {
struct blkio_ops *ops;

} blkio_t;

struct blkio_ops {
error_t (*query)(blkio_t *io,

const struct guid *iid,
void **out_ihandle);

unsigned (*addref)(blkio_t *io);
unsigned (*release)(blkio_t *io);
unsigned (*getblocksize)(blkio_t *io);
error_t (*read)(blkio_t *io, void *buf,

off_t offset, size_t amount,
size_t *out_actual);

error_t (*write)(blkio_t *io, const void *buf,
off_t offset, size_t amount,
size_t *out_actual);

error_t (*getsize)(blkio_t *io, off_t *out_size);
error_t (*setsize)(blkio_t *io, off_t new_size);

};

/* Friendly macros */
#define oskit_blkio_read(io, buf, ofs, amount, out_actual) \

((io)->ops->read((io),
(buf), (ofs), (amount), (out_actual)))

....

#define BLKIO_IID GUID(0x4aa7df81, 0x7c74, 0x11cf, \
0xb5, 0x00, 0x08, 0x00, 0x09, 0x53, 0xad, 0xc2)

Figure 2: The OSKit’s COM Interface for Block I/O. The
blkio ops structure is the dynamic dispatch table for this inter-
face, representing the methods that can be called. The last two
lines define the Globally Unique Identifier (GUID) identifying the
blkio interface.

4.4.2 Interface Extension and Evolution

An object can export any number of COM interfaces;
each interface represents one particular “view” of the
object with its own independent function table through
which methods can be invoked. Interfaces are identified
by algorithmically generated DCE Universally Unique
Identifiers (UUIDs), so new COM interfaces can be
defined independently by anyone with essentially no
chance of accidental collisions. Given a pointer to any
COM interface, the object can be dynamically queried
for pointers to its other interfaces, providing what is
known in many languages as “safe downcasting” or
“narrowing.” This mechanism allows objects to imple-
ment new or extended versions of existing interfaces
while retaining compatibility with clients that only un-
derstand the original interface, and it allows clients to
probe an object safely and take advantage of extended
interfaces if available while falling back on the base in-
terface if not. For example, the OSKit’s bufio inter-

8

face is an extension to the blkio interface in Figure 2,
which adds methods to allow direct pointer-based ac-
cess to the data stored in the object in the common case
in which this data happens to be in local memory. The
OSKit’s raw, unbuffered disk device drivers only pro-
vide the basic blkio interface, since a read or write
to the object translates to a disk read or write; however,
an object representing a buffered disk device or a RAM
disk could also support the extended bufio interface
to provide more efficient access to clients that can take
advantage of the extended interface.

4.4.3 No Required Support Code

Finally, one of the abstraction features in our use of
COM that is most important for the purposes of the OS-
Kit is that interfaces can be completely “standalone”
and do not require any common infrastructure or sup-
port code that the client OS must use in order to make
use of the interfaces. Contrast this, for example, with
the BSD, Linux, and x-kernel network stacks, in which
the protocols themselves are modular and interchange-
able to some degree, but each of their interfaces depends
on a particular buffer management abstraction with a
particular concrete implementation (mbufs, skbuffs,
and Msgs, respectively). In order to use any BSD net-
working code, one must also incorporate and “design
around” the BSD mbuf code; it would be nontrivial
at best to replace it with an alternative buffer man-
agement implementation that differs in more than mi-
nor details. The OSKit’s corresponding interfaces, on
the other hand, are purely behavioral contracts between
modules that rely on no particular common implemen-
tation infrastructure.

4.5 Execution Environment

To achieve full OSKit component separability, it is nec-
essary to define and document not only the interface im-
plemented by a component, but also all of the interfaces
the component itself uses and the execution environ-
ment on which it depends: in other words, each com-
ponent must be described not only “in front” but “all
around.” For function libraries such as the minimal C li-
brary, this is mostly a matter of documenting each func-
tion’s behavior and dependencies: for instance, the doc-
umented “environment” of the printf function con-
sists of the puts and putchar functions on which it
is based.

For larger components such as device drivers, how-
ever, issues such as concurrency and synchronization

are important, and the reentrancy and interruptibility re-
quirements of each component must be defined care-
fully. Naturally, the complexity of the execution envi-
ronment required by a component varies depending on
the size and complexity of the component itself in addi-
tion to other factors; however, in all cases the OSKit’s
design attempts to minimize the complexity of this ex-
pected execution environment. For instance, the OS-
Kit does not require the OS to provide a notion of “in-
terrupt priority levels” as is used in BSD, even though
the OSKit incorporates BSD file system and network-
ing code and can be made to use multiple IPLs if de-
sired. The OSKit documentation specifies several basic
execution models of varying complexity, ranging from
an extremely simple concurrency model in which the
component makes almost no assumptions about its en-
vironment, to the most complex model in which compo-
nents must be aware of and have some control over var-
ious concurrency issues such as blocking, preemption,
and interrupts. All of the OSKit’s components conform
to one of these documented execution models. Further,
since using the OSKit in a given environment will in-
variably involve some adaptation to local requirements,
we have also included in the documentation a number of
“recipes” for using OSKit components in various com-
mon environments, such as preemptive, multiprocessor,
or interrupt-model kernels.

4.6 Exposing the Implementation

Whereas hiding the implementation of a module is gen-
erally considered good software design practice, we
take an approach in line with Kiczales’ “Open Imple-
mentation” philosophy [22]. The OSKit often explic-
itly exposes the implementation of a component as part
of its documented interface, in order to provide max-
imum power and flexibility to the client OS. For in-
stance, the OSKit’s basic memory management library
exposes a number of functions that are fairly specific
to its particular implementation, such as the ability to
reserve particular regions of physical memory or walk
through and examine the free list. The client OS is not
obligated to use these low-level interfaces and in most
cases can stick to the standard malloc-like interface,
but the availability of the low-level interfaces is often
important in meeting the needs of particular kernels.

The OSKit employs an open implementation philos-
ophy even for the more coarse-grained component li-
braries in which it is usually desirable to hide most im-
plementation details. However, in this case, the key

9

point is that implementation details are hidden unless
explicitly requested; they are not forced onto the client.
For example, all of the OSKit’s device drivers, whether
derived from BSD or Linux, export a common set of ba-
sic interfaces which hide the nature and origin of each
individual driver; however, each device driver can also
export additional interfaces providing extended, driver-
specific functionality. In fact, the COM interface exten-
sion mechanism (Section 4.4.2) provides an ideal basis
for open implementation in the OSKit.

4.7 Encapsulation of Legacy Code

Much of the code in the OSKit is derived directly or
indirectly from existing systems such as BSD, Linux,
and Mach. For small pieces of code that aren’t expected
to change much in the original source base, or are ex-
pected to diverge widely from the original base anyway,
we simply assimilated the code into the OSKit’s source
tree, modifying it as necessary, and maintaining it as
part of the OSKit from then on. However, for large or
rapidly-changing bodies of code borrowed from exist-
ing systems, such as device drivers, file systems, and
network protocol stacks, we instead took the approach
of cleanly encapsulating the code within its new envi-
ronment. This approach generalizes the technique ex-
plored by Goel at Columbia and Utah, in which Linux
device drivers were used unchanged in the Mach 3.0
kernel [18]. The OSKit defines a set of COM interfaces
by which the client OS invokes OSKit services; the OS-
Kit components implement these services in a thin layer
of glue code, which in turn relies on a much larger mass
of encapsulated code, imported directly from the donor
OS largely or entirely unmodified. The glue code trans-
lates calls on the public OSKit interfaces such as the
blkio interface into calls to the imported code’s in-
ternal interfaces, and in turn translates calls made by
the imported code for low-level services such as mem-
ory allocation and interrupt management into calls to the
OSKit’s equivalent public interfaces. Although some-
times tricky to implement, this design requires virtually
no modifications to the encapsulated code itself, vastly
simplifying the task of keeping the code up-to-date with
new versions of the donor OS. Of course, the glue code
still has to be updated to deal with major changes in
the native environment being emulated, but this is much
simpler than updating all the imported code manually,
and occurs much less frequently. For example, the OS-
Kit’s Linux driver set has already tracked the Linux ker-
nel through several versions, starting with Linux 1.3.68;

the encapsulation technique has made these upgrades
relatively straightforward, and they continue to become
easier as the emulation mechanisms are refined. The
following sections describe some of the particular tech-
niques we employed in encapsulating legacy code in the
OSKit.

4.7.1 Basic Structure

We have found it extremely useful to preserve not only
the contents of source files imported from legacy sys-
tems, but also the directory structure they reside in. For
instance, all of the encapsulated FreeBSD code is lo-
cated in the OSKit subdirectory freebsd/src; this
directory exactly mirrors the /usr/src tree in the
actual FreeBSD distribution, except that it only con-
tains the files the OSKit actually uses. The glue code
that encapsulates the imported FreeBSD code is located
in separate directories such as freebsd/net and
freebsd/dev, keeping the glue well separated from
the encapsulated code. This structure allows changes in
a new release of the donor OS to be incorporated simply
by applying an appropriate patch to the appropriate OS-
Kit directory subtree and then fixing any resulting con-
flicts. Of course, if the changes in the donor OS were
extensive, the conflict resolution and debugging process
can take some time and thought, but it is still much sim-
pler and quicker than updating heavily modified or re-
structured code.

4.7.2 Conversions and Namespace Management

The imported OS code defines and relies on a large num-
ber of symbols which create namespace management
problems at both compile and link time. For instance,
the imported Linux and FreeBSD kernel header files
each define their own versions of many standard POSIX

types such as size t and struct stat, which may
or may not happen to be equivalent to each other or to
the definitions used in the OSKit component interfaces.
Mismatches between types used in imported code and
those used in the public OSKit interfaces, such as dif-
ferences in the stat structure, are handled by perform-
ing conversions in the glue code surrounding the encap-
sulated component. However, this means that the glue
code must include both the header files imported from
the donor OS and the header files defining the OSKit
interfaces; to prevent symbol name conflicts, all sym-
bols defined by these OSKit headers are given prefixes
(e.g., oskit stat) to disambiguate them from sym-
bols used in legacy code. Following this rule in the OS-
Kit interface definitions also leaves a cleaner namespace

10

for the client OS.

The link-time namespace presents another problem:
although the legacy header files are never used or seen
by other components or by the client OS, any global
functions or variables the legacy code defines may con-
flict with those defined by the client OS or by other
components. For example, the NetBSD file system
and FreeBSD networking components use many func-
tions with the same names but incompatible definitions,
which is not surprising given the common heritage of
these systems. To solve this problem we used pre-
processor magic to rename these symbols: e.g., the
wakeup function used in the FreeBSD device drivers is
named FDEV FREEBSD wakeup in the compiled ob-
ject files comprising the library, preventing linker con-
flicts with other code.

4.7.3 Exporting COM Interfaces

We have found the implementation flexibility afforded
by the OSKit’s COM interfaces to be critical to export-
ing efficient interfaces to legacy code. For example, as
mentioned earlier, BSD and Linux each have internal
“network packet buffer” abstractions, known as mbufs
and skbuffs respectively, whose implementation de-
tails are thoroughly known throughout their respective
device driver and networking code. It would be imprac-
tical to change either code base to use a different packet
buffer representation, but in order to make the BSD
and Linux components interoperate with each other and
with client OS code that may use a different abstrac-
tion, the details of mbufs and skbuffs must be hid-
den within the respective components. COM interfaces
allow this to be done without copying except in a few
unavoidable situations.

When a Linux network driver receives a packet from
the hardware, it reads it into a contiguous skbuff and
then passes it up to higher-level networking code, which
in this case is the OSKit’s Linux glue code. This glue
code must in turn export the packet from the compo-
nent using the OSKit’s common networking interfaces
in which packets are represented by bufio interfaces
(see Section 4.4.2). Because COM interfaces make es-
sentially no restrictions on the implementation details of
the objects themselves, the Linux glue code can export
the skbuff directly as a COM bufio object without
copying the data, merely by adding a bufio interface
to the Linux skbuff structure itself. The COM inter-
face is simply a one-word field in the skbuff struc-
ture in which the glue code places a pointer to a func-

tion table providing methods to access the skbuff’s
contents; the semantics of these functions are defined by
the bufio interface, but the functions themselves are
implemented by the glue code with full internal knowl-
edge of Linux’s skbuff implementation. After the
skbuff leaves the component, external code only ma-
nipulates it through its bufio interface.

Packets submitted to the driver component for trans-
mission are also represented by a COM bufio inter-
face, but the Linux glue code cannot assume that the ob-
ject is really an skbuff since, for example, the packet
may have been manufactured in the FreeBSD TCP/IP
code where packets are instead represented as mbufs.
The Linux glue code can easily recognize “foreign”
bufio objects by checking their function table pointer;
when it receives one, it first calls its map method to ob-
tain a direct pointer to the data in the buffer if possi-
ble. This call will only succeed if the implementor of
the bufio object happens to store the requested range
of data in contiguous local memory; if it does, the Linux
glue code creates a “fake” skbuff pointing directly to
this data. Otherwise, the glue code allocates a normal
skbuff and calls the bufio interface’s readmethod
to copy the data into the buffer. In this way, copying is
avoided whenever possible while presenting a clean, ab-
stract interface to the client OS and other components.

4.7.4 Blocking and Interrupts

Since all of the OSKit’s encapsulated components cur-
rently come from systems that use the relatively simple
and well-understood blocking model, the encapsulated
OSKit components retain this same execution model as
seen by the client OS. The model has two levels, “pro-
cess level” and “interrupt level.” There can be many
process-level threads of control using separate stacks,
but only one can run at a time and context switches only
occur at well-defined “blocking” points; interrupt-level
activities can run any time interrupts are enabled and
always run to completion without blocking. Unlike in
conventional kernels, however, the “process” and “in-
terrupt” abstractions in the OSKit components are gen-
erally only relevant for purposes of defining the con-
currency model, and do not necessarily correspond to
“real” processes or hardware interrupt handlers. As
long as the client OS ensures that all calls it makes
into the component follow the constraints defined by the
concurrency model, it can use the component in practi-
cally any environment.

For example, although the encapsulated OSKit com-

11

ponents are not inherently multiprocessor or thread
safe, they can easily be used in multiprocessor or mul-
tithreaded environments by taking a component-wide
lock just before entering the component, and releasing it
after the component returns and during any “blocking”
calls the component makes back to the client OS. Al-
though this allows only relatively coarse-grained con-
currency, this granularity is sufficient in many situations
and is clearly the best we can do without heavily modi-
fying the imported code. Furthermore, the client OS can
run different OSKit components independently—for in-
stance, a multiprocessor OS could place separate locks
around the file system and network components, allow-
ing them to execute concurrently. This medium-grained
concurrency is possible because of the clean separation
and independence of the OSKit components, and would
be much harder to achieve if the BSD or Linux file sys-
tem and networking code was imported into the client
OS directly without any of the “packaging” done by the
OSKit.

4.7.5 Hiding Details of Legacy Environments

Even though the concurrency model presented to the
client OS by the OSKit’s encapsulated components is
superficially similar to the models used in the donor OS
environments, the OSKit’s environment is much sim-
pler and more limited in many ways, making as few de-
mands as possible on the client OS in order to make the
components as widely usable as possible. For exam-
ple, as mentioned above, the OSKit’s components gen-
erally can’t assume that the client OS has any notion of
a “process” in the traditional sense. However, the im-
ported legacy code is generally riddled with code that
makes assumptions about processes and often accesses
the “current process” structure directly (e.g., through
BSD’s curproc or Linux’s current pointer). This
is done for many reasons, but the most common cases
are permission checking and blocking on events.

To avoid having to make the large number of changes
required to eliminate these dependencies, we instead
structured the glue code to emulate the abstractions ex-
pected by the encapsulated code. For example, to em-
ulate the current process, at every entrypoint into the
component from the “outside,” the glue code creates
and initializes a minimal temporary process structure on
the stack, and initializes the global (component-wide)
curproc pointer to point to it. This structure then
represents the “current process,” as far as the encapsu-
lated code is concerned, for the duration of this call, and

automatically disappears when the call completes—in
essence, the glue code manufactures processes on de-
mand. Since other threads of control may execute in
the component during any blocking calls the component
makes back to the client OS, the glue code must also in-
tercept these calls and save the curproc pointer on the
local per-thread stack for their duration in order to pre-
vent it from getting trashed by other concurrent activi-
ties. In this way, the glue code emulates the process ab-
straction expected by the legacy code while completely
hiding it from the client OS.

4.7.6 Sleep/Wakeup

Another related part of the donor OS environment
used throughout the imported legacy code is the
sleep/wakeup mechanism, which for example the
interrupt handler in a device driver uses to wake up a
blocked read or write request after it has completed.
Naturally, the details of the sleep/wakeup mechanism
vary widely even among similarly structured kernels
such as BSD and Linux. The glue code in each encap-
sulated component emulates the native sleep/wakeup
mechanism of the donor OS on top of a single extremely
simple underlying abstraction designed to be as easy
as possible for the client OS to implement: namely a
“sleep record,” which is like a condition variable except
that only one thread of control can wait on it at a time.
The client OS can directly implement these “sleep
records” in various ways, such as using conventional
condition variables or event objects or whatever else
the client OS uses internally for synchronization. In
fact, in the OSKit’s single-threaded example kernels,
sleeping is implemented simply as a busy loop that
spins on a one-bit field in the sleep record structure.

Given this minimal sleep/wakeup mechanism pro-
vided by the client OS, we found that the easiest
way to emulate the more elaborate mechanisms ex-
pected by legacy OS code was to incorporate the actual
sleep/wakeup code from the legacy OS and modify it
slightly to use the OSKit’s sleep record abstraction in
place of the legacy OS’s scheduler. For instance, the
BSD sleep/wakeup mechanism uses a global hash table
of “events,” where an event is just an arbitrary 32-bit
value; when wakeup is called on a particular event, all
processes waiting on that particular value are woken. In
the encapsulated BSD-based OSKit components, we re-
tain BSD’s original event hash table management code;
however, the hash table is now only used within that par-
ticular component rather than throughout the entire sys-

12

tem, and instead of all the scheduling-related fields in
the emulated proc structure there is now only a sleep
record which the BSD glue code uses to block the cur-
rent “process” as necessary.

4.7.7 Memory Allocation

Another tricky aspect of the legacy environment to be
emulated is the memory allocation mechanism. BSD’s
in-kernel malloc package tries to be particularly
clever in a number of respects: (1) all allocated blocks
are naturally aligned according to their size (e.g., 65–
128 byte blocks are aligned on a 128-byte boundary);
(2) blocks with a size of exactly a power of two can be
allocated efficiently without wasting space; and (3) the
allocator automatically keeps track of the sizes of allo-
cated blocks. Any two of these properties can be im-
plemented easily, but it takes special tricks to provide
all three at once—and several parts of the BSD kernel,
such as the mbuf code for networking and the clist
code for character I/O, depend on all three properties.

The BSD kernel allocator provides these three prop-
erties by reserving on system startup a special range of
kernel virtual memory for this allocator, and creating a
separate table with one entry for each page in this range.
Each entry records the size of the blocks allocated from
that page, so that on a call to free the allocator can
quickly look up the size of the allocated block without
having to reserve space in the memory block itself for
this information, which would conflict with the first two
properties above. Unfortunately, this solution is not ac-
ceptable in the OSKit because OSKit components do
not have any knowledge of or control over the virtual
or physical memory layout of the kernel or user-mode
application in which they run. In this case, there ap-
pears to be no entirely satisfactory solution that does
not involve heavy modifications to the imported legacy
code; however, we have adopted an imperfect but prac-
tical solution which relies on the (generally true) heuris-
tic assumption that most memory blocks returned by the
client OS will be fairly densely packed within the ad-
dress space. To provide the properties above in this con-
text, our BSD glue code uses BSD’s kernel malloc
package unmodified, layering it on top of the memory
allocation facility the client OS provides, except that
our glue code watches the memory blocks returned by
the client OS and dynamically re-allocates and grows
the allocation table as necessary to ensure that it always
covers all of the addresses that the allocator has ever
“seen.” Naturally, this solution may become very ineffi-

cient or cease to work in unusual cases where the mem-
ory blocks returned by the client OS are very widely dis-
persed in the component’s address space; however, it
works fine in all of the situations we have so far encoun-
tered.

4.7.8 Physical Memory Access

Another common problem with legacy kernel code, par-
ticularly device driver code, is the assumptions it makes
about how it can access physical memory. For ex-
ample, some of the Linux device drivers assume that
all physical memory is direct-mapped into their ad-
dress space starting at virtual address zero, and access
memory-mapped devices, BIOS information, etc., sim-
ply by “manufacturing” pointers directly from physical
addresses. This makes it impossible to use these par-
ticular drivers in a client OS that does not directly map
physical memory in this way; In this case there appears
to be no solution other than fixing the drivers them-
selves. Fortunately, FreeBSD drivers use a well-known
symbolic constant when accessing physical memory in
this way; this “constant” can simply be changed into a
variable initialized by the BSD glue code on start-up to
point to a region of mapped physical memory.

5 Example OSKit-Based Systems

The examples distributed with the OSKit include
Chesapeake’s Test TCP (ttcp) benchmark [13]
which measures TCP send/receive bandwidth. We
implemented a second benchmark to measure latency,
similar to hbench’s [11] lat tcp, called rtcp,
which measures the time required for a 1-byte round
trip. We will use these examples to demonstrate
how applications can tie various OSKit components
together, and to measure the unavoidable though fairly
small performance impact caused by the interactions
between components and by mismatches in the internal
abstractions used by imported legacy code.

The minimal C library provided all but a few of the
functions required by these examples. Since ttcp re-
lies on the times reported bygetrusage for its timing,
we implemented a simple getrusage based on the
timers kept by the FreeBSD-derived networking code.
ttcp also uses signal and select which are cur-
rently not provided by the OSKit, but they are only
used to handle exceptional conditions and can be imple-
mented as null functions without affecting the results.
Aside from these additions and the initialization of the

13

device drivers and networking stack, we were able to
compile the applications unchanged. The required ini-
tialization code looks like this:

fdev_linux_init_ethernet();
fdev_probe();
oskit_freebsd_net_init(&sf);
posix_set_socketcreator(sf);
fdev_device_lookup(&fdev_ethernet_iid, &dev);
oskit_freebsd_net_open_ether_if(dev[0], &eif);
oskit_freebsd_net_ifconfig(eif, IPADDR, NETMASK);

fdev linux init ethernet initializes the
Linux ethernet drivers, causing all supported drivers
to be linked into the resulting application. (The client
OS can alternatively link in only specific drivers if it
chooses.) fdev probe locates all devices for which
a driver has been initialized. The FreeBSD networking
stack is initialized with oskit freebsd net init
which returns a “socket factory” interface used to
create new sockets; posix set socketcreator
is then called to register that socket factory with the
C library so that its socket function will work.
The fdev device lookup call searches the de-
vice table constructed with fdev probe, returning
an array of handles for Ethernet devices. The first
such device is then bound to the FreeBSD network
stack by oskit freebsd net open ether if,
which returns a handle used by
oskit freebsd net ifconfig to perform
BSD ifconfig-style configuration of the network
interface.

C library

FreeBSD TCP/IP

Linux Ethernet

BSD socket interface

oskit_socket COM interface

fdev_ethernet, oskit_netio,

oskit_bufio COM interfaces

Hardware

Application

Figure 3: Structure of the ttcp and rtcp example kernels.

Figure 3 shows the structure of the ttcp and rtcp
kernels when compiled with the OSKit libraries. The
application uses the familiar BSD socket functions. The
OSKit’s C library maps these functions directly to the
methods of the oskit socketCOM interface imple-
mented by the FreeBSD networking component, by as-
sociating file descriptors with references to COM ob-
jects. Since the C library’s socket call uses a client-
provided socket factory interface to create new sockets,
this C library code can be used with any protocol stack

Receiver:
Linux FreeBSD OSKit

Sender:
Linux 72.4 71.2 71.3
FreeBSD 60.0 78.6 78.7
OSKit 56.4 68.3 68.2

Table 1: TCP bandwidth in MBit/s measured with ttcp between
two Pentium Pro 200MHz PCs connected by 100Mbps Ethernet.

that provides these socket and socket factory interfaces.

When the client OS binds the FreeBSD protocol
stack to a Linux device driver during initialization, these
components exchange callback functions which are
subsequently used to pass packets back and forth asyn-
chronously. When the driver receives a packet from
the hardware, the driver calls the protocol stack’s regis-
tered callback; similarly, when the protocol stack needs
to transmit a packet, it calls the device driver’s call-
back. Packets passed through these callbacks are repre-
sented as references to opaque objects implementing the
oskit bufio COM interface (see Section 4.7.3). In
this system configuration, incoming packets are initially
represented internally as skbuffs in the Linux net-
work driver code; these skbuffs are passed directly to
the FreeBSD TCP/IP component as COM bufio ob-
jects, which the FreeBSD glue code internally repack-
ages as mbufs for the benefit of its imported FreeBSD
code. Since skbuffs represents packets as contiguous
buffers, the FreeBSD glue code is able to obtain a di-
rect pointer to the packet data using the map method of
the bufio interface, and therefore never has to copy
the incoming data. Outgoing packets manufactured by
the FreeBSD TCP/IP code, on the other hand, some-
times consist of multiple discontiguous buffers chained
together; in this case, when the mbuf chain is passed
to the Linux driver as a bufio object, the Linux glue
code must read the data into its own contiguous buffer
in order to present it to the encapsulated driver code
as an skbuff. Thus, the mismatch between Linux’s
and BSD’s internal packet representations sometimes
requires extra copying on the send path, but never on the
receive path.

Tables 1 and 2 compare the TCP send and re-
ceive bandwidth and latency for three environments:
Linux 2.0.29, FreeBSD 2.1.5, and the OSKit using the
FreeBSD 2.1.5 protocol stack and the Linux 2.0.29 de-
vice drivers. Running these tests as applications on top

14

Server:
Linux FreeBSD OSKit

Client:
Linux 152 168 180
FreeBSD 168 197 210
OSKit 180 210 222

Table 2: TCP one-byte round-trip time in �sec measured with
rtcp between two Pentium Pro 200MHz PCs connected by
100Mbps Ethernet.

of Linux or FreeBSD involves system call overhead not
present in the OSKit versions; to factor this out, the
transmit and receive loops for ttcp and rtcp were
moved into the kernel on Linux and FreeBSD and ac-
cessed via a special system call.

Table 1 presents the bandwidth measurements ob-
tained with ttcp. In each case ttcp transmitted
131072 blocks of 4096 data bytes (52MB total). This
reasonably long run of the test compensates for the rel-
atively low 10ms granularity of the clock used for tim-
ing. The results show that the OSKit implementation re-
ceives about as fast as FreeBSD—this is due to the fact
that the Linux driver always hands contiguous buffers
up which can be mapped tombuf clusters without copy-
ing. On the other hand, when a packet is sent, an ad-
ditional copy is necessary since non-contiguous proto-
col mbufs must be copied into contiguous device driver
skbuffs, accounting for the decrease in send perfor-
mance.

Table 2 shows the latency of a 1-byte round-trip.
While we cannot interpret Linux’s performance, the
FreeBSD versus OSKit results indicate that the OSKit
imposes significant overhead. Extra data copies are not
part of the problem since this test involves small packet
sizes that fit in a single protocol mbuf, enabling map-
ping into a device driver skbuff. Hence, the overhead
is largely attributable to the additional glue code within
the OSKit components: the price we pay for modularity
and separability and for the ability to use existing driver
and networking code unmodified in an environment for
which they were not designed.

6 Experience Using the OSKit

The OSKit is already being used in several different
research projects at institutions around the world, not
only for “traditional” OS research but also for systems-
level advanced programming language research: de-

signing systems in which the programming language is
the operating system. Language implementations usu-
ally have to take the operating system’s interface to the
hardware as a given; for languages whose semantics
differ markedly from C, the match is often not ideal.
Unix, for example, is tuned to provide the services re-
quired by the C run-time model, such as protected, flat
address spaces and stack allocation. The OSKit, for the
first time, enables advanced language systems to be eas-
ily implemented directly on the raw hardware, avoiding
these mismatches created by traditional operating sys-
tems. The most striking common finding of these vari-
ous research projects has been how remarkably easy it
was to implement experimental kernels and advanced
language systems on the raw hardware using the OSKit
as a substrate.

6.1 Case Studies

In this section we first briefly describe four major re-
search projects that have recently taken advantage of the
OSKit, and the overall experience of using the OSKit in
each case; the next section will describe in more detail
specific aspects of the OSKit that proved to be particu-
larly useful in these research projects.

6.1.1 The Fluke OS

In 1996 we developed an entirely new microkernel-
based system called Fluke [17] to explore numer-
ous ideas in fundamental kernel structuring, including
scheduling mechanisms, execution models, IPC, and
virtual memory. We had been pursuing research using
the Mach microkernel, but found that none of these di-
rections could have been explored or effectively eval-
uated in the context of this existing system because it
was too large, inflexible, and tightly bound together to
be amenable to the fundamental changes we needed to
make. Therefore, we started a new system, incorporat-
ing a few pieces of Mach and BSD code but otherwise
written from scratch. To ensure that Fluke would not
quickly become as tightly-bound and inflexible as its
predecessor, we started developing the OSKit concur-
rently as a set of components to be used in Fluke and
other projects. Therefore, Fluke acted as the primary
driving application for the OSKit, but by also using the
OSKit simultaneously for other purposes, we were able
to prevent it from becoming specific to Fluke.

Fluke puts almost all of the OSKit to use, and in fact
over half of the Fluke microkernel is OSKit code. Most
of the basic servers and other utilities that run on Fluke

15

also use the OSKit to provide their standard C library,
memory allocation, address space management, and de-
bugging facilities. These servers include a virtual mem-
ory manager, checkpointer, file and network servers,
and a process manager. Although Fluke includes a com-
plete standard C library based on FreeBSD’s C library
for the use of Unix applications running on Fluke, in
many situations we have found that the OSKit’s mini-
mal C library provides all the functionality needed and
is much smaller, simpler, and more flexible.

6.1.2 Standard ML

Standard ML [26] is a functional programming lan-
guage that includes first-class, higher-order procedures,
a static polymorphic type system, exceptions, contin-
uations, and a sophisticated module system. We built
our system, called ML/OS, by porting the Standard ML
of New Jersey (SML/NJ) implementation [6] to run on
a PC using the OSKit. SML/NJ is a complex, Unix-
based system comprising about 144,000 lines of code,
in over 1000 source files. The run-time model used by
SML/NJ is fairly exotic—for example, the system runs
completely without a stack, using instead very aggres-
sive heap-allocation and garbage-collection techniques
to manage procedure frames. Our current research fo-
cus in the ML/OS effort is modeling concurrency using
semantic features found in higher-order programming
languages, in particular continuations. This requires the
language and compiler to be intimately involved with
the fundamental context switch code, something that is
not possible in traditional operating systems.

At MIT, ML/OS was developed over a semester by
a Master’s student with the part-time assistance of an
undergraduate programmer. Neither student was pre-
viously familiar with OS internals or the low-level de-
tails of the x86 architecture. Much of their effort was
spent in learning and dealing with the details of the
SML/NJ implementation, which was far more complex
than the OSKit code to which it was being mated. In
contrast to this experience, strong groups of advanced
programming language researchers have been intend-
ing, for years, to implement a sophisticated functional
language directly on a raw hardware platform. For ex-
ample, the Fox project at CMU [5, page 214] and the
Programming Principles group at Bell Labs have at dif-
ferent times begun efforts to port SML/NJ to run on bare
hardware. But the details of doing so have been suffi-
ciently forbidding as to prevent these efforts from ever
being completed.

6.1.3 SR

SR is a language designed for writing concurrent pro-
grams, both parallel and distributed [3], for both appli-
cation and systems software. It offers a flexible con-
currency model, and includes as inherent parts of the
language entities such as threads, synchronization, and
communication mechanisms. The standard SR imple-
mentation [31] is tightly coupled to Unix I/O and Unix
sockets, thus for the work described in this paper we
started with a previously developed, more platform-
neutral version of SR [9]. That version removes many
Unix dependencies and isolates system-dependent func-
tionality such as threads, synchronization, and network
communication. Our research goal in porting SR to
the raw hardware is to investigate the effectiveness of
a communication-oriented language for implementing
OS functionality.

Implementing SR/OS with the OSKit was accom-
plished by one U.C. Davis student while visiting the
University of Utah. The initial implementation took ap-
proximately one week, and adding network support us-
ing the x-kernel protocol stack required another week.
In contrast, several earlier attempts to implement SR
directly on the hardware proved very difficult or were
stillborn. A very early version of SR was implemented
directly on PDP-11 machines, but its development and
debugging were extremely tedious [28]. Later, during
the Saguaro distributed operating system project, an SR
implementation on the bare hardware was again consid-
ered, but abandoned due to the lack of good develop-
ment tools [2].

6.1.4 Java

Finally, in a project to create a Java [19] environment on
the raw hardware, we started with Kaffe [34], a freely
available and portable Java virtual machine and just-in-
time compiler. Kaffe is written for a standard POSIX en-
vironment, requiring support for file I/O calls such as
open and read, as well as BSD’s socket API. It im-
plements its own user-level thread system, for which it
relies on some minimal signal handling facilities and
timer support. Our implementation goals were to pro-
vide a prototype Java-based “network computer” called
Java/PC, and an active network router. Our research
goals are to explore resource management issues, com-
paring this Java system on the bare hardware to a Java
system atop the Fluke microkernel.

Building Java/PC atop the OSKit was remarkably
easy: one Utah student, at that time not a major contrib-

16

utor to the OSKit, took just 14 hours to get the system
to run a “Hello, World” Java application; large single-
threaded applications, such as Sun’s Java compiler, ran
the next day. Less than three weeks later he had built a
usable system that ran complex applications such as the
Jigsaw Web Server [7], making extensive use of threads,
timers, and file and network I/O. The resulting system
is similar in function to Sun’s JavaOS [33] but with a
dramatically different implementation. Whereas almost
all components in our system reuse existing C-based
components provided by the OSKit, Sun’s was primar-
ily written anew in Java and took much longer to build.

6.1.5 Other Uses of the OSKit

We used an early version of the OSKit in a “DOS exten-
der” [15], a small OS kernel that runs on MS-DOS and
creates a more complete process environment for 32-
bit applications; this DOS extender is now being used
in commercial products. We have also used the OSKit
in two small experimental kernels that we prototyped in
order to test out new IPC, capability, and kernel execu-
tion environment concepts before committing to these
ideas in the main Fluke kernel effort. Both of these ker-
nels were developed in a matter of days to the point of
being useful for measurement and analysis; these pro-
totypes would not have been feasible without the OS-
Kit. Finally, besides these experimental kernels, we
have used the OSKit in several smaller utilities, such as
specialized kernels to boot other kernels across the net-
work or from existing non-MultiBoot boot loaders.

A few of the sites that have retrieved the OSKit have
informed us of their use. Among these are researchers
at the University of Carlos III in Spain who have built
their “Off” distributed adaptable microkernel [8] on top
of the OSKit, and the “bits and pieces microkernel”
(bpmk), developed in Finland. A company, Network
Storage Solutions, is using the OSKit to provide the
base hardware support for a “network appliance”-style
server. In the wake of the successful language-based OS
projects discussed above, another Utah student recently
ported the GNU Smalltalk system to the bare hardware.
He implemented a complete, functional multithreaded
Smalltalk system in just over seven hours, starting with
little experience with operating systems, the x86 PC, the
OSKit, or the Smalltalk run-time system. This system
has not yet, however, been used for serious research.

6.2 Common Experiences

This section describes a few specific aspects of the OS-
Kit that proved to be particularly useful in the above re-
search projects, as well as OSKit features that caused
problems or were commonly needed but not yet avail-
able.

6.2.1 POSIX Environment

All of the language implementations greatly benefited
from the fairly complete POSIX environment provided
by the OSKit’s minimal C library, memory allocator,
and kernel support library. This environment allowed
the Unix versions of the languages to be quickly ported
to the bare hardware, and then gradually specialized to
take advantage of the new environment, extending their
control to various hardware resources (e.g., registers,
traps, interrupts) that are hidden by a normal operating
system. Furthermore, the OSKit’s minimal POSIX envi-
ronment allowed the language research to focus on is-
sues critical to the research, and let the POSIX environ-
ment pick up the rest: we could let unimportant code re-
main unimportant.

6.2.2 Bootstrap Support

A particularly notable feature of the OSKit’s mini-
mal environment is its boot module support (see Sec-
tion 3.1), which provides a simple RAM-disk file sys-
tem accessible immediately upon bootstrap through
POSIX’s standard open/close/read/write inter-
faces. For example, in Fluke, this boot module file sys-
tem includes the first user-mode executable to be loaded
and run by the kernel, and subsequently acts as the root
file system for this initial server, without requiring any
“real” file system or device driver components to be em-
bedded in the kernel. ML/OS uses a boot module to
hold the precompiled “initial heap image” for the ML
runtime, which is over 99% of the kernel (i.e., every-
thing written in ML); similarly, Java/PC loads its Java
bytecode (.class files) from the initial boot module
file system. Other alternatives are available in each of
these cases, such as manually embedding data into .o
files linked into the kernel, or using the OSKit’s de-
vice drivers and file system components to load this data
from a “real” disk-based file system, but the boot mod-
ule facility invariably proved to be by far the most sim-
ple, robust, and convenient for this purpose.

6.2.3 No Imposed Process/Thread Abstraction

The absence of an OS-defined process or thread ab-
straction proved of great benefit to all three languages.

17

ML/OS provides continuation-based Concurrent
ML [29] threads as the machine’s basic thread facility,
complete with a preemptive scheduler, console I/O,
and timer events. Whereas OS thread systems usually
center on stacks, CML threads are entirely without
stacks, running entirely in the heap. Interrupts and
thread context switches use garbage collected contin-
uations. Modeling concurrency in this way is central
to our line of research; building on an infrastructure
that imposed no thread abstraction meant that we
could implement this model directly. It was similarly
straightforward to port the built-in thread packages in
Kaffe and SR to the OSKit. This contrasts with our
experience porting Kaffe to a kernel providing its own
thread abstraction—our Fluke microkernel. On Fluke,
in order to avoid classic problems such as blocking for
I/O, we needed to use native Fluke threads instead of
Kaffe’s built-in threads; minor mismatches between
Java’s and Fluke’s thread semantics caused the Fluke
port of Kaffe to take much longer.

6.2.4 Exposed Implementation and Hardware

In the ML port it was pleasant to discover how simple it
can be to implement a high-performance functional pro-
gramming language when one doesn’t have to bend over
backwards to accommodate the demands of an ill-suited
operating system. The SML/NJ sources are larded with
complex sequences of code designed to work around the
limits of the Unix architecture. For example, SML/NJ
allows heap allocation in signal handlers; to make this
work, the run-time system must go through arcane gym-
nastics when it wishes to modify the processor’s register
state from a Unix signal handler. The trickery involved
is considered sufficiently clever as to be worth report-
ing in the literature [4]. Since in our case the hardware
is exposed in a documented manner, we just did it. No
Unix; no trickery.

Java provided other examples of leveraging the ex-
posed implementation and hardware. Kaffe relies on the
delivery of SIGSEGV signals to detect null pointer ac-
cesses and throw the null pointer exception specified by
Java semantics. The x86 architecture provides an effi-
cient way to catch such accesses, by setting the proces-
sor’s breakpoint registers appropriately. Besides allow-
ing Java/PC direct access to this facility, the OSKit also
provided a simple way for it to install its own custom
trap handlers written in ordinary C, which can still fall
back to the default handler for traps that are of no inter-
est.

6.2.5 Modular, Separable Components

“Network computers” seek to minimize memory foot-
print, and often do not need a disk or file system; using
the OSKit it proved trivial to build a version of Java/PC
that included networking but no file system. We have
not yet made any effort to minimize memory footprint,
but the inherent modularity of the OSKit keeps the re-
sulting system to a modest size: the static (code+data)
size of our executable is 412KB, including one ether-
net driver, networking (121KB), the Kaffe virtual ma-
chine and native libraries (132KB), and various glue
code. Note that this system does not contain an imple-
mentation of Java’s abstract windowing toolkit (AWT).

6.2.6 Mature Components with Flexible Interfaces

The networking performance of our Java/PC and SR/OS
systems demonstrates the value of using mature, tuned
components with flexible interfaces. Four weeks into
the Java/PC project, using a measurement program writ-
ten in Java, we measured a sustained TCP receive
throughput of 78Mbps over a 100Mbps Ethernet, using
the hardware platform described in Section 5. As ex-
pected, the TCP send throughput was lower at 59Mbps
due to the extra copy. This relatively high performance
is not surprising considering that the BSD network pro-
tocols have been tuned for over 15 years. In contrast,
Sun’s recent re-implementation of TCP/IP in Java [33]
has been reported as being “more than adequate for Web
browsing,” but by inference is probably as yet nowhere
near the performance of traditional C implementations.

6.2.7 Fully Defined Interfaces and Execution Mod-
els

The simple, well-defined execution models used by the
OSKit components enabled them to be used fairly easily
in very different environments from those in which they
were originally designed. For example, even though the
Linux and FreeBSD-based components were designed
for a traditional nonpreemptive uniprocessor kernel en-
vironment, they were easily incorporated into the fully
multithreaded Java/PC and SR/OS environments by
surrounding them with small amounts of locking and
other glue code. The Fluke kernel uses these same com-
ponents in an even more exotic environment. Since
Fluke can be configured as an interrupt-model kernel,
with only one kernel stack per processor rather than one
per thread, it is impossible to run process-model OSKit
components on these kernel stacks since they are not re-
tained across context switches. However, we were eas-
ily able to solve this problem by running the process-

18

level activities of these components on ordinary Fluke
threads running in user mode but in the kernel’s address
space, while interrupt handlers in the components still
run in supervisor mode. Using the OSKit components in
these fundamentally foreign environments is only possi-
ble because their assumptions on the surrounding envi-
ronment are minimized, and the few remaining assump-
tions are precisely defined.

6.2.8 Library Structure

SR/OS’s use of the x-kernel [21] protocol framework
demonstrated the value of the OSKit’s simple struc-
ture as a set of libraries independent of the client sys-
tem. The x-kernel has an extremely complex build en-
vironment which is entirely different from the OSKit’s.
However, we got the x-kernel working quickly with
SR/OS by working completely within the x-kernel’s
build environment and using the OSKit as an indepen-
dent, previously-installed “package.” Since all of the
OSKit’s functionality is provided by libraries, we just
needed to add the appropriate ‘-L’ and ‘-l’ parame-
ters to the main x-kernel makefile, and to point the main
makefile to the OSKit include directories. Because the
OSKit’s exported structure is simple, it is easy to use it
from within more complicated environments.

6.2.9 Tools: Debugging and Documentation

Although mundane from a research perspective, the
practical importance of quality debugging tools and
documentation should not be underestimated; this is
particularly important to those whose primary inter-
est and expertise lie elsewhere than in operating sys-
tems. The OSKit’s robust source-level debugging sup-
port provided an environment familiar to application
developers, contrasting sharply with the methods used
during the early phases of the ML/OS project before
GDB support was available: we could debug only by
inserting “halt” instructions into the kernel, rebuilding,
rebooting, and observing whether the kernel would qui-
etly lock up (“success”) or exhibit random behavior
(“failure”).

Finally, the documentation provided by the OSKit
developers at Utah was a great help to the ML/OS hack-
ers at MIT, even when it was much less complete than it
is today. Had the ML project proceeded with its original
intent to cannibalize Linux, we would likely still be puz-
zling out the code and interfaces of the kernel internals.
Another more informal form of documentation were the
twenty-line kernels E-mailed from Utah to MIT in an-
swer to questions. These tiny (in source) but complete

kernels were enabled by many features of the OSKit,
all working together: the bootstrap/kernel support, the
C/POSIX environment, the boot modules, and the com-
ponent separability.

6.2.10 Deficiencies

These research projects also revealed several deficien-
cies in the OSKit; some of these have already been ad-
dressed, whereas others remain for future work. They
include:

� Java/PC’s concern with memory revealed a size
disadvantage in the technique of using components
built from encapsulated legacy code: the imported
code was not designed with memory footprint as
a primary concern, and the glue code encapsulat-
ing the imported code adds some additional over-
head. In the future we may import or develop alter-
native implementations of these components, de-
signed for minimal size rather than generality.

� Profiling of the benchmark kernels described in
Section 5 revealed that a significant amount of
time is spent in memory allocation and dealloca-
tion. This overhead is attributable to the fact that
the OSKit’s default memory manager library is de-
signed for flexibility and space efficiency rather
than common-case performance. For fast alloca-
tion of small data structures with no type or align-
ment restrictions, a more conventional high-level
allocator would be more appropriate, possibly lay-
ered on top of the OSKit’s existing low-level al-
locator. The OSKit currently does not provide a
high-level allocator of this kind, but we expect to
integrate one in the future.

� When an OSKit-based application “exits,” the OS-
Kit simply reboots the machine without perform-
ing any cleanup. Some applications, such as the
ttcp benchmark in Section 5, assume that their
network connections will be cleanly closed when
they exit, as is done for Unix processes. On the
OSKit such an application currently just leaves its
peers hanging; this problem will be fixed in a fu-
ture version of the OSKit’s minimal C library.

� In the first released version of the OSKit, the lay-
out of stack frames for synchronous traps was doc-
umented and visible to the client OS, but the layout
of stack frames for hardware interrupts was not.
This deficiency caused problems for both ML/OS

19

and Java/PC which needed access to the state of
the interrupted code in order to handle preemption
properly. Although they could have gained access
to this state by replacing the OSKit’s default inter-
rupt handling mechanism with their own, doing so
would have been inconvenient, so instead we mod-
ified the OSKit’s hardware interrupt handler to use
the same well-documented stack frame used for
synchronous traps. This experience demonstrates
an instance in which the OSKit initially failed to
expose its implementation details sufficiently and
had to be fixed later.

7 Status

In Table 3 we present a breakdown of the source sizes
of the various OSKit components. The OSKit currently
consists of over 260,000 lines of code. Of that, 32,000
lines of native and assimilated code and interfaces pro-
vide access to remaining 230,000 lines of entirely en-
capsulated imported code. Over 500 pages of docu-
mentation are provided; most of this documentation is
in Unix man-page format, one module or interface per
page, so it is not as forbidding as it sounds. While
the OSKit currently only runs on x86 PCs, most of
it is designed to be easily portable to other platforms,
and two thirds of the OSKit’s exported interfaces are
architecture-neutral. Most of the heavily architecture-
specific aspects of the OSKit are isolated in the low-
level kernel support library and the bootstrap code.

Our first public release of the OSKit in July 1996 was
an alpha version; two months later we made one pub-
lic update, primarily adding initial device driver sup-
port. For the seven months in which at least one of
those versions was available, inspection of our FTP logs
shows that, excluding obvious mirror sites, 537 differ-
ent external sites obtained the OSKit, including 122
at U.S. companies. The currently released version of
the OSKit is available at http://www.cs.utah.
edu/projects/flux/.

8 Conclusion

We have been pleasantly surprised at how phenome-
nally quickly one can develop OS and direct hardware
language implementations using the OSKit, and by the
widespread and disparate interest in the OSKit from
both the research and commercial communities. The
OSKit’s evolution has been almost entirely demand-

driven, and we believe that is a major reason for its suc-
cess. Rather than being designed a priori, with some in-
evitably flawed vision of future needs, it has been con-
stantly refined and augmented, driven by the demands
of a wide variety of real client systems. The ability
of the OSKit itself to reuse components from outside
sources, unchanged, is critical to its immediate as well
as long term success. From this experience, we con-
clude that research and development of operating sys-
tems and languages are greatly aided by the pragmatic
but systematic approach to software structure and reuse
that the OSKit exemplifies. We expect the growing
number of OSKit clients to drive continued growth in
its power and flexibility.

Acknowledgements
We are especially grateful to Mike Hibler for last minute
writing help, and to the many people at the Univer-
sity of Utah who have contributed to the OSKit, includ-
ing Steve Clawson, Mike Hibler, John McCorquodale,
Bart Robinson, Steve Smalley, Pat Tullmann, Kevin
Van Maren, and Jeff Turner. We thank Shantanu Goel
for his important work, both at Columbia and at Utah,
on the Linux device driver framework in Mach. Erich
Boleyn co-authored the MultiBoot specification and de-
veloped a boot loader for it. We thank the OSKit’s
clients for their feedback, and especially our shepherd
John Ousterhout, the anonymous reviewers, members
of the Flux project, Bob Kessler, and Ron Olsson for
their helpful comments. Finally, we are grateful to the
thousands who have contributed to the systems which
provided the base for many of our components.

References
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,

R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kernel Foundation for UNIX Development.
In Proc. of the Summer 1986 USENIX Conf., pages
93–112, June 1986.

[2] G. R. Andrews. Personal communication, Feb. 1997.

[3] G. R. Andrews and R. A. Olsson. The SR Program-
ming Language: Concurrency in Practice. The Ben-
jamin/Cummings Publishing Co., Redwood City, Cali-
fornia, 1993.

[4] A. W. Appel. A Runtime System. Lisp and Symbolic
Computation, 3(4):343–380, Nov. 1990.

[5] A. W. Appel. Compiling with Continuations. Cam-
bridge University Press, Cambridge, MA, 1992.

[6] A. W. Appel and D. B. MacQueen. Standard ML of
New Jersey. In Third International Symp. on Program-

20

Interface Implementation
Native Encapsulated

Library Description MI x86 MI x86
boot Bootstrap Support — 67 — 2829 —
kern Kernel Support 325 1379 476 3890 —
smp Multiprocessor Support 6 2 — 868 —
lmm List Memory Manager 33 — 314 — —
amm Address Map Manager 60 — 349 — —
c Minimal C library 588 4 4863 220 —
memdebug Malloc Debugging 18 — 398 13 —
diskpart Disk Partitioning 205 — 311 — —
fsread File System Reading 13 — 1581 — —
exec Program Loading 133 5 61 125 —
com COM interfaces & support 1514 — 667 — —
fdev Device driver support 35 — 861 388 —
linux dev Linux drivers & support 77 — 2801 — 77023

FreeBSD common code — — 524 116 8275
freebsd dev FreeBSD drivers & support 8 13 558 10 14755
freebsd net FreeBSD network stack 44 — 1318 — 17241
freebsd m FreeBSD Math library — — — — 7517
netbsd fs NetBSD file system 8 — 2465 — 18968
x11 X11-based windowing — — 1909 — 90182

3067 1470 19456 8459
Total 4537 27915 233961

Table 3: “Filtered” source code size, of the OSKit components, classified into interface (header files) and implementation (C and assembly
language source), with the latter classified into home-grown/assimilated code and encapsulated, imported code. The code is further broken
down into machine-independent (MI) and machine-dependent (x86) portions. This count of source code lines filters out comments, blank lines,
preprocessor directives, and punctuation-only lines (e.g., a line containing just a brace), and typically is 1=4 to 1=2 the size of unfiltered code.
The X11-based windowing support is currently in progress.

ming Language Implementation and Logic Program-
ming, pages 1–13. Springer-Verlag LNCS 528, Aug.
1991.

[7] A. Baird-Smith. Jigsaw — An Object-Oriented
Web Server in Java. http://www.w3.org/pub/WWW/-
Jigsaw/.

[8] F. J. Ballesteros and L. L. Fernandez. The Network
Hardware is the Operating System. In Proc. of the Sixth
Workshop on Hot Topics in Operating Systems, Cape
Cod, MA, May 1997. To appear.

[9] G. D. Benson and R. A. Olsson. A Portable Run-Time
System for the SR Concurrent Programming Language.
In Proceedings of the Workshop on Run-Time Systems
for Parallel Processing. IR-417, Department of Mathe-
matics and Computer Science, Vrije Universiteit, Am-
sterdam, The Netherlands, April 1997.

[10] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, Safety, and Performance in the SPIN Op-
erating System. In Proc. of the 15th ACM Symp. on
Operating Systems Principles, pages 267–284, Copper
Mountain, CO, Dec. 1995.

[11] A. B. Brown and M. Seltzer. Operating System Bench-
marking in the Wake of Lmbench: A Case Study of the
Performance of NetBSD on the Intel x86 Architecture.
In Proc. of the 1997 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Computer Systems, Seattle,
WA, June 1997.

[12] R. Campbell, N. Islam, P. Madany, and D. Raila.
Designing and Implementing Choices: An Object-
Oriented System in C++. Communications of the ACM,
Sept. 1993.

[13] Chesapeake Computer Consultants, Inc. Test TCP
(TTCP). http://www.ccci.com/tools/ttcp, 1997.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr.
Exokernel: An Operating System Architecture for
Application-Level Resource Management. In Proc. of
the 15th ACM Symp. on Operating Systems Principles,
pages 251–266, Copper Mountain, CO, Dec. 1995.

[15] B. Ford. MOSS: A DOS extender based on the Flux OS
Toolkit. Available as http://www.cs.utah.edu/projects/-
flux/moss/, 1996.

[16] B. Ford and E. S. Boleyn. MultiBoot Standard. Avail-
able as ftp://flux.cs.utah.edu/flux/multiboot, 1996.

21

[17] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels Meet Recursive Virtual
Machines. In Proc. of the Second Symp. on Operating
Systems Design and Implementation, pages 137–151,
Seattle, WA, Oct. 1996. USENIX Assoc.

[18] S. Goel and D. Duchamp. Linux Device Driver Emu-
lation in Mach. In Proc. of the Annual USENIX 1996
Technical Conf., pages 65–73, San Diego, CA, Jan.
1996.

[19] J. Gosling and H. McGilton. The Java Language En-
vironment: A White Paper. Technical report, Sun Mi-
crosystems Computer Company, 1996. Available as
http://java.sun.com/doc/language environment/.

[20] D. Hildebrand. An Architectural Overview of QNX.
In Proc. of the USENIX Workshop on Micro-kernels
and Other Kernel Architectures, pages 113–126, Seat-
tle, WA, Apr. 1992.

[21] N. Hutchinson and L. Peterson. The x-kernel: An Ar-
chitecture for Implementing Protocols. IEEE Trans-
actions on Software Engineering, SE-17(1):64–76, Jan.
1991.

[22] G. Kiczales. Beyond the Black Box: Open Implemen-
tation. IEEE Software, 13(1):8–11, Jan. 1996.

[23] S. Kleiman. Vnodes: An Architecture for Multiple File
System Types in Sun UNIX. In Proc. of the Summer
1986 USENIX Conf., pages 238–247, Atlanta, GA, June
1986.

[24] G. Lehey. The Complete FreeBSD. Walnut Creek
CDROM Books, 1996.

[25] Microsoft Corporation and Digital Equipment Corpo-
ration. Component Object Model Specification, Oct.
1995. 274 pp.

[26] R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, 1990.

[27] W. Myers. Taligent’s CommonPoint: The Promise of
Objects. Computer, 28(3):78–83, Mar. 1995.

[28] R. Olsson. Personal communication, Feb. 1997.

[29] J. H. Reppy. CML: A Higher-order Concurrent Lan-
guage. In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 293–305,
June 1991.

[30] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing With Disaster: Surviving Misbehaved Kernel Ex-
tensions. In Proc. of the Second Symp. on Operating
Systems Design and Implementation, pages 213–227,
Seattle, WA, Oct. 1996. USENIX Assoc.

[31] The SR Programming Language, Version 2.3.1, Dec.
1995. http://www.cs.arizona.edu/sr/.

[32] R. M. Stallman and Cygnus Support. Debugging with
GDB: The GNU Source-Level Debugger. Free Soft-
ware Foundation, Inc., Boston, MA, 4.12 edition, Jan.
1994.

[33] Sun Microsystems, Inc. JavaOS: A Standalone Java
Environment, Feb. 1997. http://www.javasoft.com/-
products/javaos/javaos.white.html.

[34] T. Wilkinson. KAFFE - A virtual machine to run
Java code. http://www.tjwassoc.demon.co.uk/kaffe/-
kaffe.htm.

[35] Wind River Systems, Inc., Alameda, CA. VxWorks Pro-
grammer’s Guide, 1995.

22

