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Abstract
We revisit the question of delegation vs. synchronized access
to shared memory, and show through analysis and demon-
stration that delegation can be much faster than locking un-
der a range of common circumstances. Starting from first
principles, we propose fast, fly-weight delegation (ffwd). The
highly optimized design of ffwd allows it to significantly out-
perform prior work on delegation, while retaining the scala-
bility advantage.

In experiments with 6 benchmark applications, and 6
shared data structures, running on four different multi-socket
systems with up to 128 hardware threads, we compare ffwd
to a selection of lock, combining, lock-free, software trans-
actional memory and delegation designs. Overall, we find
that ffwd often offers a simple and highly competitive alter-
native to existing work. By definition, the performance of a
fully delegated data structure is limited by the single-thread
throughput of said data structure. However, due to cache
effects, many data structures offer their best performance
when confined to a single thread. With an efficient delegation
mechanism, we approach this single-threaded performance
in a multi-threaded setting. In application-level benchmarks,
we see improvements up to 100% over the next best solu-
tion tested (RCL), and multiple micro-benchmarks show im-
provements in the 5–10× range.

1. Introduction
As processor manufacturers increasingly depend on multi-
core designs to improve system performance and energy ef-
ficiency, the importance of safe and efficient access to shared
variables and data structures continues to grow. The most
common solution is mutual exclusion, or locking, where
atomic instructions are used to acquire a lock before entering
a critical section where a data structure in shared memory is
accessed. The design of efficient and scalable locks has a
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long history, and remains an active area of research today
[9, 18, 19, 23, 27, 48, 54, 55, 70, 78, 84].

By locking the entire shared data structure, a technique
also known as coarse-grained locking, performance is upper-
bounded by the single-thread throughput of the data struc-
ture. Several approaches aim to provide concurrent access
to the data structure by multiple threads, including fine-
grained locking approaches [43], lock-free data structures
[11, 37, 38, 41, 42, 44, 50, 62, 63, 69, 82, 83, 85, 86, 89–
91, 95] and software transactional memory. Here, the fine-
grained locking and lock-free approaches require (some-
times extensive) modifications to the specific data structure,
while software transactional memory [28, 30, 33, 35, 45, 56,
64, 72, 75, 81, 92, 93] provides transactional semantics that
automatically permit concurrent but independent operations
on any shared data structure.

With delegation, one thread (the server) acts on behalf
of multiple client threads. Combining [26, 31, 32, 40, 66,
79, 94] is a form of delegation, where threads temporarily
take on the role of the server and combine their own criti-
cal section with those of one or more other threads waiting
for the lock currently held, increasing efficiency. Conven-
tional delegation methods [17, 25, 49, 53, 68, 84] use one or
more dedicated server threads. Here, the server has exclusive
access to the data structure, and interacts with clients via a
messaging interface. Dedicating a hardware thread to a del-
egation server is a significant sacrifice. However, this choice
also enables more efficient implementation than combining.

An efficient delegation system aims to provide single-
threaded data structure performance, in a multi-threaded set-
ting. Thus, the most attractive data structures to delegate are
those that perform best on a single thread. Conversely, highly
parallel data structures generally do not benefit from dele-
gation. Our system: fast, fly-weight delegation (ffwd, pro-
nounced “fast-forward”), is a stripped-down implementa-
tion of delegation that is highly optimized for low latency
and high throughput. ffwd offers up to 10× the throughput
of the state-of-the-art in delegation, RCL [53], in micro-
benchmarks, or up to 100% in application-level benchmarks.
With respect to locking and other methods, ffwd is often able
to improve performance by 10× or more, for data structures
suitable to delegation.

ffwd achieves this performance by effectively hiding the
high latency of the interconnect link between the server and
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Figure 1: Throughput as a function of critical section dura-
tion, for single-threaded execution, delegation, and locking
(higher is better).

client threads. This is done through a combination of in-
struction level parallelism and carefully managing memory
accesses. Among the techniques used, we eschew the use of
atomic instructions in the server to allow instruction reorder-
ing, pack requests and responses into cache line pairs based
on client proximity, buffer responses to minimize cache co-
herence traffic, and more. The primary contributions of this
paper are as follows:

• The design and implementation of ffwd, to our knowledge
the fastest delegation system to date. At approximately
40 cycles of server-side overhead per request, ffwd-
delegated data structures closely approximate single-
thread performance, in a multi-threaded setting.

• A low-level analysis of the performance bounds on lock-
ing vs. delegation, from an architectural perspective, set-
ting the stage for further improvements.

• A publicly available implementation of ffwd [2], includ-
ing a general purpose API, and a set of benchmark pro-
grams ported to delegation, for the community to repro-
duce and build upon our results.

Below, we analyze the factors that limit delegation per-
formance in §2, and contrast this to a similar analysis of
coarse-grained locking. We then describe the design of ffwd
in detail in §3, before a comparative performance evaluation
in §4. We discuss how to port existing programs to ffwd in
§5, followed by a literature review in §6 and conclusions §7.

2. Lock and Delegation Performance Bounds
Below, we discuss the performance limits of locking and del-
egation. Succinctly, single-lock performance is constrained
by the interconnect latency. Delegation, meanwhile, is pri-
marily limited by server processing capacity.

Figure 1, shows the number of critical sections executed
per second (Mops) with varying critical section lengths
(in this case, iterations of an empty for-loop), for several
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Figure 2: Throughput as a function of memory accesses, for
single-threaded execution, delegation, and locking (higher is
better).

competing methods. Here, the single-threaded benchmark
program consists of an outer loop that repeatedly calls a
function containing the empty for-loop. This represents
an upper bound on delegation performance, which is as
high as 320 million operations per second (Mops) for a
one-iteration critical section. The MUTEX and MCS pro-
grams use 128 hardware threads, contending for one shared
(pthread mutex/MCS) lock and executing one critical section
before releasing the lock. The FFWD and RCL programs
are delegation-based. FFWD uses 120 client threads, and 1
server thread1. Clients delegate the inner loop to the server.

Notably, delegation (ffwd) dramatically outperforms lock-
ing for short critical sections, but falls short of the single-
threaded program’s performance. While single-threaded
throughput upper-bounds delegation throughput, several fac-
tors restrict the performance of a delegation system, in-
cluding interconnect bandwidth, interconnect latency, store
buffer capacity, and message demarshalling overhead, each
discussed separately below.

Consider an idealized system. Assuming no back-to-back
acquisitions, the maximum single-lock throughput is tlock =

1
l+clock

, where l is the mean one-way interconnect latency,
and clock is the mean duration of the critical section. When
(clock → 0), lock throughput is dominated by bus latency
which, on our systems, is approx. 200 ns between sockets,
or approx. 80 ns between cores on a single socket. This
corresponds to a single-lock throughput of 5 Mops and 12.5
Mops respectively. Only by increasing the number of locks
can a locking program go beyond this fundamental limit.

While locking explicitly serializes both the coordination
and the execution of the critical section, delegation serializes
the execution of delegated functions, but leaves the exchange
of requests and responses up to the implementation. The
interconnect bandwidth on Intel/AMD architectures tends
to be very high relative to the bus latency, as high as 25

1 These numbers are explained in §3.
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Gbyte/s, or 390 million cache lines per second on a single
link. Thus, an implementation that can harness part of this
bandwidth could achieve significant performance gains. We
now discuss several constraints on delegation performance
in more detail.

Interconnect Bandwidth In our evaluation systems, the
interconnect bandwidth on a single link is 150–390 million
cache lines per second. For a lower bound, consider a single
link of our slowest interconnect, and one cache line per
request, in each direction. Conservatively (not counting in-
socket bandwidth), the bandwidth bound is then 75 Mops per
link. Our systems have two links per socket, for a total of 150
Mops. More efficient design, faster links, and using multiple
servers, can together increase this number considerably.

Interconnect Latency Delegation requires a round-trip on
the interconnect bus: one way for the request, and one for the
response. Thus, the maximum delegation per-client through-
put is 1

2l , or 2.5 Mops for inter-socket communication.

Interconnect Parallelism: Store Buffers To go beyond
the single-client throughput, multiple request/response pairs
need to traverse the high-latency interconnect in parallel.
Clients naturally issue requests in parallel, but the single
server is more constrained. Here, a number of store buffers
exist that hold (and order) cache-coherent stores until the
relevant cache line is locally available for writing. The store
buffers on our Broadwell CPUs support 42 concurrent in-
flight stores. Thus, assuming one store per response, and
if all in-flight stores are used for responses, the throughput
limit is 42× 2.5 = 105 Mops.

Demarshalling Overhead Finally, the server processing
throughput is a function of the critical section length when
run on the delegation server, cdel, and the demarshalling
overhead, odel. Each request requires at minimum: loading
the request, reading parameters into registers, calling the del-
egated function, and writing a response. Thus, the maximum
processing throughput is 1

odel+cdel
. It is unknown how effi-

cient a delegation server can be. However, our current im-
plementation achieves 55 Mops on a 2.2 GHz CPU, or 40
cycles per request, whereas locking requires more than 450
cycles per request.

In summary, with locking, throughput is limited to 5
Mops per lock, or 12.5 Mops when running on a single
socket. With delegation, performance is limited primarily
by server processing capacity, and the number of processor
cycles spent on each delegated function.

2.1 Performance Bounds with Larger Critical Sections
Naturally, longer critical sections are also common. For
longer critical sections, the delegation advantage in terms of
parallel communication fades, as seen in Figure 1. However,
not captured in this figure is the potential memory locality
advantage of the delegation approach.

Figure 2 shows the results of a similar experiment in-
vestigating the effect of memory accesses. Here, the criti-
cal section updates a variable number of randomly selected
elements within a 1 Mb statically allocated array. Here, the
lack of contention for the elements, and the effective use of
the LLC cache, allows ffwd to substantially outperform the
other approaches throughout the range.

2.2 When to use ffwd

Based on the above analysis, we expect delegation to consis-
tently outperform coarse-grained locking on multi-core sys-
tems, as long as the number of hardware threads is suffi-
ciently large that setting one thread aside for the server is
not unreasonable.

Fine-grained locking can outperform delegation under
the right circumstances. In particular, long critical sections
are better suited to fine grained locking, due to the added
parallelism provided. For short critical sections, delegation is
likely the better choice due to the per-lock throughput bound
(≈5 Mops on our systems). Unless, that is, the data structure
can be partitioned enough to support a large number of
independent locks (e.g. a hash table).

Considerably higher performance can sometimes be ob-
tained with specialized data structure designs. In our evalua-
tion, we highlight several such data structures. It is important
to note, however, that these data structures require sophisti-
cated engineering effort while delegation can often provide
a high-performance alternative with minimal code changes.

The current state of the art in delegation, RCL [53], places
a heavy emphasis on supporting the re-engineering of legacy
applications to delegation. Beyond the automatic profiling
and code rewriting tools described, the RCL delegation pro-
tocol itself was designed with re-engineering as first priority,
and performance second. This is evident in several details
of the design: RCL supports locking and blocking system
calls in delegated functions. The name, Remote Core Lock-
ing, is embodied in the fact that after delegating a critical
section, the server still acquires the lock, to preserve correct-
ness should other threads acquire the lock in another part of
the code. Also, the use of a request context is convenient for
automatic rewriting, but results in lower performance, as the
server must first read the request, then read the context based
on the pointer passed in.

ffwd’s design focuses on performance rather than re-
engineering of legacy applications. As a result, we are able
to achieve ≈10× speedup over RCL, widening the range
of programs where delegation outperforms other methods.
Below, we describe the design of ffwd in more detail.

3. fast, fly-weight delegation (ffwd)
ffwd provides an API for delegating the execution of a nor-
mal C function to a remote server: the client sends a request
to the server, specifying a function and a set of parame-
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Figure 3: High-level design of fast,fly-weight delegation (ffwd). Request and response data structures are designed to minimize
cache coherence traffic and latency.

ter values. It then awaits the function’s return value in the
server’s response.

Figure 3 illustrates the overall operation of ffwd at the
message-passing level. For illustration purposes, we de-
scribe the design in terms of system constants taken from
our evaluation systems (64-byte cache lines, up to 32 threads
per socket). However, the design principles behind ffwd gen-
eralize well to other constants.

Each client core maintains a dedicated 128-byte request
cache line pair. This is exclusively written to by the hard-
ware threads of that core, and read only by the server. After
writing to its request line, each client thread spins on its ded-
icated response slot within its 128-byte response line pair.
The response line pair is exclusively written to by the server,
and shared (for reading) by multiple cores of a given socket.

The server processes requests in a round-robin, socket-
batched fashion, polling all request lines and handling any
new requests from one socket before proceeding to the next.
It buffers individual return values locally until processing
for the current response group has finished, then writes all
responses to that group’s response line pair.

Each request contains a toggle bit, a function pointer, an
argument count, and up to 6 arguments to the function. The
response line pair is shared between up to 15 clients on a
single socket, containing per-client toggle bits, and 8-byte
return values. Together, the requests and the shared response
form up to 15 individual channels between the clients on
a single socket, and one server. The toggle bits indicate
the state of each individual request/response channel. If the
request and response toggle bits that correspond to a given
client differ, a new request is pending. If they are equal, the
response is ready. To process a request, the server loads the
arguments provided into the appropriate registers, and calls
the specified function.

3.1 Design Motivation
Several key aspects of ffwd are listed below. This is followed
by a discussion of and motivation for each design choice.

• Allocations are multiples of 128-byte aligned line pairs.
• Though multiple cores may read a given line pair, only

one core ever writes to each one.
• Several clients on a socket share a response line pair.
• The server buffers responses locally, then copies all re-

sponses to the appropriate response line pair in one unin-
terrupted series of writes.

• Overhead for serving a request is minimal: load parame-
ters into registers, call the supplied function pointer, then
copy the return value to the local response buffer.

• The server does not acquire any locks prior to executing
the delegated function.

Without loss of generality, consider a slice of the system
consisting of a single server, and up to 15 client hardware
threads on a single remote socket. At a high level, the key
to high messaging performance is minimizing the amount of
cache coherence communication on the interconnect.

Eliminating false sharing A first step to this is to elim-
inate any source of false sharing. On Intel’s Xeon fam-
ily of architectures, cache lines are 64 bytes, but the L2
cache of each core includes a spatial (pair) prefetcher, which
treats memory as consisting of 128-byte line-pairs, and au-
tomatically prefetches the “other” 64-byte line when one of
the lines is otherwise retrieved. Thus, independent, false-
sharing-free memory access (aside from cache associativity
effects, which do not play a role here) is only available in
128-byte granularity on Xeon.
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Independent, per-core request lines We allocate one 128-
byte line pair per core, which is split equally between the two
hardware threads supported by our three Xeon machines. Al-
locating a full 128-byte pair eliminates any write contention
on the requests: the only contention is between the writing
client, and the reading server. The server’s read request tran-
sitions the cache line to the shared (S) state and copies the
contents over the interconnect, while the client’s subsequent
write invalidates the server’s copy (without data transfer),
and transitions the line to the modified (M) state.

Buffered, shared response lines By contrast, we allocate
128-byte response line pairs to be shared by a group of up to
15 hardware threads of a common socket, containing tog-
gle bits and 8-byte return values. Here, the server’s write
invalidates all copies of the response line pair at the corre-
sponding socket. While this invalidation is in process, the
server’s buffered responses are written to the local core’s
store buffer, virtually guaranteeing that the entire 128-byte
pair can be written to without incurring further coherence
traffic. The toggle bits are copied last. The first subsequent
read by a client transitions the cache line pair to the S state
and copies the data. Subsequent reads by other clients on
the same socket are served by their local last-level cache.
In short, every round of service, serving up to 15 clients on
one socket, incurs at most 17 cache line data transfers and 17
corresponding cache line invalidations over the interconnect.

NUMA-aware allocation of request and response lines
Request lines are allocated on the NUMA node of the clients,
and response lines on the NUMA node of the server, which
we found to provide a substantial performance advantage.
While measuring cache coherence traffic (beyond cache
misses) directly is outside the scope of this paper, we hy-
pothesize that this NUMA allocation strategy avoids extra
steps in the invalidation process, as the relevant cache home
agent always shares a socket with the writer.

Minimal demarshalling overhead Beyond message pass-
ing, the processing of requests on the server must incur min-
imal overhead vs. the client performing the work, or server
processing would quickly become a performance bottleneck.
To this end, our server starts processing a request by reading
the specified number of parameters from the request into the
parameter passing registers. It then calls the specified func-
tion, and finally buffers the eventual return value for subse-
quent combined transmission.

No atomic instructions Finally, the server does not acquire
any lock during its operation. In x86 processors, atomic op-
erations are not reordered with respect to other loads and
stores, degrading performance. For example, in our fetch-
and-add micro benchmark holding a local, uncontended lock
around each delegated function reduced throughput from 55
Mops to 26 Mops. Not acquiring locks does impact appli-
cability, as in most cases the server can only operate on
data structures local to the server thread. However, due to

the server processing bottleneck present in all delegation
systems, performance considerations anyway suggest that
servers be denied access to any data structures shared with
clients.

3.2 ffwd Delegation API
Having the server call a passed-in pointer combines our two
goals of high performance and ease of use: the function
specified in a request can be any non-blocking C function,
with up to 6 8-byte parameters. To facilitate ease of use for
application developers, ffwd provides a small API:

FFWD Server Init() Starts a server thread, allocates and
initializes the request and response lines.

FFWD Delegate(s, f, retvar, argc, args...) This macro del-
egates function f to server s, with specified arguments.
Stores return value in retvar.

Using the ffwd API, clients may delegate the execution of
a function to the server using a single line of code, specifying
the function, desired parameters and return value variable.

4. Experimental Evaluation
Below, we compare ffwd to several competing approaches,
across 6 different data structures, 6 application benchmarks,
4 systems (Table 1) using up to 128 hardware threads.

Overall, the experimental results reflect the conclusions
of the analysis in §2: delegation excels when critical sections
are brief, and contention is high. Under these circumstances,
contention and communication dominate and degrade the
performance of every type of lock-based synchronization,
whereas ffwd is at peak performance.

As we stray from these ideal conditions, exploring smaller
thread counts, greater inherent parallelism in the program,
and either long critical sections or long intervals between
them, ffwd remains highly competitive up to a point, after
which the advantages of ffwd diminish, and its server-side
processing bottleneck becomes more apparent.

4.1 Experimental Design
We report evaluation results from experiments run on the
four machines described in Table 1. However, due to space
constraints, most plots are from the 64-core Broadwell
system—except where noted, the trend was similar across
all four systems. For full evaluation results on all four sys-
tems, please refer to our technical report [73].

To accurately characterize the performance of ffwd, we
perform both application level and micro-benchmark exper-
iments comparing ffwd to a wide variety of competing ap-
proaches: conventional locks including test-and-set spinlock
(TAS), test-and-test-and-set spinlock (TTAS), posix mutex
lock (MUTEX), the MCS lock (MCS) [61], the CLH lock
(CLH) [23], the conventional ticket lock (TICKET) [61] and
its hierarchical counterpart (HTICKET) [27], combining ap-
proaches including flat combining (FC) [40], and delega-
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RAM Latency (ns) LLC latency (ns) Interconnect
Machine local remote local remote Bandwidth (GB/s)

4×16-core Xeon E5-4660, Broadwell, 2.2 GHz 81 238 63 135 77
4×8-core Xeon E5-4620, Sandy Bridge-EP, 2.2 GHz 71 249 70 177 57

4×8-core Xeon E7-4820, Westmere-EX, 2.0 GHz 168 235 98 185 47
4×8-core AMD Opteron 6378, Abu Dhabi, 2.4 GHz × × 92 163 51

Table 1: Specifications and preliminary performance measurements using MLC [1] for Intel, and ccbench [25] for AMD on our
experimental platforms. ccbench did not report RAM latency. In the table, local denotes communication between cores within
a socket, and remote represents communication with cores on other sockets.

tion (RCL) [53]. For some specific benchmarks, we included
several implementations specific to that benchmark, includ-
ing lock-free, software transactional memory, and combin-
ing approaches.

Except where noted, we use a number of threads equal to
the number of supported hardware threads on the machine
in question. One significant exception to this is the FFWDx2
method, which over-subscribes each hardware thread with
two user/green threads. These user threads yield the CPU
immediately after sending a request. FFWDx2 is only eval-
uated in our micro-benchmarks. In the case of ffwd, we ded-
icate one core per socket as a delegation server in our exper-
iments even when it is unused, leaving up to 30 threads per
socket to run client/application code on Broadwell machine.
Though dedicating one server core per socket is not a design
requirement of ffwd, it keeps the experimental design simple
and flexible. The incremental performance gain from using
these last few cores is negligible for ffwd.

In all experiments, benchmark threads are pinned to hard-
ware threads in a pre-determined order. On Xeons, we are
first filling one socket with one thread per available core,
then filling subsequent sockets in the same fashion, and fi-
nally revisiting each socket in the same order to populate the
second thread supported by each core. For FFWDx2, each
hardware thread populated immediately results in two user
threads. We follow a similar order on the AMD system, as

pairs of Opteron cores share some resources. The first pass
populates one core in each pair: second pass populates the
second core. Finally, the data points in the subsequent plots
represents the mean of at least 10 independent runs, except
for memcached, which is a long-running benchmark, and
linked-list/hash-table, which were configured to run for 15
seconds per data point.

All programs were compiled with gcc 5.4.0, using opti-
mization level 3, running under 64-bit Ubuntu 16.04. These
experiments were run with the glibc standard allocator (pt-
malloc). We also experimented with Hoard [3], slab[7], and
jemalloc [4], and saw no significant improvements for these
workloads (figures omitted for brevity). The concurrent op-
erations in these workloads are not allocation-intensive,
and generally make small, fixed-sized allocations. Also, we
found that ptmalloc creates approximately arena per thread,
largely avoiding contention on area locks.

4.2 Application level benchmarks
Our application level benchmarks were taken from the
SPLASH-2 [8], Phoenix v2.0.0 [71] benchmarks, and Mem-
cached v1.4.6 [5] / Memslap v1.0.2 [6] using the same subset
of benchmarks as the RCL paper [53]. In turn, [53] selected
these benchmarks based on the fraction of time spent in
critical sections. Several concerns have been raised about
the Phoenix benchmark suite, including: (a) a false-sharing
problem was discovered in the linear regression program
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[52, 65], though [65] indicates that gcc with optimization
level -O3 eliminates this problem, (b) the matrix multiply
program may not be competitive with the state of the art
in matrix multiplication, and (c) the string-match program
may not be a representative workload. Thus, a comparison
between delegation and locking based on the Phoenix suite
should be taken with a grain of salt. Nevertheless, using
the same set of benchmarks enables a direct comparison to
RCL. We include instances of each of the three benchmarks
with two input sizes. We did not include the BerkeleyDB
benchmark due to time constraints. Figure 4 summarizes our
application-level results on the Broadwell machine, showing
speedup relative to standard Posix mutex locks. We were un-
able to run the radiosity benchmark with MCS successfully,
and were unable to implement Memcached with flat combin-
ing case due to time constraints. Overall, we find that ffwd
further improves upon the delegation gains already demon-
strated by RCL.

While Figure 4 shows the speedup vs. pthreads at the
ideal thread count for the respective method, Figures 5–6
show how performance varies with the number of threads,
telling a very different story.

For both Raytrace-Car and Memcached-Set, ffwd perfor-
mance continues to improve slightly after 16 threads, while
all other approaches scale negatively. The spinlock (TTAS)
shows a characteristic congestion collapse, whereas the other
lock types, and RCL, exhibit a more graceful decline. Sev-
eral lines in both benchmarks stop abruptly, due to persis-
tent “server disconnection” errors at high thread counts that
we were unable to resolve. We traced this back to a connec-
tion loss between the memslap [6] client and the memcached
server, but could not isolate the fault further.

We find that for all benchmark applications evaluated, on
all platforms tested, ffwd matches or outperforms all lock
types (including combining), as well as RCL. Overall, the
performance gains can be attributed to two main sources:
eliminating contention for highly contended data structures,
and improved memory locality, for all shared data. For the
comparison with RCL, the cause of the performance differ-
ence is less obvious, as RCL and ffwd follow the same design
principle. However, the micro-benchmark results below sug-
gest a simple explanation: while ffwd and RCL do the same
job, ffwd does it more efficiently, as described in §3.

4.3 Micro-benchmarks
To gain a better understanding of the expected performance
of ffwd, we include several micro-benchmark programs in
our evaluation, described in more detail below: fetch-and-
add (§4.3.1), stack and queue (§4.3.2), linked list (§4.3.3),
search tree (§4.3.4), and hash table (§4.3.5).

To avoid one thread acquiring a lock multiple times con-
secutively, we introduce a small delay between increments,
outside any critical section or delegated function. Figure 7
shows the relationship between this delay, the percentage
of back-to-back lock acquisitions (labeled MUTEX % B2B
ACQ) for MUTEX, and lock throughput for several lock
types, using 128 threads and a single lock. Without a de-
lay, back-to-back acquisition is very common, which greatly
distorts the performance of some of the simpler locks. This
distortion is even more severe for atomic increment.

Thus, to ensure representative results across all methods,
we use a delay loop of 25 PAUSE instructions between criti-
cal sections to prevent such back-to-back acquisition, trans-
lating to ≈500 cycles of delay on our Xeon machines, or
about one round-trip on the interconnect bus. In this test,
threads on average wait for the critical sections of 127 other
threads to complete before successfully acquiring the lock.
Thus, this small added delay has no significant impact on
performance in the absence of back-to-back acquisitions.
Nevertheless, for fairness, the same 25 PAUSE delay is im-
posed on all methods evaluated.

4.3.1 fetch-and-add
This benchmark demonstrates ffwd performance and scala-
bility for very short critical sections, for the single-variable
case, and investigates the performance trade-off between
memory locality and parallelism, in the multi-variable case.
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Figure 7: Percentage of back-to-back acquisitions, and lock
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In the fetch-and-add micro-benchmark, there is a vari-
able number of integer counters. In the case of locking and
combining, each counter occupies its own cache line pair of
128-bytes, which it shares with an associated lock to mini-
mize cache misses. In the case of ffwd, the counters reside
in a standard C array, without any particular cache align-
ment. The work consists of selecting a global variable at
random, and incrementing it, for 10 seconds. Before start-
ing, all threads wait at a barrier, to ensure the threads run
concurrently. For locking and combining, each thread se-
lects a variable, acquires the associated lock, increments the
variable, then releases the lock. For ffwd, each client thread
instead selects a variable, then delegates an increment func-
tion (with the variable index as a parameter) to the variable’s
pre-assigned server and awaits the server’s response. Since
fetch-and-add also has dedicated hardware support on the
x86 architecture in the form the LOCK INC atomic instruc-
tion we also report the performance using this (ATOMIC)
instead of a lock and a non-atomic increment.

Figure 8 compares the performance of ffwd and its alter-
natives on this benchmark program on our Broadwell ma-
chine using all 128 hardware threads, as we vary the num-
ber of global variables (and in the case of locking and com-
bining, associated locks). ffwd and its over-subscribed vari-
ant show a dramatic advantage over the alternatives until
the number of variables approaches the number of hardware
threads in use. The over-subscribed FFWDx2 outperforms
standard ffwd as the number of variables grows from 1–4.
With four variables, ffwd is able to take advantage of the
four available servers, eliminating the server processing bot-
tleneck. FFWDx2, meanwhile, is also able to circumvent the
interconnect latency limit by increasing parallelism, further
increasing throughput.

With more than 128 variables, some locking methods
start to outperform ffwd. This is unavoidable: for a suffi-
ciently parallel program, the centralized model of delegation
cannot compete with locking. Notably, however, neither flat
combining nor RCL perform well on this micro-benchmark.
Figure 9 offers a hint at the problem, showing total system
throughput for a single variable, while varying the number
of threads, on all four systems. While RCL is relatively com-
petitive on the Abu Dhabi system, it does not scale well be-
yond a single socket on the Intel systems. It is possible that
either design decisions or parameter settings were chosen to
better reflect the AMD architecture.

Though the final performance is a function of a large
number of factors, cache misses can often have a large im-
pact. In this benchmark, ffwd incurred an average of 0.72
cache misses per operation, while RCL saw 3.07 cache
misses per operation. Based on the RCL design, there should
be one miss per request, one dependent miss to transfer the
context, and one miss for the response. Meanwhile ffwd ap-
pears to benefit from cache pre-fetching to get below the
expected 1 + 1

15 = 1.06 misses per operation.
Figure 9 illustrates the similarity in trend between the sys-

tems tested, though the absolute performance varies. Lock-
ing does relatively well on a single lock when the number of
threads is small, but quickly drops off with thread count. Par-
ticularly severe is the step between single-socket and multi-
socket performance, at 16–32 threads in Figure 9(a), and 8–
16 threads in the remaining sub-figures, as the added latency
of the interconnect kicks in.

For ffwd, we note a steady increase in performance as the
thread count grows. Since the delegated function is very
brief, ffwd is latency-bound in most of this experiment.
Adding threads effectively increases the amount of pipelin-
ing possible on the long-latency but high-bandwidth CPU
interconnect. It is interesting to note that except when op-
erating on a single socket, ffwd significantly outperforms
even the atomic increment instruction, which was built to
do exactly what this benchmark does. This is a true testa-
ment to the high cost of sequential communication, which
is unavoidable for both atomic instructions and lock-based
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Figure 9: Average throughput of fetch-and-add, for a single lock/shared variable, and varying number of threads. Delegation
performance grows rapidly with the number of threads, outpacing even atomic instructions once threads spread over more than
one socket (higher is better).

methods. The FFWDx2 program showcases two benefits
of the added threads: first, on the Broadwell system, being
able to run 32 concurrent requests on a single socket rather
than 16 almost doubles throughput, as the system is latency
constrained. Second, the Abu Dhabi system appears to be
latency constrained for all thread counts, which FFWDx2
effectively circumvents. While this latency difference is not
apparent in Table 1, delegation is considerably more com-
plex than the measurements performed for that table.

4.3.2 queue, and stack
We now compare the performance of different access meth-
ods for queue and stack data structures, adopted from [32].
The queue implementation is based on the two-lock queue
algorithm proposed in [63]. In this algorithm, the head and
the tail of the queue are protected by two distinct locks of
the same type, allowing parallel enqueues and dequeues.

Figures 10–11 compare the performance of state-of-the-
art locking and combining-based synchronization methods
with that of ffwd for a varying number of threads. The exper-
iments performed in this section are similar to those in [32].

Every thread executes 106 pairs of enqueues/pushes and de-
queues/pops. There is a random number of increment loops
(between 0 and 64) after each operation to simulate the work
done in between.

In these figures, FC, CC, DSM, and H are combining-
based implementations of the stack and queue benchmarks
respectively. FC is based on the Flat Combining algorithm
proposed in [40], in which a thread becomes the combiner
by acquiring a global lock. It then serves any active requests
from other threads in addition to its own critical section. The
other three combining methods, proposed in [32], though
similar to flat combining in principle, differ from it in the
following way: a FIFO queue is used to both implement the
lock and store the threads’ requests, and the combiner is al-
ways the thread at the head of such a queue. CC-Synch (CC)
is designed to have good performance for cache coherent
(CC) shared memory systems, while DSM-Sync (DSM) is
more suited for distributed shared memory (DSM) systems.
H-Sync (H) is a hierarchical version of CC-Synch. SIM is a
wait-free implementation based on the Sim algorithm [31].
MS is a lock-free queue implementation using the algorithm
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presented by Michael and Scott in [63]. LF is another lock-
free implementation by Fatourou and Kallimanis [32]. BLF
is the lock-free queue in the Boost library.

For the ffwd implementation, we simply remove the lock
acquisition code, and delegate the entire enqueue/dequeue,
or push/pop functions as appropriate using the ffwd API.

Figures 10–11 show the measured throughput for the
queue and stack benchmarks respectively. Here, ffwd matches
and often significantly outperforms the best lock-based and
combining-based schemes. The lock-based and combining
methods are competitive up to the socket boundary, then
drop off significantly. For ffwd, a minor drop-off is observed
between 15 and 16 threads (one thread on each socket being
used for the server), but because communication is concur-
rent in ffwd, the added latency incurred when crossing sock-
ets is less impactful. The over-subscribed version, FFWDx2
has an significant advantage for small thread counts (where
ffwd performance is heavily latency constrained), but main-
tains only a small lead over ffwd for larger thread counts. We
also see that the combining approaches significantly outper-
form the lock-based ones, with the more recent approaches
leading. Nevertheless, delegated stacks and queues with ffwd
are on average twice as fast as the best combining-based
stack and queue implementations.

Another key observation is that for all approaches, ex-
cept ffwd, the queue performance is generally higher than the
stack performance, due to the two locks used in the queue.
In ffwd, however, a single server handles all delegations, im-
plicitly serializing them. Thus, ffwd performance is essen-
tially identical for both data structures.

4.3.3 linked list
In this benchmark, a single linked list contains integers in
sorted order, representing a set of integers. Threads query
the list for membership (70%), and alternate inserting mem-
bers into, and removing members from the list (30%). For
synchronized access, a single global lock protects the list
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Figure 12: Average throughput of naı̈ve linked list with 1024
initial list elements, 30% update ratio (higher is better).

from concurrent access. For delegation, both query and up-
date methods are delegated. FFWDx2 results are elided: they
are essentially identical to FFWD due to the long critical sec-
tions in this benchmark.

Figure 12 shows the performance of this basic linked list
implementation, with an initial list length of 1024, as we
vary the number of threads. Given the use of a single lock
for the list, the performance of the locking methods drops
quickly with the number of contending threads. Note too
that ffwd throughput does not increase with the number of
threads, as was the case with the fetch-and-add benchmark
§4.3.1. This is because the time taken to traverse the rel-
atively long linked list bounds server performance. Never-
theless, ffwd provides a significant performance boost over
locking on this naı̈ve version of a linked list. Interestingly,
the added concurrency provided by the software transac-
tional memory approach (STM) [28] results in a substantial
performance boost for modest thread counts, and relatively
graceful performance degradation as the thread count grows.
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A faster “lazy” linked list for concurrent use is presented
in [39]. Here, threads traverse the list in parallel, and fine-
grained locking is used to update the list. For the ffwd version
the updates operations are delegated to a single server: as in
the locking version, clients traverse the list in parallel.

Figure 13 shows the performance of the lazy linked list, in
an experiment that uses the same settings as Figure 12. Here,
the ffwd implementation of the lazy linked list is labeled
FFWD-LZ. Besides the performance improvement across
the board, the lazy list exhibits a very different trend. Due
to the concurrent traversal, and the fine-grained locking for
updates, adding threads increases concurrency, and therefore
throughput. In absolute performance terms, ffwd also bene-
fits significantly from the lazy list version. However, its sin-
gle server cannot keep up with many threads and 1024 locks.

As an alternative to delegating this highly concurrent data
structure, we also evaluate using a data structure better suited
to single-threaded execution. The lines labeled FFWD-SK
and MCS-SK show the performance of a skip list [51], under
the same conditions. While FFWD-LZ falls far behind other
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Figure 15: Server store buffer stalls for lazy linked list ex-
ecution with ffwd, for varying list size (log scale) (lower is
better).

methods, FFWD-SK is highly competitive with the lazy list.
Meanwhile, the coarse-grained MCS lock version of the
skip list (MCS-SK) is unable to scale beyond a handful
of threads, as it offers no concurrency, and poor memory
locality. For reference, we also include the Harris list [37].

To better understand the dynamics of these linked lists,
Figure 14 shows their performance as we vary the length of
the list. While FFWD-LZ falls behind the lock-based lazy
linked lists as the initial size grows, the origin of this drop-
off is not strictly server processing: in the delegated lazy list
implementation, the server is only responsible for updates,
which does not include list traversal. Rather, the design of
the lazy linked list, in combination with delegation, results in
a serialization of communication delays. Specifically, every
write by the server results in a cache miss, causing the server
(and with it, all pending requests) to stall when its store
buffers are depleted. Figure 15 illustrates this effect: the most
severe performance degradation in ffwd coincides with the
rise in store buffer stalls, which at its peak consumes 80%
of the server’s cycles. As the list grows further, clients slow
down, taking some of the load off the server.

Meanwhile, FFWD-SK illustrates the benefit of using a
high-performance single-threaded data structure: as the list
grows beyond 2048 elements, even the massive parallelism
of the lazy list cannot make up the O(N) vs. O(logN)
difference in computational complexity. We did not evaluate
the performance of concurrent skip lists [34, 46, 80, 85].

In summary, one cannot choose a data structure in isola-
tion. While both the lazy list and the skip-list are better than
the naive list under all circumstances, the skip-list is very
well suited to delegation, while the lazy list is better suited
for multi-threaded execution. When used with a suitable data
structure, we find that delegation is very competitive with al-
ternative approaches.
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4.3.4 binary search tree
Figure 16 shows the performance of several binary tree im-
plementations. The initial size of the tree is 1,024 elements,
and the workload consists of 50 percent reads, 50 percent
updates (equal proportions of insert and delete).

FFWD delegates all tree operations to a single server,
which uses a barebones binary tree implementation. The in-
serts and deletes are random, which results in an approxi-
mately balanced tree, and the tree operations in this bench-
mark do not rebalance the tree. The same design is used by
the RCU [20], RLU [57], SWISSTM [28] and VTree [95]
programs, while the VRBTree [95] implements a balanced
Red-Black tree. For this relatively small tree, FFWD sig-
nificantly outperforms the other alternatives, as the critical
section is short, allowing a single-threaded solution to out-
perform more sophisticated, parallel trees.

However, Figure 17 tells a more complete story. Here,
the tree size is varied between 128–128k elements, with the
larger sizes resulting in much longer critical sections due
both to the number of levels of the tree, and the decidedly
poorer memory locality. The ffwd results reflect this real-
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Figure 18: Average throughput of hash table (log scale) over
120 threads for ffwd (128 threads for all other methods),
initial load factor 1, 30% update ratio (higher is better).

ity: as the tree grows, ffwd throughput drops steadily, while
RLU and SWISSTM take advantage of the larger tree to im-
prove concurrency. The line labeled “single threaded” shows
the throughput of the data structure when running the same
workload in a single thread. The narrow gap between ffwd
and single-threaded performance shows how well ffwd is
making single-threaded performance available to this multi-
threaded application. For very large trees, RCL also approx-
imates the single-threaded performance.

In order to achieve performance on par with RLU and
SWISSTM, it is necessary to go beyond a single server.
FFWD-S4 shows ffwd performance after partitioning (shard-
ing) the key space into four separate trees, and delegating
each of these trees to a different server, yielding a 4× in-
crease in throughput. Note, however, that this basic design
relies on a static partitioning, which is not ideal for all work-
loads.

4.3.5 hash table
In our final benchmark program, the hash table, a set of in-
tegers is stored in a hash table. As above, 70% of operations
are membership queries, while 30% add elements to, or re-
move from the set. Each bucket in the hash table contains a
simple linked list, which typically holds only a small num-
ber of items. For locking methods, each bucket has its own
lock, which is acquired prior to accessing the list. For dele-
gation, both membership queries and updates are delegated
to the server in charge of the hash bucket in question.

A hash table is perhaps a counterintuitive evaluation
choice for a delegation system. Hash tables are an ideal tar-
get for fine-grained synchronization, and thus, we would
expect locking to outperform delegation. However, the hash
table benchmark presents an opportunity to directly manip-
ulate the amount of concurrency in the system, similar to
fetch-and-add, making it a useful evaluation tool, even if a
large hash table is a highly unlikely target for delegation.
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Figure 18 shows the throughput of the hash table, as we
vary the number of buckets in the hash table. The number
of entries is also adjusted, so that buckets on average have
one entry each. The plot bears a close resemblance to the
fetch-and-add results in Figure 8.

Notably, ffwd is only competitive up to 64 buckets,
whereas in the fetch-and-add experiment, it kept pace with
the other methods up to 128 global variables. In hash ta-
ble case, the greater complexity of managing linked lists
vs. incrementing integers reduces the throughput of the 4
server threads, whereas locking remains communication and
contention-bound, and is largely unaffected by an increase
in the processing burden.

5. Porting Code to Delegation
Overall, delegation is best suited to serving a fast, single-
threaded data structure to multiple client threads. This re-
quires little effort, and usually results in high performance.
Transitioning this type of code to delegation with ffwd is sim-
ple: delegation requires both shorter and less complex code
than locking does, and runs faster.

However, another common use case would be to port
existing locking code to delegation. In [53], an automated
method for doing this is described for the RCL delegation
system. This is elegant, but requires functionality that is cur-
rently unsupported by ffwd, including lock acquisition and
blocking system calls inside delegated functions. Potentially,
the automatic rewriting approach could be modified to ac-
commodate ffwd, but we leave this to future work.

In terms of manually porting code to delegation, locking
code can be converted to single-server delegation by remov-
ing the locking code, and delegating all critical sections that
access the shared variables or data structures in question.
However, this approach is similar to using a single lock in a
concurrent program; it often reduces program concurrency,
an can sometimes result in a performance degradation. Sig-
nificantly, ffwd does not provide any means of synchroniza-
tion between servers. Thus, to take advantage of multiple
servers, each server must serve independent data structures,
or independent partitions of a single data structure, as in the
tree benchmark (§4.3.4).

For all benchmarks but memcached, porting the applica-
tion to ffwd was a matter of a handful of changed lines of
code. Memcached, on the other hand, required significant ef-
fort: 1460 lines of code were either moved, added or deleted,
with the vast majority being lines moved from critical sec-
tions into functions to be delegated. Because we don’t ac-
quire any locks before entering the critical section, every ac-
cess to a delegated data structure must be delegated. In large
or complex software, especially involving function point-
ers and/or lock pointers, even identifying every such access
can be hard. In addition, acquiring locks in delegated func-
tions can degrade server performance, since it may block
the server, or even result in deadlock if the lock is not re-

leased before returning. Therefore, it is often preferable to
eliminate any such nested locking, and instead delegate all
accesses that use these locks as well, in effect causing a cas-
cade of porting effort. Here, the RCL approach, which fo-
cuses on re-engineering multi-threaded programs, has a sig-
nificant advantage in terms of effort required.

5.1 Combining Delegation and Locking
ffwd provides tremendous performance improvements over
locking and combining in some settings, but a spinlock is
often the best-performing solution for highly parallel pro-
grams. This suggests a hybrid solution. Nothing prevents
the coexistence of ffwd and locking in a program, as long
as the respective data structures they manage are indepen-
dent. Thus, for maximum performance, one may use ffwd
for a central shared work queue, but spinlocks to protect the
million-bucket hash table using fine-grained locking.

6. Related Work
Access to shared data structures is a common performance
bottleneck in concurrent programs, which has spawned
a range of approaches aimed at improving performance
and scalability. Synchronization through mutual-exclusion
(locking) remains the most popular scheme for access to
shared variables, and the design of efficient and scalable
locks has been a rich topic of research for decades [9, 12,
15, 18, 19, 23, 25–27, 36, 48, 54, 55, 59, 61, 70, 77, 78, 84].
We review the locking literature and other approaches below.

6.1 Spinlocks
Spinlock approaches [12, 43, 61, 74] generally spin on a
shared memory location until the lock is acquired. Closely
related, ticket locks [61] trade-off some performance in low-
contention regimes for improved fairness and scalability.
Due to their simplicity, spin locks outperform other lock
types in low contention settings. In high contention settings,
however, spin locks suffer from scalability problems, as sev-
eral threads concurrently attempt to access a single shared
lock variable using relatively long-latency atomic opera-
tions. Hierarchical versions [27, 54, 70], order acquisitions
to reduce cache coherence traffic.

6.2 Queue-based Locks
Queue-based locks [23, 55, 61, 77, 78], such as CLH [23]
and MCS [61], address scalability issues by spinning on a lo-
cal memory location rather than the global lock, polling only
the previous lock holder’s state. Queue-based approaches
are designed based on waiting in a queue, which results in
improved fairness and reduced cache coherence communi-
cation, but memory management can be complex in these
schemes, and the added overhead makes these locks slower
than spinlocks in a low contention regime. Like hierarchical
spin locks, hierarchical queue locks [18, 19, 27, 54, 70] can
improve scalability, at the cost of reduced fairness and added
complexity.
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6.3 Lock-Free Data Structures
Some popular data structures have lock-free implementa-
tions [11, 37, 38, 41, 42, 44, 50, 62, 63, 69, 82, 83, 85,
86, 89–91, 95]. Here, modifications to a shared data struc-
ture are first made speculatively, which are then committed
through a single atomic operation, typically compare-and-
swap (CAS), that makes the change visible to other threads.
If the commit fails (i.e. a concurrent change made the CAS
fail), the operation is restarted. Lock-free data structures can
be more efficient than locking, as they replace serialized crit-
ical sections with only serialized commit operations. How-
ever, for highly contended data structures, frequent retries
are common, often leading to poor performance.

6.4 Read-Copy-Update
Read-Copy-Update (RCU) implementations of data struc-
tures [13, 21, 47, 87, 88], and the related Read-Log-Update
(RLU) [57] typically provide lock-free access to readers,
while ensuring mutual exclusion between updaters. This is
similar to reader-writer locking [22, 58, 60], except that mul-
tiple readers operate on the data structure concurrently with
the writer. The overall idea is to maintain multiple versions
of the same data structure, and only reclaiming an old ver-
sion after all readers have finished using it. While RCU can
be very advantageous for the reader side, updates usually
carry a higher cost, in addition to relying on mutual exclu-
sion. This makes the RCU approach best suited to data struc-
tures that are relatively infrequently updated.

6.5 Software Transactional Memory
Software Transactional Memory (STM) [28, 30, 33, 35, 45,
56, 64, 72, 75, 81, 92, 93] generalizes the main concept be-
hind lock-free data structures (speculative execution) to ar-
bitrary programs. Here, during a transaction initiated by the
programmer, every store to memory is buffered, and every
read is logged, establishing the transaction’s read set. The
STM runtime verifies that no concurrent modifications were
made to the values in the read set, before committing the
writes to memory. Otherwise, the transaction is aborted and
restarted. STM provides concurrent, yet atomic execution of
transactions, but incurs significant serial overhead. Similar
to lock-free data structures, STM is not efficient for highly
contended data structures due to transaction restarts.

6.6 Delegation and Combining
Several delegation techniques [17, 25, 26, 31, 40, 66, 68,
79, 94] have been proposed to address the generally poor
performance of lock-based methods on highly contended
locks. In delegation, a server thread operates on a shared
data structure on behalf of client threads. Here, at most one
thread plays the role of server for a single data structure at
any given time, thus reducing the number of synchronization
operations needed. In the extreme case of a dedicated server
(as in ffwd), no synchronization is required at all. The other

benefit of delegation methods over lock-based schemes is
that the shared data structure remains in the server’s cache.

A popular category of delegation methods is combining
[26, 31, 40, 66, 79, 94]: in Flat Combining [40], threads add
the work to be done to a list. One of the threads becomes
the server/combiner by acquiring a global lock and executes
the critical sections of other threads in addition to its, before
releasing the lock. Over time, different threads may play
the role of server/combiner. CC-Synch, DSM-Synch, and H-
Synch [32], improve on the flat combining method by using
a FIFO queue both to implement the global lock (as in the
MCS lock) and to store the threads’ requested work. In high
contention, combining approaches outperform locking, but
come with extra memory management and overhead.

Contrary to the combining approaches, Remote Core
Locking (RCL) [53] and ffwd employ one or more dedi-
cated server threads. Here, RCL aims to provide a drop-in,
delegation-based replacement for locks, resulting in an el-
egant and scalable, but complex and high overhead solu-
tion. The more barebones, but highly efficient ffwd generally
offers higher throughput, but can be more challenging to
use due to its somewhat restricted functionality. In [14], a
delegation-based OS design was proposed, arguing for dele-
gation as the path to scalability.

6.7 Batched Data Structures
In batched data-structures [10, 16, 24, 29, 67, 76] multiple
operations are collected into a batch before being applied, in
parallel, to the data structure. A delegation server or com-
biner could serve a batched data structure, potentially com-
bining the benefits of both approaches.

7. Conclusion
To summarize, ffwd offers an efficient, high-performance de-
sign and implementation of delegation for multi-core com-
puters. Given a data structure that runs faster on a single
thread than on multiple threads, ffwd provides unmatched
performance in making this data structure available within a
multi-threaded program. For other uses, the case is less clear
cut. Given enough parallelism, and long critical sections that
saturate the delegation server, fine grained locking and par-
allel data structures are sometimes the better design choice.

In describing ffwd, and making a strong case for dele-
gation as an attractive, easy to use, and high-performance
means of accessing a shared data structure, we hope to in-
spire the community to further explore its potential.
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