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Abstract
Writing a correct operating system kernel is notoriously

hard. Kernel code requires manual memory management and
type-unsafe code and must efficiently handle complex, asyn-
chronous events. In addition, increasing CPU core counts
further complicate kernel development. Typically, monolithic
kernels share state across cores and rely on one-off synchro-
nization patterns that are specialized for each kernel structure
or subsystem. Hence, kernel developers are constantly refin-
ing synchronization within OS kernels to improve scalability
at the risk of introducing subtle bugs.

We present NrOS, a new OS kernel with a safer approach
to synchronization that runs many POSIX programs. NrOS
is primarily constructed as a simple, sequential kernel with
no concurrency, making it easier to develop and reason about
its correctness. This kernel is scaled across NUMA nodes
using node replication, a scheme inspired by state machine
replication in distributed systems. NrOS replicates kernel
state on each NUMA node and uses operation logs to maintain
strong consistency between replicas. Cores can safely and
concurrently read from their local kernel replica, eliminating
remote NUMA accesses.

Our evaluation shows that NrOS scales to 96 cores with
performance that nearly always dominates Linux at scale, in
some cases by orders of magnitude, while retaining much of
the simplicity of a sequential kernel.

1 Introduction

Operating system kernels are notoriously hard to build.
Manual memory management, complex synchronization pat-
terns [36], and asynchronous events lead to subtle bugs [2–4],
even when code is written by experts. Increasing CPU core
counts and non-uniform memory access (NUMA) have only
made it harder. Beyond correctness bugs, kernel developers
must continuously chase down performance regressions that
only appear under specific workloads or as core counts scale.
Even so, prevailing wisdom dictates that kernels should use

custom-tailored concurrent data structures with fine-grained
locking or techniques like read-copy-update (RCU) to achieve
good performance. For monolithic kernels, this slows devel-
opment to the extent that even large companies like Google re-
sort to externalizing new subsystems to userspace [57] where
they can contain bugs and draw on a larger pool of developers.

Some have recognized that this complexity isn’t always
warranted. For example, wrapping a single-threaded, sequen-
tial microkernel in a single coarse lock is safe and can provide
good performance when cores share a cache [67]. This ap-
proach does not target NUMA systems, which have many
cores and do not all share a cache. Increased cross-NUMA-
node memory latency slows access to structures in shared
memory including the lock, causing collapse.

Multikernels like Barrelfish [17] take a different approach;
they scale by forgoing shared memory and divide resources
among per-core kernels that communicate via message pass-
ing. This scales well, but explicit message passing adds too
much complexity and overhead for hosts with shared mem-
ory. Within a NUMA node, hardware cache coherence makes
shared memory more efficient than message passing under
low contention.

We overcome this trade-off between scalability and simplic-
ity in NrOS, a new OS that relies primarily on single-threaded,
sequential implementations of its core data structures. NrOS
scales using node replication [28], an approach inspired by
state machine replication in distributed systems, which trans-
forms these structures into linearizable concurrent structures.
Node replication keeps a separate replica of the kernel struc-
tures per NUMA node, so operations that read kernel state can
concurrently access their local replica, avoiding cross-NUMA
memory accesses. When operations mutate kernel state, node
replication collects and batches them from cores within a
NUMA node using flat combining [44], and it appends them
to a shared log; each replica applies the operations serially
from the log to synchronize its state.

The NrOS approach to synchronization simplifies reason-
ing about its correctness, even while scaling to hundreds of
cores and reducing contention in several OS subsystems (§4.2,
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Figure 1: Architectural overview of NRkernel vs. multikernel and monoliths.

§4.4). However, node replication is not a panacea: while im-
plementing an in-memory file system, we have encountered
scenarios where frequent state mutations hinder performance.
To address this challenge, we propose concurrent node repli-
cation (§3), which exploits operation commutativity with mul-
tiple logs and concurrent replicas to improve the performance
and scalability of the file system (§4.3).

NrOS is implemented in Rust, which interplays with node
replication. The Rust type system makes mutability explicit,
enabling our node replication library to distinguish effortlessly
between update operations that must use the log and read-only
operations that can proceed concurrently at the local replica.
However, we still had to solve several practical challenges,
such as safely dealing with out-of-band reads by hardware,
efficiently allocating buffers, and garbage collecting the log.
To summarize, we make the following contributions.
1. We designed and implemented NrOS, a kernel that simpli-

fies synchronization via node replication and runs many
POSIX programs; we describe its subsystems, including
processes, scheduling, address spaces, and an in-memory
file system.

2. We implemented node replication in Rust, leveraging the
Rust type system to distinguish mutable and read-only
operations. In addition, we extended the node replication
approach to exploit operation commutativity using multi-
ple logs and concurrent replicas.

3. We evaluated NrOS on hosts with up to 4 NUMA nodes
running bare metal and in virtual machines, and we com-
pared its performance to that of Linux, sv6, and Barrelfish
on file system, address space, and application-level bench-
marks (LevelDB, memcached). NrOS largely outperforms
conventional OSes on read-heavy workloads and on con-
tending workloads thanks to its use of node replication.

NrOS1 and its node replication2 library are open source.

2 Background and Related Work

OS & Software Trends. Linux continues to be the prevalent
data center OS; it uses a monolithic kernel (Figure 1), which
shares all OS state and protects access using locks and other
synchronization primitives. Despite being widely used, this

1https://github.com/vmware-labs/node-replicated-kernel
2https://github.com/vmware/node-replication

model has multiple limitations. As the numbers of cores per
server keeps increasing, the performance and scalability of
the kernel are impacted. Its synchronization primitives, in par-
ticular, do not scale well to large numbers of cores. Moreover,
architectures such as non-uniform memory access (NUMA)
exacerbate scalability problems. With NUMA, each processor
has lower latency and higher bandwidth to its own local mem-
ory. This causes significant performance degradation when
state is shared across all processors [23].

The Linux community has reacted with point solutions
to these problems, optimizing performance through fine-
grained synchronization [31, 32, 36] or better locks/wait-
free data structures [51, 61, 73]. However, these solutions
have amplified the looming problem of complexity with
the monolithic design. Correct concurrency in the kernel
in the presence of fine-grained locking and lock-free data
structures is hard, and it is the source of many hard-to-find
bugs [26, 34, 37–39, 41, 47, 55, 79, 80].

For example, Linux has an entire class of bugs due to lock-
less access to lock-protected shared variables [2–4]. Use-
after-free bugs are also common in Linux due to improper
locking [5,6]. These are some of the many bugs that still exist
because of the heavy use of lockless or improper accesses
in the Linux kernel. Such bugs would be trivially avoided in
NrOS, which absolves the developer from reasoning about
fine-grained locking for concurrent data structures.

The OS research community has proposed new kernel mod-
els to address these limitations [22, 30, 70, 78]. In particular,
the multikernel model replicates kernel state and uses message
passing to communicate between replicas [17], but, a decade
after its introduction, multikernels have not seen widespread
adoption. In part, this is because cache coherence and shared
memory have not gone away (and probably will not in the
foreseeable future). For example, the Barrelfish multikernel
mainly uses point-to-point message passing channels between
the OS nodes, avoiding use of shared memory between cores
within the kernel altogether. Ultimately, this means the system
needs to use n2 messages to communicate between cores, and
each core must monitor n queues; this has little benefit to
offset its cost since many large groups of cores can already
communicate more efficiently via shared memory access to
a shared last-level cache. This also increases the number of
operations that must be coordinated across cores, and some

296    15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vmware-labs/node-replicated-kernel
https://github.com/vmware/node-replication


operations require that all kernel nodes reach agreement. For
example, capability operations in Barrelfish require a blocking
two-phase protocol so complex that it is explicitly encoded as
a large state machine, and the full Barrelfish capability system
is about 8,000 lines of code not including the two domain-
specific languages used for RPCs and capability operations.
So, despite their scaling benefits, multikernels fail to exploit
the simplicity and performance of shared memory even when
it is efficient to do so.

Prior work has investigated approaches to combine the
monolithic and the multikernel models [16, 74] or to apply
replication for parts of the kernel [20,25,33,72]. Tornado [42]
and K42 [54] use clustered objects, which optimize shared
state through the use of partitioning and replication. More
recently, Mitosis [10] retrofitted the replication idea to page
table management in the Linux kernel, and showed benefits
for a wide variety of workloads. Implementing Mitosis re-
quired a major engineering effort to retrofit replication into a
conventional kernel design.

Our main observation is that shared memory can be used ju-
diciously with some replication to get the best of both worlds:
a simple, elegant and extensible model like the multikernel
that can run applications designed for a monolithic kernel.
Based on this observation, we propose the NRkernel, a new
multikernel model that replicates the kernel, but allows replica
sharing among cores, balancing performance and simplicity.

The NRkernel is inspired by NR (§2.1), and it has at its
core operation logs that provide linearizability. The logs act as
global broadcast message channels that eliminate the complex
state machine used by Barrelfish for consensus. What remains
are simple, single-threaded implementations of data structures
that apply updates from the shared log. Based on the NRkernel
model, we designed and implemented NrOS, a representative
system to evaluate its characteristics.
Hardware Trends. Two major hardware trends motivate the
NRkernel. First, shared memory is part of every system today,
and current hardware trends indicate that there will be some
form of memory sharing – not necessarily with global coher-
ence – available for many new heterogeneous components
and disaggregated architectures. The industry is working on
multiple specifications that will enable such sharing (e.g.,
CXL [71], CAPI [64], CCIX [1], Gen-Z [7]). While sharing
memory does not scale indefinitely as we add more cores, it
works more efficiently than passing messages among a lim-
ited number of cores [27]. In such a model, a shared log and
replication work well because the log can be accessed by all
independent entities connected over a memory bus.

Second, main memory capacities are growing [40] and are
expected to increase further with new 3D-stacked technolo-
gies [76] and the arrival of tiered memory systems comprising
various types of memory, such as DRAM and SCM. Amazon
already has offerings for servers with up to 24 TiB. Like other
systems [49, 68], the NRkernel leverages the abundance of
memory to improve performance with replication.

2.1 Node Replication (NR)

NR creates a linearizable NUMA-aware concurrent data struc-
ture from a sequential data structure [28]. NR replicates the
sequential data structure on each NUMA node, and it uses an
operation log to maintain consistency between the replicas.
Each replica benefits from read concurrency using a readers-
writer lock and from write concurrency using a technique
called flat combining. Flat combining batches operations from
multiple threads to be executed by a single thread (the com-
biner) per replica. This thread also appends the batched oper-
ations to the log using a single atomic operation for the entire
batch; other replicas read the log and update their local copy
of the structure with the logged operations.

NR relies on three main techniques to scale well:
(1) The operation log uses a circular buffer to represent the
abstract state of the concurrent data structure. Each entry in
the log represents a mutating operation, and the log ensures
a total order among them. The log tail gives the index to the
last operation added to the log. Each replica consumes the
log lazily and maintains a per-replica index into the log that
indicates which operations of the log have been executed on
its copy of the structure. The log is implemented as a circular
buffer of entries that are reused. NR cannot reuse entries that
have not been executed on all replicas. This means at least one
thread on each NUMA node must occasionally make progress
in executing operations on the data structure, otherwise the
log could fill up and block new mutating operations. Section 4
discusses how NrOS addresses this.
(2) Flat combining [44] in NR allows threads running on the
same NUMA node to share a replica, resulting in better cache
locality both from flat combining and from maintaining the
replica local to the node’s last-level cache. The combiner also
benefits from batching by allocating log space for all pending
operations at a replica with a single atomic instruction.
(3) The optimized readers-writer lock in NR is a writer-
preference variant of the distributed readers-writer lock [75]
that ensures correct synchronization between the combiner
and reader threads when accessing the sequential replica. This
lock lets readers access a local replica while the combiner is
adding a batch of operations to the log, increasing parallelism.

NR executes updates and reads differently:
A concurrent mutating operation (update) needs to ac-
quire the combiner lock on the local NUMA node to add
the operation to the log and to execute the operation against
the local replica. If the thread T executing this operation fails
to acquire it, another thread is the combiner for the replica
already, so T spin-waits to receive its operation’s result from
the existing combiner. If T acquires the lock, it becomes the
combiner. The combiner first flat combines all operations
from all threads that are concurrently waiting for their update
operations to be appended to the log with a single compare-
and-swap. Then, the combiner acquires the writer lock on
the local replica’s structure, and it sequentially executes all

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation    297



unexecuted update operations in the log on the structure in
order. For each executed operation, the combiner returns its
results to the waiting thread.
A concurrent non-mutating operation (read) can execute
on its thread’s NUMA-node-local replica without creating
a log entry. To ensure that the replica is not stale, it takes
a snapshot of the log tail when the operation begins, and it
waits until a combiner updates the replica past the observed
tail. If there is no combiner for the replica, the reading thread
becomes the combiner to update the replica before executing
its read operation.

NR simplifies concurrent data structure design by hiding
the complexities of synchronization behind the log abstraction.
NR works well on current systems because the operation log
is optimized for NUMA. We adopt NR’s NUMA-optimized
log design, but we use it to replicate kernel state.

Linearizable operation logs are ubiquitous in distributed
systems. For example, many protocols such as Raft [63],
Corfu [35], and Delos [15] use a log to simplify reaching
consensus and fault tolerance, as well as to scale out a single-
node implementation to multiple machines. Recently, the
same abstraction has been used to achieve good scalability
on large machines both in file systems [19] and general data
structures [24, 44, 52, 58, 69]. Concurrent work has developed
NUMA-aware data structures from persistent indexes [77].

2.2 NR Example

Listing 1 shows an example where a Rust standard hashmap is
replicated using NR. NRHashMap wraps an existing sequential
hashmap (line 2-4). Programs specify the read (line 7) and up-
date (line 10) operations for the structure and how each should
be executed at each replica (lines 20-31) by implementing the
Dispatch trait.

Listing 2 shows a program that creates a single NRHashMap
with two NR replicas that use a shared log to synchronize up-
date operations between them. The code creates a log (line 3)
which is used to create two replicas (lines 6-7). Finally, the
threads can register themselves with any replica and issue op-
erations against it (lines 14-15). NR supports any number of
replicas and threads; programs must specify a configuration
that is efficient for their structure and operations. For example,
NrOS allocates one replica per NUMA node, and each core
in a node registers with its NUMA-local replica in order to
benefit from locality.

3 Concurrent Node Replication (CNR)

For some OS subsystems with frequent mutating operations
(e.g., the file system) NR’s log and sequential replicas can
limit scalability. Multiple combiners from different replicas
can make progress in parallel, but write scalability can be
limited by appends to the single shared log and the per-replica

1 // Standard Rust hashmap node replicated to each NUMA node.
2 pub struct NRHashMap {
3 storage: HashMap<usize, usize>,
4 }
5

6 // NRHashMap has a Get(k) op that does not modify state.
7 pub enum HMReadOp { Get(usize) }
8

9 // NRHashMap has a Put(k,v) op that modifies replica state.
10 pub enum HMUpdateOp { Put(usize, usize) }
11

12 // The trait implementation describes how to execute each
13 // operation on the sequential structure at each replica.
14 impl Dispatch for NRHashMap {
15 type ReadOp = HMReadOp;
16 type UpdateOp = HMUpdateOp;
17 type Resp = Option<usize>;
18

19 // Execute non-mutating operations (Get).
20 fn dispatch(&self, op: Self::ReadOp) -> Self::Resp {
21 match op {
22 HMReadOp::Get(k) => self.storage.get(&k).map(|v| *v),
23 }
24 }
25

26 // Execute mutating operations (Put).
27 fn dispatch_mut(&mut self, op: Self::UpdateOp) ->

Self::Resp {
28 match op {
29 HMUpdateOp::Put(k, v) => self.storage.insert(k, v),
30 }
31 }
32 }

Listing 1: Single-threaded hashmap transformed using NR.

1 // Allocate an operation log to synchronize replicas.
2 let logsize = 2 * 1024 * 1024;
3 let log = Log::<<NRHashMap as

Dispatch>::UpdateOp>::new(logsize);
4

5 // Create two replicas of the hashmap (one per NUMA node).
6 let replica1 = Replica::<NRHashMap>::new(log);
7 let replica2 = Replica::<NRHashMap>::new(log);
8

9 // Register threads on one NUMA node with replica1.
10 let tid1 = replica1.register();
11 // Threads on other node register similarly with replica2.
12

13 // Issue Get and Put operations and await results.
14 let r = replica1.execute(HMReadOp::Get(1), tid1);
15 let r = replica1.execute_mut(HMUpdateOp::Put(1, 1), tid1);

Listing 2: Creating replicas and using NR.

readers-writer lock, which only allows one combiner to exe-
cute operations at a time within each replica.

To solve this, we extend NR to exploit operation commuta-
tivity present in many data structures [30,45]. Two operations
are commutative if executing them in either order leaves the
structure in the same abstract state. Otherwise, the opera-
tions are conflicting. Like NR, CNR replicates a data struc-
ture across NUMA nodes and maintains consistency between
replicas. However, CNR scales the single shared NR log to
multiple logs by assigning commutative operations to differ-
ent logs. Conflicting operations are assigned to the same log,
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which ensures they are ordered with respect to each other.
Also, CNR can use concurrent or partitioned data structures
for replicas, which allows multiple concurrent combiners on
each replica – one per shared log. This eliminates the per-
replica readers-writer lock and scales access to the structure.

CNR transforms an already concurrent data structure to
a NUMA-aware concurrent data structure. The original data
structure can be a concurrent (or partitioned) data structure
that works well for a small number of threads (4-8 threads)
within a single NUMA node. This data structure can be lock-
free or lock-based and may exhibit poor performance under
contention. CNR transforms such a concurrent data structure
to one that works well for a large number of threads (e.g., 100s
of threads) across NUMA nodes and is resilient to contention.

Similar to transactional boosting [45], CNR only considers
the abstract data type for establishing commutativity, not the
concrete data structure implementation. For example, con-
sider a concurrent hashmap with an insert(k, v) operation.
One might think that insert(k, v) and insert(k+1, v′) are not
commutative because they may conflict on shared memory
locations. However, the original data structure is concurrent
and already safely orders accesses to shared memory loca-
tions; hence, these operations commute for CNR and can be
safely executed concurrently.

CNR’s interface is nearly identical to NR’s interface, but
it introduces operation classes to express commutativity. Im-
plementers of a structure provide functions that CNR uses
to map each operation to an operation class. These functions
map conflicting operations to the same class, and each class
is mapped to a log. Hence, if two conflicting operations exe-
cute on the same NUMA node they are executed by the same
combiner, which ensures they are executed in order. In con-
trast, commutative operations can be executed by different
combiners and can use different shared logs, allowing them
to be executed concurrently.

Overall, CNR increases parallelism within each NUMA
node by using a concurrent replica with multiple combiners,
and it increases parallelism across NUMA nodes by using
multiple (mostly) independent shared logs. However, ulti-
mately every update operation must be executed at all replicas;
hence, it comes at a cost, and it cannot scale update throughput
beyond that of a single NUMA node. We refer to the general
mechanism of replicating a data structure using operation logs
as NR; when we need to explicitly distinguish cases that rely
on a concurrent data structure with multiple logs (rather than
a sequential one with a single log) we use the term CNR.

3.1 CNR Example

The code to use CNR to scale Put throughput for a repli-
cated hashmap is almost identical to the example given in
Section 2.2; it only changes in two ways. First, the structure
embedded in each replica must be thread-safe, since (commu-
tative) operations are executed on it concurrently, i.e., it must

1 impl LogMapper for HMUpdateOp {
2 fn hash(&self, nlogs: usize, logs: Vec<usize>) {
3 logs.clear();
4 match self {
5 HMUpdateOp::Put(key, _v) => logs.push(*key % nlogs),
6 }
7 }
8 }

Listing 3: LogMapper implementation for update operations.

implement Rust’s Sync trait. This creates a subtle, mostly
inconsequential, distinction in CNR’s Dispatch trait because
a mutable reference is not required to execute an operation
on the structure; hence, Listing 1 line 27 would read &self
rather than &mut self.

Second, CNR uses multiple logs to scale update operations;
programs must indicate which operations commute so CNR
can distribute commuting operations among logs. To do this,
programs implement the LogMapper trait for their update
operations (Listing 3). The program must implement this
trait for read operations as well. Get and Put operations on
a hashmap commute unless they affect the same key, so this
example maps all operations with a common key hash to the
same class and log. CNR also allows passing multiple logs to
the replicas; otherwise, its use is similar to Listing 2. Some
operations may conflict with operations in multiple classes,
which we discuss in the next section, so a LogMapper may
map a single operation to more than one class/log.

3.2 Multi-log Scan Operations

In addition to read and update operation types, CNR adds
a scan operation type, instances of which belong to more
than one operation class. These are operations that conflict
with many other operations. Often these are operations that
involve the shape of the structure or that need a stable view of
many elements of it. Examples include returning the count of
elements in a structure, hashmap bucket array resizing, range
queries, or, in our case, path resolution and directory traversal
for file system open, close, and rename operations. If these
operations were assigned to a single class, all other operations
would need to be in the same class, eliminating any benefit
from commutativity.

Scan operations conflict with multiple operation classes,
so they must execute over a consistent state of the replica
with respect to all of the classes and logs involved in the scan
obtained after its invocation. To obtain this consistent state,
the thread performing the scan creates an atomic snapshot
at the tails of the logs involved in the operation. Then, the
replica used by the scan needs to be updated exactly up to
the snapshot without exceeding it (unlike NR read operations,
which can update past the read thread’s observed log tail).

Hence, there are two challenges that CNR needs to solve
for a correct scan operation: (1) obtaining the atomic snapshot
of the log tails while other threads might be updating the logs;
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and (2) ensuring that the replica is updated exactly up to the
observed atomic snapshot.

The problem of obtaining an atomic snapshot is well-
studied in concurrent computing [11, 14, 56]. Unlike prior
solutions, which are wait-free, we designed a simple, block-
ing solution that works well in practice and addresses both of
the above challenges simultaneously. The scan thread inserts
the operation into all of the logs associated with the scan’s
operation classes. To ensure that two threads concurrently
inserting scan operations do not cause a deadlock by insert-
ing the operations in a different order on different logs, each
thread must acquire and hold a scan-lock while inserting a
scan operation in the logs that participate in the operation’s
atomic snapshot. Update threads can continue to insert their
operations into the logs after the unfinished scan and without
holding the scan-lock. These operations will be correctly lin-
earized after the scan. Update threads from the same replica
as the scan block when they encounter a colocated unfinished
scan. With updates blocked on the replica, the scan thread
can proceed to execute the operation on the replica once the
replica is updated up to the scan’s log entries (either by the
scan thread or by combiners). After the scan has been exe-
cuted at that replica, blocked threads at the replica continue
with their updates.

Similar to NR read and update operations, scan operations
can be of type scan-update (if the scan modifies the data
structure) or scan-read (if it does not). With a scan-read op-
eration, the operation only needs to be performed once at
the replica where it was invoked; the other replicas ignore
log entries for scan-read operations. Like update operations,
scan-update operations must affect all replicas, but they must
also be executed at each replica only when the replica is at a
consistent state for that scan operation. The first combiner that
encounters the scan-update operation on a replica acquires all
necessary combiner locks, updates the replica to the consis-
tent state, and executes the scan, just as is done on the replica
where the scan was initiated.

Scan operations incur higher overhead than other opera-
tions, and their cost depends on how many operation classes
they conflict with. In our experience, scan operations are
rare, so CNR is carefully designed so that scans absorb the
overhead while leaving the code paths for simpler and more
frequent (read and update) operations efficient.

4 NrOS Design

We designed and implemented NrOS, a representative sys-
tem for the NRkernel. The overall NrOS kernel as a whole
is designed around per-NUMA node kernel replicas that en-
capsulate the state of most of its standard kernel subsystems.
Kernel operations access the local replica, and state inside
replicas is modified and synchronized with one another using
NR, so cross-node communication is minimized (Figure 2).
The collective set of kernel replicas act as a multikernel.

fc buffer

NrFS NrSched NrVM

Application BApplication A Application C

U
se

rs
pa

ce

Threads

NUMA
Node 1

NUMA 
Node 0

N
rO

S Operation Logs
system call system call

fc buffer fc buffer .... fc buffer

NrFS NrSched NrVM

fc buffer fc buffer

Threads

Figure 2: NrOS overview. A per-NUMA-node kernel replica ser-
vices syscalls on cores on that node. Operations read local replica
state; state mutating operations are replicated via NR data structures
and are executed at all replicas. Each replica flat combines operations
from all cores within a NUMA node, efficiently appending them
to one (for NR) or multiple (for CNR) logs. Operations block until
completion, ensuring linearizability.

Here, we describe the design of three of NrOS’s major
subsystems; all of them are replicated via NR:
NR-vMem (§4.2): A virtual memory system that replicates
per-process page mapping metadata and hardware page ta-
bles for a given process.

NR-FS (§4.3): An in-memory file system that, by design,
replicates all metadata and file contents.

NR-Scheduler (§4.4): A process manager that loads and
spawns ELF binaries with replicated (read-only) ELF sec-
tions and makes global scheduling decisions.

In userspace, NrOS runs native NrOS programs or POSIX
programs that are linked against NetBSD libOS components
(§5). The libOS uses system calls for memory, process man-
agement, and file system operations. This approach can run
many POSIX applications like memcached (§6.3.3), Redis,
and LevelDB (§6.2.2), though it lacks fork and some other
functionality which it would need for full POSIX support. If a
process wants to write to a file or map a page, it traps into the
kernel and enqueues an operation against its local replica file
system or process structure and blocks until the request com-
pletes before returning from the syscall. Operations that must
modify state acquire a local writer lock (if the data structure
is not using CNR) before applying the operation directly. If
the lock is contended, the operation is enqueued in the local
flat combining buffer, then it waits until the current combiner
within the node applies the operation. The logs make sure
that all modifications to the state of all of the above compo-
nents are replicated to the other kernel replicas through NR.
Operations that only read replica state first ensure the local
replica is up-to-date by applying any new operations from the
NR log (if needed), and then reading from the local replica.

The kernel is also responsible for physical memory man-
agement, interrupt routing and PCI pass-through (network
I/O is done directly by processes). These subsystems are not
replicated using NR. Devices and interrupts are functional,
but their details are outside of the scope of this paper. The
full functionality provided by the kernel can be best com-
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pared with a lightweight hypervisor which runs processes as
containerized/isolated applications using the libOS.
NRkernel Principles. Overall NrOS represents a new point
in the multikernel design space we call the NRkernel model,
which is encapsulated by three key principles.
(1) Combining replicated and shared state. Multikernels
like Barrelfish rely on per-core replicas which are pro-
hibitively expensive; NRkernels strike a balance by maintain-
ing a kernel replica per NUMA node; within a NUMA node
cores share access to their NUMA-local replica. This maxi-
mizes the benefit of shared last-level caches while eliminating
slow cross-NUMA node memory accesses. With per-NUMA-
node replicas, memory consumption grows with the number
of NUMA nodes rather than the number of cores.
(2) Replica consistency via an operation log. Unlike multi-
kernels’ expensive use of message passing between all pairs
of cores, in NRkernels kernel replicas efficiently synchronize
with shared operation logs; logging scales within a NUMA
node using flat combining to batch operations across cores.
The logs encode all state-changing operations for each subsys-
tem, and ensure replica consistency while hiding the details
of architecture-specific performance optimizations.
(3) Compiler-enforced memory and concurrency safety.
Rust’s compile-time memory-safety and thread-safety guar-
antees are easy to extend to a kernel’s NR implementation.
Its segregation of mutating and non-mutating references en-
sures correct, efficient code is generated where each kernel
operation safely accesses the local replica when possible or is
logged to synchronize replicas. Rust’s Send and Sync anno-
tations for types are a helpful mechanism to prevent putting
data structures on the log that have meaning only on a local
core (e.g., a userspace pointer) and prevents them from ever
being accessed by another core due to flat combining.

Encapsulating concurrency concerns in a single library
with compiler-checked guarantees ensures most operations
scale without concerns about subtle concurrency bugs. Having
NR isolated in a single logical library also makes it easier to
reason about concurrency correctness. For instance, in future
work we plan to formally verify the NR mechanism, which
would guarantee correct translation for any data structure that
leverages NR for concurrency. Contrast this with a traditional
kernel such as Linux, where bugs can be introduced not only
in the lock library implementation (such as RCU) but espe-
cially in the way the rest of the kernel uses the library; only in
2019 did kernel developers consolidate the Linux RCU library
to prevent users from mismatching locking calls [8, 59].

In the remainder of this section, we describe NrOS’s sub-
systems, which demonstrate these principles and resolve the
challenges of putting them into practice.

4.1 Physical Memory Management
Physical memory allocation and dynamic memory allocation
for kernel data structures are the two basic subsystems that

do not use NR. Replicated subsystems often require physi-
cal frames, but that allocation operation itself should not be
replicated. For example, when installing a mapping in a page
table, each page table entry should refer to the same physical
page frame on all replicas (though, each replica should have
its own page tables). If allocator state were replicated, each
allocation operation would be repeated on each replica, break-
ing this. As a result, some syscalls in NrOS must be handled
in two steps. For example, when installing a page, the page is
allocated up front, outside of NR, and a pointer to it is passed
as an argument to the NR operation. This also helps with per-
formance; zeroing a page is slow, and it can be done before
the replicated NR operation is enqueued. Operations from a
log are applied serially at each replica, so this optimization
eliminates head-of-line-blocking on zeroing.

At boot time, the affinity for memory regions is identi-
fied, and memory is divided into per-NUMA node caches
(NCache). The NCache statically partitions memory further
into two classes of 4 KiB and 2 MiB frames. Every core has a
local cache TCache of 4 KiB and 2 MiB frames for fast, no-
contention allocation when it contains the requested frame
size. If it is empty, it refills from its local NCache. Similar to
slab allocators [21], NrOS TCache and NCache implement a
cache frontend and backend that controls the flow between
TCaches and NCaches.

Unlike Barrelfish or seL4 [53] where all dynamic memory
management is externalized to userspace, NrOS makes use of
dynamic memory allocation in the kernel. For arbitrary-sized
allocations, NrOS implements a simple, scalable allocator
with per-core, segregated free lists of 2 MiB or 4 KiB frames.
Each frame is divided into smaller, equal-sized objects. A bit
field tracks per-object allocations within a frame.

Since NrOS is implemented in Rust, memory management
is greatly simplified by relying on the compiler to track the
lifetime of allocated objects. This eliminates a large class
of bugs (use-after-free, uninitialized memory, etc.), but the
kernel still has to explicitly handle running out of memory.
NrOS uses fallible allocations to handle out-of-memory errors
gracefully by returning an error to applications.

However, handling out-of-memory errors in presence of
replicated data structures becomes challenging: Allocations
that happen to store replicated state must be deterministic
(e.g., they should either succeed on all replicas or none). Oth-
erwise, the replicas would end up in an inconsistent state if
after executing an operation, some replicas had successful
and some had unsuccessful allocations. Making sure that all
replicas always have equal amounts of memory available is
infeasible because every replica replicates at different times,
and allocations can happen on other cores for outside of NR.
We solve this problem in NrOS by requiring that all memory
allocations for state within node replication or CNR must go
through a deterministic allocator. In the deterministic alloca-
tor, the first replica that reaches an allocation request allocates
memory on behalf of all other replicas too. The deterministic
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allocator remembers the results temporarily, until they are
picked up by the other replicas which are running behind. If
an allocation for any of the replica fails, the leading replica
will enqueue the error for all replicas to ensure that all replicas
always see the same result. Allocators in NrOS are chainable,
and it is sufficient for the deterministic allocator to be any-
where in the chain so it doesn’t necessarily have to be invoked
for every fine-grained allocation request. Our implementation
leverages the custom allocator feature in Rust, which lets us
override the default heap allocator with specialized allocators
for individual data structures.

4.2 Virtual Memory Management

NrOS relies on the MMU for isolation. Like most conven-
tional virtual memory implementations, NrOS uses a per-
process mapping database (as a B-Tree) to store frame map-
pings which is used to construct the process’s hardware page
tables. NrOS currently does not support demand paging. Due
to increased memory capacities, we did not deem demand
paging an important feature for demonstrating our prototype.
Both the B-Tree and the hardware page tables are simple,
sequential data structures that are wrapped behind the node
replication interface for concurrency and replication. There-
fore, the mapping database and page tables are replicated
on every NUMA node, forming the NR-vMem subsystem.
NR-vMem exposes the following mutating operations for
a process to modify its address space: MapFrame (to insert
a mapping); Unmap (to remove mappings); and Adjust (to
change permissions of a mapping). NR-vMem also supports
a non-mutating Resolve operation (that advances the local
replica and queries the address space state).

There are several aspects of NR-vMem’s design that are
influenced by its integration with node replication.

For example, NR-vMem has to consider out-of-band read
accesses by cores’ page table walkers. Normally a read op-
eration would go through the node replication interface, en-
suring replay of all outstanding operations from the log first.
However, a hardware page table walker does not have this
capability. A race arises if a process maps a page on core X
of replica A and core Y of replica B accesses that mapping
in userspace before replica B has applied the update. Luckily,
this can be handled since it generates a page fault. In order to
resolve this race, the page fault handler advances the replica
by issuing a Resolve operation on the address space to find
the corresponding mapping of the virtual address generating
the fault. If a mapping is found, the process can be resumed
since the Resolve operation will apply outstanding opera-
tions. If no mapping is found, the access was an invalid read
or write by the process.
Unmap or Adjust (e.g., removing or modifying page table

entries) requires the OS to flush TLB entries on cores where
the process is active to ensure TLB coherence. This is typi-
cally done in software by the OS (and commonly referred to

as performing a TLB “shootdown”). The initiator core starts
by enqueuing the operation for the local replica. After node
replication returns it knows that the unmap (or adjust) opera-
tion has been performed at least against the local page table
replica and that it is enqueued as a future operation on the
log for other replicas. Next, it sends inter-processor interrupts
(IPIs) to trigger TLB flushes on all cores running the corre-
sponding process. As part of the IPI handler the cores first
acknowledge the IPI to the initiator. Next, they advance their
local replica to execute outstanding log operations (which
forces the unmap/adjust if it was not already applied). Then,
they poll a per-core message queue to get information about
the regions that need to be flushed. Finally, they perform the
TLB invalidation. Meanwhile the initiator invalidates its own
TLB entries, and then it waits for all acknowledgments from
the other cores before it returns to userspace. This shootdown
protocol incorporates some of the optimizations described in
Amit et al. [12]; it uses the cluster mode of the x86 interrupt
controller to broadcast IPIs up to 16 CPUs simultaneously,
and acknowledgments are sent to the initiator as soon as pos-
sible when the IPI is received (this is safe since flushing is
done in a non-interruptible way).

4.3 File System

File systems are essential for serving configuration files and
data to processes. NR-FS adds an in-memory file system
to NrOS that supports some standard POSIX file operations
(open, pread, pwrite, close, etc.). NR-FS tracks files and
directories by mapping each path to an inode number and
then mapping each inode number to an in-memory inode.
Each inode holds either directory or file metadata and a list
of file pages. The entire data structure is wrapped by node
replication for concurrent access and replication.

There are three challenges for implementing a file system
with node replication. First, historically POSIX read opera-
tions mutate kernel state (e.g., file descriptor offsets). State
mutating operations in node replication must be performed at
each replica serially, which would eliminate all concurrency
for file system operations. Fortunately, file descriptor offsets
are implemented in the userspace libOS, and all NrOS file
system calls are implemented with positional reads and writes
(pread/pwrite), which do not update offsets. This lets NR-FS
apply read operations as concurrent, non-mutating operations.

Second, each file system operation can copy large amounts
of data with a single read or write operation. The size of the
log is limited, so we do not copy the contents into it. Instead
we allocate the kernel-side buffers for these operations and
places references to the buffers in the log. These buffers are
deallocated once all replicas have applied the operation.

Third, processes supply the buffer for writes, which can
be problematic for replication. If a process changes a buffer
during the execution of a write operation, it could result in
inconsistencies in file contents since replicas could copy data
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into the file from the buffer at different times. In NR-FS the
write buffer is copied to kernel memory beforehand. This
also solves another problem with flat combining: cores are as-
signed to processes (§4.4) and any core within a replica could
apply an operation, but a particular core may not be in the
process’s address space. Copying the data to kernel memory
before enqueuing the operation ensures that the buffer used
in the operation is not modified during copies and is readable
by all cores without address space changes.

4.3.1 Scaling NR-FS Writes

NR-FS optimizes reads so that many operations avoid the
log, but other operations (write, link, unlink, etc.) must
always be logged. This is efficient when these operations
naturally contend with one another since they must serialize
anyway and can benefit from flat combining. However, some-
times applications work independently and concurrently on
different regions of the file system. For those workloads, node
replication would be a limiting bottleneck as it unnecessarily
serializes those operations.

To solve this, we developed CNR (§3). CNR uses the same
approach to replication as node replication, but it divides com-
mutative mutating operations among multiple logs with a
combiner per log to scale performance. Others have observed
the benefits of exploiting commutativity in syscalls and file
systems [19, 30, 60], and CNR lets NR-FS make similar op-
timizations. CNR naturally scales operations over multiple
combiners per NUMA node under low contention workloads
that mutate state, and it seamlessly transitions to use a single
combiner when operations contend.

Augmenting NR-FS to use CNR mainly requires imple-
menting the LogMapper trait that indicates which log(s) an
operation should serialize in (Listing 3). NR-FS hash parti-
tions files by inode number, so operations associated with
different files are appended to different logs and applied in
parallel.

Some operations like rename may affect inodes in multi-
ple partitions. Our current version of NR-FS handles this by
serializing these operations with operations on all logs as a
scan-update (§3.2). Using scans ensures that if the effect of
any cross-partition operation (like rename) could have been
observed by an application, then all operations that were ap-
pended subsequently to any log linearize after it (external
consistency). We plan to experiment in the future with more
sophisticated approaches that avoid serializing all operations
with every such cross-partition operation.

4.4 Process Management and Scheduling

Process management for userspace programs in NrOS is in-
spired by Barrelfish’s “dispatchers” and the “Hart” core ab-
straction in Lithe [65] with scheduler activations [13] as a
notification mechanism.

In NrOS, the kernel-level scheduler (NR-Scheduler) is a
coarse-grained scheduler that allocates CPUs to processes.
Processes make system calls to request for more cores and to
give them up. The kernel notifies processes of core allocations
and deallocations via upcalls. To run on a core, a process
allocates executor objects (i.e., the equivalent of a “kernel”
thread) that are used to dispatch a given process on a CPU.
An executor mainly consists of two userspace stacks (one
for the upcall handler and one for the initial stack) and a
region to save CPU registers and other metadata. Executors
are allocated lazily but a process keeps a per-NUMA-node
cache to reuse them over time.

In the process, a userspace scheduler reacts to upcalls in-
dicating the addition or removal of a core, and it makes fine-
grained scheduling decisions by dispatching threads accord-
ingly. This design means that the kernel is only responsible
for coarse-grained scheduling decisions, and it implements a
global policy of core allocation to processes.

NR-Scheduler uses a sequential hash table wrapped with
node replication to map each process id to a process structure
and to map process executors to cores. It has operations to cre-
ate or destroy a process, to allocate and deallocate executors
for a process, and to obtain an executor for a given core.

Process creation must create a new address space, parse
the program’s ELF headers, allocate memory for program
sections, and relocate symbols in memory. A naive imple-
mentation might apply those operations on all replicas using
node replication, but this would be incorrect. It is safe to in-
dependently create a separate read-only program section (like
.text) for the process by performing an operation at each
of the replicas. However, this would not work for writable
sections (like .data), since having independent allocations
per replica would break the semantics of shared memory in
the process. Furthermore, we need to agree on a common
virtual address for the start of the ELF binary, so position
independent code is loaded at the same offset in every replica.

As a result of this, process creation happens in two stages,
where operations that cannot be replicated are done in ad-
vance. The ELF program file must be parsed up front to find
the writable sections, to allocate memory for them, and to
relocate entries in them. After that, these pre-loaded physi-
cal frames and their address space offsets are passed to the
replicated NR-Scheduler create-process operation. Within
each replica, the ELF file is parsed again to load and relocate
the read-only program sections and to map the pre-allocated
physical frames for the writable sections.

Removing a process deletes and deallocates the process at
every replica, but it also must halt execution on every core cur-
rently allocated to the process. Similar to TLB shootdowns,
this is done with inter-processor interrupts and per-core mes-
sage queues to notify individual cores belonging to a replica.
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4.5 Log Garbage Collection

As described in Section 2.1, operation logs are circular buffers,
which fixes the memory footprint of node replication. How-
ever, entries can only be overwritten once they have been
applied at all replicas; progress in applying entries at a replica
can become slow if operations are rare at that replica (e.g., if
cores at one replica spend all of their time in userspace).

NrOS solves this in two ways. First, if a core at one replica
cannot append new operations because another replica is lag-
ging in applying operations, then it triggers an IPI to a core
associated with the lagging replica. When the core receives
the IPI, it immediately applies pending log operations to its
local replica, unblocking the stalled append operation at the
other replica. On initialization, NrOS provides a callback to
the node replication library that it can use to trigger an IPI;
the library passes in the id of the slow replica and the id of the
log that is low on space. Second, frequent IPIs are expensive,
so NrOS tries to avoid them by proactively replicating when
cores are idle. So long as some core at each replica sometimes
has no scheduled executor, IPIs are mostly avoided.

Finally, some operations hold references to data outside
of the log that may need to be deallocated after an operation
has been applied at all replicas (e.g., buffers that hold data
from file system writes). If deallocation of these resources
is deferred until a log entry is overwritten, then large pools
of allocated buffers can build up, hurting locality and putting
pressure on caches and TLBs. To more eagerly release such
resources, these references embed a reference count initialized
to the number of replicas, which is decremented each time
the operation is applied at a replica; when the count reaches
zero, the resource is released.

5 Implementation

We implemented NrOS from scratch in Rust; it currently
targets the x86-64 platform. It also has basic support for Unix
as a target platform, which allows kernel subsystems to be run
within a Linux process and helps support unit testing. The core
kernel consists of 11k lines of code with 16k additional lines
for kernel libraries (bootloader, drivers, memory management,
and platform specific code factored out from the core kernel
into libraries). In the entire kernel codebase, 3.6% of lines
are within Rust unsafe blocks (special blocks that forego
the compiler’s strong memory- and thread-safety guarantees).
Most of this unsafe code casts and manipulates raw memory
(e.g., in memory allocators or device drivers), a certain amount
of which is unavoidable in kernel code.
Node Replication. We implemented node replication in Rust
as a portable library totaling 3.4k lines of code (5% in unsafe
blocks). We made some notable changes to the state-of-the-
art node replication design [28] and built CNR on top of
it. Specifically, our implementation relies on Rust’s generic
types, making it easy to lift arbitrary, sequentially-safe Rust

Name Memory Nodes/Cores/Threads
2×14 Skylake 192 GiB 2x14x2 Xeon Gold 5120
4×24 Cascade 1470 GiB 4x24x2 Xeon Gold 6252

Table 1: Architectural details of our evaluation platforms.

structures into node-replicated, concurrent structures. This is
done by implementing the Dispatch interface in Listing 1.

Userspace Library. NrOS provides a userspace runtime sup-
port library (vibrio) for applications. It contains wrapper func-
tions for kernel system calls, a dynamic memory manager, and
a cooperative scheduler that supports green threads and stan-
dard synchronization primitives (condition variables, mutexes,
readers-writer locks, semaphores, etc.).

This library also implements hypercall interfaces for link-
ing against rumpkernels (a NetBSD-based library OS) [50].
This allows NrOS to run many POSIX programs. rumpkernel
provides libc and libpthread which, in turn, use vibrio for
scheduling and memory management through the hypercall
interface. The hypercall interface closely matches the refer-
ence implementation of the rumprun-unikernel project [9];
however, some significant changes were necessary to make
the implementation multi-core aware. The multi-core aware
implementation was inspired by LibrettOS [62].

The NrOS kernel itself does not do any I/O, but it abstracts
interrupt management (using I/O APIC, xAPIC and x2APIC
drivers) and offers MMIO PCI hardware passthrough to appli-
cations. Applications can rely on the rump/NetBSD network
or storage stack and its device drivers for networking and
disk access (supporting various NIC models and AHCI based
disks). The I/O architecture is similar to recent proposals for
building high performance userspace I/O stacks [18, 66].

6 Evaluation

This section answers the following questions experimentally:

• How does NrOS’s design compare against monolithic
and multikernel operating systems?
• What is the latency, memory and replication mechanism

trade-off in NrOS’ design compared to others?
• Does NrOS’s design matter for applications?

We perform our experiments on the two machines given
in Table 1. For the Linux results, we used Ubuntu version
19.10 with kernel version 5.3.0. If not otherwise indicated,
we did not observe significantly different results between the
two machines and omit the graphs for space reasons. We
pinned benchmark threads to physical cores and disabled
hyperthreads. Turbo boost was enabled for the experiments.
If not otherwise indicated we show bare-metal results.
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Figure 3: NR-FS read/write scalability for write ratios 0%, 10%,
60% and 100% with 1 or 24 files on 4×24 Cascade.

6.1 Baseline Node Replication Performance

We have extensively tested our Rust-based NR library in
userspace on Linux using a variety of structures to compare
its performance with the existing state-of-the-art NR imple-
mentation [28] and with other optimized concurrent structures.
We omit these results as they are orthogonal to NrOS’s contri-
butions, but we summarize a few key results when comparing
with RCU which is the most relevant comparison for NrOS.

We tested scaling a hash table on 4×24 Cascade, NR (just
wrapping the unmodified, sequential HashMap from the Rust
standard library as shown in Listing 1) outperforms other
concurrent hash maps written in Rust and the urcu library’s
read-modify-write-based hash table. With 0% updates, urcu
and node replication scale linearly, but urcu lags behind; NR
achieves perfect NUMA locality by replicating the hash table.
The NR hash table also stores elements in-place, whereas
urcu stores a pointer to each element, leading to an additional
de-reference. This is inherent in the urcu design since ele-
ments are deallocated by the last reader. In short, for read-only
workloads, NR performs about twice as well as urcu, which is
the next fastest approach we tested. Even with any fraction of
read operations it performs strictly better at scale. However,
we find that urcu can outperform NR when reads and writes
are split between threads rather than when reads and writes
are mixed on every thread. This is because RCU allows read-
ers to proceed without any synchronization overhead whereas
node replication must acquire the local reader lock.

6.2 NR-FS

We evaluate NR-FS performance by studying the impact of
issuing read and write operations to files using a low-level
microbenchmark and a LevelDB application benchmark.

6.2.1 Microbenchmark: NR-FS vs tmpfs

In this benchmark, we are interested in the file operation
throughput while varying cores, files and the read/write ra-
tio. We pre-allocate files of 256 MiB upfront. Each core then
accesses exactly one file, and each file is shared by an equal
number of cores when the number of cores exceeds the num-
ber of files. The cores either read or write a 1 KiB block in
the file uniformly at random. This general access pattern is
typical for many databases or storage systems [43, 46]. We
compare against the Linux’s (in-memory) tmpfs to minimize
persistence overhead [23].

Figure 3 shows the achieved throughput for write ratios 0%,
10%, 60%, and 100%, while increasing the number of cores
(x-axis). The left graphs measured the throughout if a single
file is read from/written to concurrently. With WR = 0%, NR-
FS achieves∼40× better read performance at max. utilization.
This increase is due to replication of the file system and mak-
ing reads an immutable operation; largely the benefit comes
from higher available memory bandwidth (4×24 Cascade has
88 GiB/s local vs. 16 GiB/s remote read bandwidth). How-
ever, replication increases the memory consumption signifi-
cantly; for 24 files, each 256 MiB, tmpfs uses 6.1 GiB (6 GiB
data and 0.1 GiB metadata) as compared to 24.1 GiB (24 GiB
data and 0.1 GiB metadata) for NR-FS. For higher write ra-
tios, tmpfs starts higher as NR-FS performs an additional
copy from user to kernel memory to ensure replica consis-
tency (Section 4.3) and its write is likely not as optimized as
the Linux codebase. However, the tmpfs throughput drops
sharply at the first NUMA node boundary due to contention
and increased cache coherence traffic. For WR = 100%, NR-
FS performs ∼2× better than tmpfs at max. utilization.

Discussion: With the Intel architectures used in our setting,
single file access generally outperforms Linux as soon as the
file size exceeds the combined L3 size of all NUMA nodes
(128 MiB on 4×24 Cascade). A remote L3 access on the same
board is usually faster than a remote DRAM access; therefore,
replication plays a smaller role in this case. As long as the
file fits in L3 or the combined L3 capacity, NR-FS has on-par
or slightly worse performance than tmpfs. NR-FS gains its
advantage by trading memory for better performance.

The right side of the figure shows the less contended case
where the cores are assigned to 24 files in a round-robin
fashion (at 96 cores, each file is shared by four cores). For
WR = 0%, NR-FS performs around 4× better than tmpfs
due to node local accesses from the local replica. For higher
write ratios (60%, 100%), tmpfs performs better than NR-FS
on the first NUMA node. On top of the additional copy, the
major reason for the overhead here is that intermediate buffers
for writes in NR-FS remain in the log until all replicas have
applied the operation. This results in a larger working set and
cache footprint for writes than tmpfs, which can reuse the
same buffers after every operation. We empirically verified
that this is the case by making the block size smaller; with
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Figure 4: LevelDB readrandom throughput on 2×14 Skylake.

this change the performance discrepancy between tmpfs and
NR-FS disappears.

After the first NUMA node, tmpfs throughput degrades
due to contention, and cross-node memory accesses. NR-FS
manages to keep the same performance as a single NUMA
node. At cores = 96 both systems have similar throughput,
but NR-FS actively replicates all writes on all 4 nodes. We
omit the results using 2 to 23 files because the trend is the
same: NR-FS performs much better for read-heavy workloads
and the same or better for write-heavy operations. On 4×24
Cascade with 24 logs and WR = 100%, NR-FS scalability
stops for this benchmark with more than 24 files because of
the additional CPU cycles required for active replication of
all writes, the observed throughput remains constant instead.

Impact of multiple logs: Figure 3 shows the advantages
of using CNR over node replication for less contended, write-
intensive workloads. As discussed in (§2.1), the write perfor-
mance for node replication data structures is often limited by
a single combiner per replica. While it is certainly possible to
build compound structures using multiple node replication in-
stances (e.g., one per file), this is typically too fine-grained, as
often we have much less compute cores than files. We resolve
this issue with our CNR (§3) scheme. A CNR based NR-FS
performs 8× better (for wr = 100) than a node replication
based NR-FS while preserving read performance.

6.2.2 LevelDB Application Benchmark

To evaluate the impact of the NR-FS design on real applica-
tions we use LevelDB, a widely used key-value store. Lev-
elDB relies on the file system to store and retrieve its data,
which makes it an ideal candidate for evaluating NR-FS. We
use a key size of 16 Bytes and a value size of 64 KiB. We
load 50K key-value pairs for a total database size of 3 GiB,
which LevelDB stores in 100 files.

NR-FS outperforms tmpfs when running LevelDB. Fig-
ure 4 shows LevelDB throughput when running its included
readrandom benchmark while varying core count. After
cores = 12, contention on a mutex within LevelDB begins to
affect the scalability of both systems. At cores = 28, LevelDB
on NrOS has 1.33x higher throughput than on Linux.
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Figure 5: NrOS page insertion throughput on 4×24 Cascade in
comparison with other OSes.

6.3 NR-vMem

We evaluate the performance of NR-vMem with microbench-
marks that stress the address-space data structures under con-
tention, and exercise the respective TLB shootdown protocols
on different operating systems. Finally, we measure the im-
pact of page table replication with memcached.

6.3.1 Map Performance

For this benchmark we compare NrOS against Linux, sv6,
and Barrelfish. We allocate a backing memory object (e.g., a
physical memory region on NrOS, a shared memory object
on Linux, a physical frame referenced by a capability on
Barrelfish, and a memory-backed file on sv6) and repeatedly
map the same memory object into the virtual address space
of the process. The benchmark focuses on synchronization
overheads; it creates the mapping and updates bookkeeping
information without allocating new backing memory.

We evaluate a partitioned scenario where each thread cre-
ates new mappings in its own address space region (the only
comparison supported by all OSes). We ensure that page ta-
bles are created with the mapping request by supplying the
appropriate flags. sv6 does not support MAP_POPULATE, so
we force a page fault to construct the mapping. We show
throughput of the benchmark in Figure 5.

NR-vMem wraps the entire address space behind a single
instance of node replication, therefore it does not scale even
for disjoint regions. As this benchmark consists of 100%
mutating operations, it has constant throughput – similar to the
other benchmarks it remains stable under heavy contention.

Linux is very similar to NR-vMem in its design (apart from
missing replication). It uses a red-black tree to keep track of
mappings globally. For each iteration of the benchmark, a new
mapping has to be inserted into the tree and afterwards the
page fault handler is called by mmap to force the population
of the page table. The entire tree is protected by a global lock
and therefore performance decreases sharply under contention.
The single-threaded performance of Linux VMA is slightly
better than NR-vMem which has still room for improvement:
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(c) Unmap latency on 2×14 Skylake.

Figure 6: Virtual memory operation (map and unmap) observed latency distributions.

For example, our current implementation zeroes page tables
while holding the combiner lock.

Barrelfish (git revision 06a9f5) tracks resources with a
distributed, partitioned capability system. Updating a page
table and allocating new memory corresponds to a capability
operation, which may require agreement among the multiker-
nel nodes. The Barrelfish memory management code shares a
capability to the top level page table and statically partitions
the virtual address space of a process (e.g., a core has only
capabilities to its own partition which only it can modify).
So, inserts to private regions do not require any agreement.
Furthermore, this design uses a single page table per process
in the system; therefore, there is no overhead to synchronize
replicated state.

For good scalability, we eliminated the use of O(n) linked-
list operations for the address-space meta-data tracking of the
OS. Once we fixed those issues, Barrelfish throughput scaled
with a sub-linear factor. Concurrent updates to the same par-
tition from multiple cores are not supported. This could be
implemented with delegation, by using the provided messag-
ing infrastructure in the library OS and capability operations.

sv6 (git revision 9271b3f) uses a radix tree data struc-
ture [29] for its mapping database. It is able to apply fine-
grained locking for non-overlapping regions of the address
space by atomically setting bits at each level in the radix tree.
Compared to all evaluated systems, sv6 performs best for
disjoint regions with near-linear scalability. A potential down-
side is the memory overhead, since sv6 replicates page tables
on every core. It mitigates this issue with lazy construction of
page tables and discarding them under memory pressure.

CNR-vMem. While NR-vMem does not scale as well as
sv6 or Barrelfish for mappings in disjoint regions, it keeps
a relatively complex interaction of multiple data structures
as entirely single-threaded code. If better scalability is de-
sired, we can scale NR-vMem updates by using CNR. Similar
to Barrelfish, CNR-vMem partitions the address space into
512 separate regions and maps updates to partitions with
different logs. CNR-vMem matches sv6’ performance on
the first NUMA node. Afterwards, scaling stops because of
per-NUMA replication. Compared to Barrelfish, we find that
CNR-vMem is more flexible: concurrent updates from mul-

tiple cores to the same partition are supported without extra
implementation effort thanks to flat-combining.

Latency. To understand how the batching in node replica-
tion impacts latency, we further instrument Linux and NR-
vMem by measuring the completion time for 100k requests
per core. Figure 6a and 6b show the latency distributions (with
the min representing p1, and max p99) for 4×24 Cascade and
2×14 Skylake. We observe slightly worse median latencies
for NrOS on 4×24 Cascade but overall better tail characteris-
tics and throughput. On the other hand, we find that NrOS has
better latencies than Linux on 2×14 Skylake. Latency is di-
rectly correlated with the number of cores participating in flat
combining (i.e., 2×14 Skylake has only 14 cores per replica
vs. 24 on 4×24 Cascade). Per-NUMA replicas offer a good
compromise for memory consumption vs. throughput, but we
can tune latency further by having more than one replica per
node on NUMA nodes with more cores.

6.3.2 Unmap and TLB Shootdown Performance

We evaluate the scalability of unmapping a 4 KiB page by
measuring the time it takes to execute the unmap system call,
which includes a TLB shootdown on all cores running the
benchmark program.

We compare our design to Linux and Barrelfish. Linux uses
a single page table which is shared among the cores used in
this benchmark. The general shootdown protocol is similar
to the one in NrOS, except that NrOS has to update multiple
page tables in case a process spawns multiple NUMA nodes.
Barrelfish partitions control over its page table per core and
uses the capability system (Barrelfish Cap) or userspace mes-
sage passing (Barrelfish Msg) to ensure consistency among
the replicas and coherency with the TLB. Barrelfish uses
point-to-point message channels instead of IPIs.

Figure 6c shows the latency results. NrOS outperforms all
other systems. Barrelfish Cap has a constant latency when
using a distributed capability operation because all cores
participate in the 2PC protocol to revoke access to the un-
mapped memory regardless of whether this memory was ac-
tually mapped on that core. Moreover, implementing the TLB
shootdown using point-to-point messages (Barrelfish Msg)
has a higher constant overhead compared to using x2APIC
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OS Time Throughput System Mem. PT Mem. PT Walks
NrOS 4-replicas 251 s 63 Mop/s 424 GiB 3.3GiB 1.20 kcyc/op
NrOS 1-replica 276 s 57 Mop/s 421 GiB 840MiB 1.54 kcyc/op
Linux 327 s 48 Mop/s 419 GiB 821MiB 1.63 kcyc/op

Table 2: memcached on NrOS (1 and 4 replicas) and Linux running on 4×24 Cascade, comparing runtime, throughput, total system memory
consumption, process page table memory and cycles spent by the page table walkers.

with broadcasting in NrOS and Linux due to sequential send-
ing and receiving of point-to-point messages. Using more
optimized message topologies could potentially help [48].

Linux should achieve better results than NrOS, especially
when we spawn across NUMA since it only has to update one
page table. However, the proposed changes to Linux from the
literature [12] which inspired our TLB shootdown protocol
have not yet been integrated to upstream Linux. We expect
Linux to be comparable once early acknowledgments and
concurrent shootdown optimizations become available.

6.3.3 Page Table Replication with Memcached

As a final benchmark, we measure the impact of replicated
page tables on memcached. When taking into account the
implicit reads of the MMU, page tables often end up being
read much more than modified. memcached serves as a repre-
sentative application for workloads with generally high TLB
miss ratios (i.e., applications with large, in-memory working
sets and random access patterns).

We measure the throughput of memcached with GET re-
quests (8 byte keys, 128 byte values, 1B elements) on 4×24
Cascade. Our benchmark directly spawns 64 client threads
inside of the application. For this experiment, we run Linux
and NrOS inside KVM because we want to have access to
the performance counters, which is currently not supported
on NrOS. To limit the effects of nested-paging, we configure
KVM to use 2 MiB-pages, and use 4 KiB pages in both the
Linux and NrOS guests.

Table 2 compares memcached running on NrOS in different
configurations and Linux. Overall, the achieved throughput
for NrOS (with per-NUMA replication) is 1.3× higher than
Linux. To quantify the impact of page table replication on the
throughput, we can configure NrOS to use a single replica
for the process (NrOS 1-replica). We find that the page table
replication accounts for a third of the overall improvement
compared to Linux. The systems have different physical mem-
ory allocation policies, locking implementation, scheduling,
and page tables etc., so it is difficult to attribute the other two
thirds to specific causes.

By instrumenting performance counters, we find that re-
mote page table walks – a key bottleneck for this workload –
decreased by 23% with replication. NrOS does use 4× more
memory for the replicated page tables structures. In total, this
still amounts to less than 1% of the total memory.

7 Conclusion and Future work

We designed and implemented NrOS, an OS that uses single-
threaded data structures that are automatically adapted for
concurrency via operation logging, replication, and flat com-
bining. Our results show that the NRkernel model can achieve
performance that is competitive with or better than well-
established OSes in many cases.

NrOS’ unique design makes it an interesting platform to
explore several future directions:
Relaxing consistency. We apply node replication on rela-
tively coarse-grained structures, which makes reasoning about
concurrency easy. CNR improves performance by exploit-
ing commutativity among mutating operations. However, we
could achieve better performance by relaxing strong consis-
tency between replicas for some operations.
Verifying correctness. NrOS might also serve as a useful ba-
sis for a verified multi-core operating system by using verifi-
cation in two steps: verify the node replication transformation
from a sequential data structure to a concurrent one, then ver-
ify the sequential data structures. Verifying node replication
is harder, but it only needs to be done once. Verifying new
sequential data structures is substantially easier.
Extending NrOS for disaggregated compute. NrOS’ log-
based approach with replication is most useful when systems
have high remote access latencies. Thus, NrOS could be ex-
tended to work over interconnects that offer shared memory in
compute clusters via Infiniband or other high-speed networks
by designing a new log optimized for the interconnect.
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A Artifact Appendix

Abstract

The evaluated artifact is provided as a git repository and con-
tains the source code of NrOS, build instructions and scripts
to run the OS and benchmarks used in this paper.

Scope

The artifact contains code and steps to reproduce results ob-
tained in Figure 3, Figure 4, Figure 5 and Figure 6.

Contents

The artifact consists of NrOS, including libraries, userspace
programs and benchmarks. The documentation to build
and run NrOS, along with the necessary commands
to run the benchmarks are written down in the doc
folder of the repository. The document which lists the
steps to execute the artifact evaluation is located at
doc/src/benchmarking/ArtifactEvaluation.md.

Hosting

The artifact source code for NrOS is published on
Github under https://github.com/vmware-labs/node-
replicated-kernel.
The code used in the artifact evaluation is tagged as
osdi21-ae-v2.

Requirements

Building NrOS requires an x86-64 system set-up with Ubuntu
20.04 LTS.
NrOS itself requires an Intel CPU (Skylake microarchitecture
or later) to run. The following CPUs are known to work: Xeon
Gold 5120, 6252 or 6142. For virtualized execution on these
platforms, a Linux host system with QEMU (version >=
5.0.0) and KVM is required. For bare-metal execution, DELL
PowerEdge R640 and R840 servers systems are known to
work.
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