Malthusian Locks

Dave Dice

Oracle Labs
dave.dice@oracle.com

Abstract

Applications running in modern multithreaded environments
are sometimes overthreaded. The excess threads do not im-
prove performance, and in fact may act to degrade perfor-
mance via scalability collapse, which can manifest even
when there are fewer ready threads than available cores.
Often, such software also has highly contended locks. We
leverage the existence of such locks by modifying the lock
admission policy so as to intentionally limit the number of
distinct threads circulating over the lock in a given period.
Specifically, if there are more threads circulating than are
necessary to keep the lock saturated (continuously held), our
approach will selectively cull and passivate some of those
excess threads. We borrow the concept of swapping from
the field of memory management and impose concurrency
restriction (CR) if a lock suffers from contention. The re-
sultant admission order is unfair over the short term but we
explicitly provide long-term fairness by periodically shifting
threads between the set of passivated threads and those ac-
tively circulating. Our approach is palliative, but is often ef-
fective at avoiding or reducing scalability collapse, and in
the worst case does no harm. Specifically, throughput is ei-
ther unaffected or improved, and unfairness is bounded, rel-
ative to common test-and-set locks which allow unbounded
bypass and starvation '. By reducing competition for shared
resources, such as pipelines, processors and caches, concur-
rency restriction may also reduce overall resource consump-
tion and improve the overall load carrying capacity of a sys-
tem.

Categories and Subject Descriptors
tems]: Mutual Exclusion

D.4.1 [Operating Sys-

Robert Malthus [70] argued for population control, cautioning that societies
would collapse as increasing populations competed for resources. His dire
predictions did not come to pass as food production — which had previously
been stagnant — improved to keep pace with population growth.

! Bypass occurs when a thread T acquires a lock but there exist other waiting
threads that arrived earlier than 7.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and /or a fee. Request permissions from permissions@acm.org.

EuroSys 17, April 23-26, 2017, Belgrade, Serbia

© 2017 ACM. ISBN 978-1-4503-4938-3/17/04...15.00

DOI http://dx.doi.org/10.1145/3064176.3064203

314

General Terms Performance, experiments, algorithms

Keywords Concurrency, threads, caches, multicore, locks,
mutexes, mutual exclusion, synchronization, contention,
scheduling, admission order, admission control, spinning,
fairness

1. Introduction

The scaling collapse phenomenon mentioned above arises
variously from communication and coordination overheads
or from competition for any one of a number of shared
resources. This paper focuses on the latter — we explore the
etiology of scaling collapse via resource competition in more
detail below. For example, one such resource is the shared
last-level cache (LLC) on a single-socket system. All the
cores on the socket compete for residency in the LLC, and
concurrent requests from those cores may cause destructive
interference in the LL.C, continuously eroding the residency
of the data from any one core.

The effect is similar to that of thrashing as described in
Denning’s working set model of memory pressure [19]. A
system is said to thrash when memory is overcommitted and
the operating system spends an inordinate amount of time
servicing page faults, reducing overall progress. The solu-
tion in that context is swapping — the transient deactivation
of some subset of the concurrently running programs. The
medium-term scheduler responds to excessive paging and
potential thrashing by swapping out selected “victim” pro-
cesses until the thrashing abates. This closely models our
approach where we transiently deactivate excess contending
threads that do not contribute to improved throughput. CR re-
sponds to contention instead of memory pressure. We extend
Denning’s ideas from memory management to locks, defin-
ing the lock working set (LWS) as the set of distinct threads
that have acquired a given lock in some time interval. We
use the ordinal acquisition time of the lock to define the in-
terval instead of wall-clock time. Suppose threads A, B, C,
D and E contend for lock L and we have an admission order
(also called the admission history) of ABC A BC D A E for
admission times 0 — 8, respectively. The LWS for L for the
period 0 — 5 inclusive is threads A B C and the lock working
set size (LWSS) for the period is thus 3 threads.

CR may be unfair over the short-term, but our admission
policies intentionally impose long-term fairness >. To help

2 Fairness measures how admission order deviates from arrival order or
from strict FIFO order.

gauge the trade-off between throughput and fairness we in-
troduce two metrics for short-term fairness. For the first met-
ric, we partition the admission history of a lock into W-sized
disjoint abutting windows, compute the LWSS of each win-
dow, and take the average of those values. We refer to this
value as the average LWSS over the measurement interval —
it gives an intuitive measure of short-term fairness. In this pa-
per we use a window size of 1000 acquisitions. The second
measure of short-term fairness is the median time to reac-
quire (MTTR), computed over the entire acquisition history.
Time to reacquire is determined at admission time, and is the
number of admissions since the current thread last acquired
the lock. Time to reacquire is analogous to reuse distance in
memory management.

CR acts to reduce the number of distinct threads circulat-
ing through the lock over short intervals and thus tends to
reduce the LWSS, while still providing long-term fairness.
The CR admission policy must also be work conserving and
never under-provision the lock. It should never be the case
that the critical section remains intentionally unoccupied if
there are waiting or arriving threads that might enter — if such
threads exist, then one will promptly be enabled to do so.

As noted above, CR partitions and segregates the set of
threads attempting to circulate over the lock into the ACS
(active circulating set) and the PS (passive set) *. Threads in
the ACS circulate normally. We desire to minimize the size
of the ACS (and thus the LWSS) while still remaining work
conserving, ensuring there are sufficient threads in the ACS
to saturate the lock — and that the critical section enjoys max-
imum occupancy — but no more. Surplus threads are culled
from the ACS and transferred into the PS where they remain
quiesced. Conversely a deficit in the ACS prompts threads to
be transferred from the PS back into the ACS as necessary to
sustain saturation. To ensure long-term fairness our approach
periodically shifts threads between the ACS and PS. Ideally,
and assuming a steady-state load, at most one thread in the
ACS will be waiting at any moment, reducing wait times for
ACS members. That is, at unlock-time we expect there is typ-
ically just one thread from the ACS waiting to take the lock.
Intuitively, threads in the ACS remain “enabled” and operate
normally while threads in the PS are “disabled” and do not
circulate over the lock. Threads sequestered in the PS typ-
ically busy-wait (spin) in a polite [22] fashion on a thread-
local flag, or block in the operating system, surrendering
their CPU. (Such polite waiting reduces the resources con-
sumed by the waiting threads, and may allow other threads
to run faster). Our approach constrains and regulates the de-
gree of concurrency over critical sections guarded by a con-
tended lock in order to conserve shared resources such as
residency in shared caches. Specifically, we minimize over
the short term the number of distinct threads acquiring the
lock and transiting the critical section.

For instance assume a simplified execution model with 10
threads contending for a common lock. The threads loop as
follows: acquire the lock; execute the critical section (CS);
release the lock; execute their respective non-critical section

3 The ACS corresponds to the balance set in the working set model, and
the PS corresponds to the set of swapped and inactive processes.

315

Peak Saturation

—~_)

indybnoayy —— »

Without CR

\J

Threads *

Figure 1: Impact of Concurrency Restriction

(NCS). Each such iteration reflects circulation over the lock.
In our example the NCS length is 5 microseconds and the CS
length is 1 microsecond. For the purposes of explication we
assume an ideal lock with no administrative overheads. In
this case we reach saturation — Amdahl peak speedup — at 6
threads. At any given time 1 thread is in the CS and 5 execute
in their respective NCS. Thus under ideal CR the ACS would
have 6 threads and 4 of the 10 threads would reside in the
PS, transiently made passive. The 6 circulating threads in the
ACS would enjoy a round-robin cyclic admission schedule.

2. Scalability Collapse

The scalability collapse phenomenon involves competition
for shared hardware resources. A classic example is resi-
dency in a shared LLC. As more distinct threads circulate
over the lock in a given period, cache pressure and miss rates
increase. Critically, as the cache is shared, residency of the
data accessed by a given thread decays over time due to the
action of other concurrently running threads that share the
LLC. The application may start to thrash in the LLC and be-
come memory-bound. As the LLC miss rate rises from cache
pressure, contention for the DRAM channels increases, mak-
ing LLC misses even more expensive and compounding a
deleterious effect. CR can serve to reduce such destructive
interference in shared caches. By reducing the number of
threads circulating over the short term, we reduce cache pres-
sure and retain residency for longer periods, reducing the
miss rate and DRAM channel congestion.

Figure | depicts the impact of CR via an idealized ag-
gregate throughput graph. Thread count appears on the X-
axis and aggregate throughput on the Y-axis. In our depiction
there are more logical CPUs than threads, so preemption is
not a factor. Such concave scaling graphs are common in
practice, and reflect scalability collapse [15, 66] *. We show
that a properly designed lock with CR can also act to re-

4Lock implementations themselves are sometimes a causative factor for
collapse, for instance via induced coherence traffic on lock metadata or

duce collapse stemming from competition for shared hard-
ware resources. Assume an execution model with one con-
tended lock L, where each thread repeatedly acquires L, ex-
ecutes a critical section, releases L, and then executes a non-
critical section. All threads start at the same time and run
concurrently throughout the measurement interval. Through-
put on the Y-axis reflects the total number of iterations com-
pleted by the threads in the measurement interval. Maxi-
mum throughput appears at the threading level correspond-
ing to Peak, representing the key inflection point where per-
formance drops as thread counts increase. Beyond peak, ad-
ditional threads do not contribute to performance, and in fact
may degrade performance. This behavior is also called retro-
grade scaling [42]. Saturation reflects the minimum thread-
ing level where there is always at least one waiting thread
when the owner releases L — the onset of sustained con-
tention where the lock is expected to be held continuously
(or nearly so, for test-and-set locks in transition) and the crit-
ical section is continuously occupied. We say threads beyond
saturation are excess or surplus threads — threads not neces-
sary to achieve saturation. The thread count for peak will
always be less than or equal to saturation. CR can begin to
operate and provide benefit when the thread count exceeds
saturation. The value for peak is imposed by platform archi-
tectural factors, overall system load, and offered application
load, and is unrelated and orthogonal to saturation 5. The
value for peak is not usually amenable to analytic calcula-
tion, and, when required, is determined empirically.

We note two regions of interest. First, when the thread
count is less than saturation, CR would be ineffective and
does not operate. CR does not impact performance in this
region, providing neither harm nor benefit. Second, when
the thread count exceeds saturation, CR can operate, ideally
avoiding the subadditive scalability collapse evident in the
graph when CR is not enabled. CR acts by clamping the
effective thread count — over the short term — to saturation.
Beyond saturation and under fixed load we expect the LWSS
to always be greater than or equal to saturation.

3. Taxonomy of Shared Resources

We provide a limited taxonomy of inter-thread shared re-
sources that are subject to competition and are amenable to
conservation via CR. Each of the following shared resources
identifies a potential mode of benefit for CR.

¢ Socket-level resources
» LLC residency and DRAM channel bandwidth

» Thermal and energy headroom — enablement of Turbo
mode[68]

e Core-level resources
= Pipeline and floating point unit availability
» Core-private L1 and L2 residency — cache pressure
» Translation lookaside buffer (TLB) residency

where lock algorithmic overheads increase with the number of contending
or participating threads.

3 Contended locks just happen to be a convenient and opportunistic vehicle
with which to restrict concurrency.

316

¢ System-wide resources such as logical CPUs

Competition for core-level resources such as pipelines
typically starts to manifest when the number of ready threads
exceeds the number of cores, and more than one thread is
running on a core. The onset of competition for socket-level
resources may start at lower thread counts. Contention for
CPUs occurs when the number of ready threads exceeds the
number of logical CPUs, where preemption (multiprogram-
ming) starts.

As noted previously, a key socket-level shared resource
is LLC residency. Suppose we have a contended lock that
is fully saturated. In this mode the critical section dura-
tion solely dictates throughput [33]. Data accessed in non-
critical sections is thread-private and multiple independent
non-critical sections may execute concurrently with a single
CS. NCS accesses displace and evict critical data °. As the
set of threads circulating over the lock grows, the total non-
critical footprint increases, and we find more cache pressure
in the communal LLC. In turn, the critical section suffers
more LLC misses, increasing the duration of the CS and de-
creasing throughput over the contended lock. CR can afford
benefit in this circumstance by restricting the set of circu-
lating threads, reducing cache pressure and thus increasing
throughput compared to a perfectly fair FIFO lock.

We next provide a detailed example to motivate the ben-
efit of CR on a single-socket SPARC T5 processor where
the shared LLC (L3 cache) is 8MB. We have a customer
database that is 1IMB, and each CS operation will access a
record in that database. Each record resides on a single cache
line. An individual CS will access only one record, but over
time most records will be accessed repeatedly by subsequent
operations. (The CS may be “short” in average duration but
“wide” in the sense that a sequence of CS operations will
eventually access a large fraction of the records). We have 16
threads, and on an otherwise unloaded system the NCS dura-
tion is 4 times that of the CS duration. The (NCS + CS)/CS
ratio is such that only 5 threads are needed to fully saturate
the lock and provision the ACS. Furthermore, the NCS foot-
print of each thread is IMB. Even though an individual NCS
operation might be short, over time a thread will access all
IMB of its thread-private data. Recall that the CS data is
shared and the NCS data is per-thread and thread-private.
Under a classic FIFO MCS lock [57], all 16 threads will
circulate over the lock in round-robin cyclic order. The to-
tal footprint is 17MB : (16 threads * 1M B/thread) + 1MB
for the CS, exceeding the SMB capacity of the LLC. The
NCS operations will erode and decay the residency of the
CS data, slowing execution of the CS, and degrading overall
throughput. But with CR the lock subsystem is able to limit
the size of the ACS to 5 threads. In this mode, the total short-
term footprint is 6MB : (5 threads * 1M B/thread) + 1MB
for the CS. The total footprint — the CS data plus the NCS
data of the ACS threads — fits comfortably within the LLC.

6 CS invocations under the same lock typically exhibit reference similarity:
acquiring lock L is a good predictor that the critical section protected by L
will access data that was accessed by recent prior critical sections protected
by L. That is, CS invocations tend to access data accessed by prior CS
invocations, exhibiting inter-CS inter-thread locality and reuse.

Consequently, the NCS instances do not erode CS residency,
the CS does not suffer from misses arising from destructive
interference in the LLC, and throughput is improved. CR re-
duces cache pressure and in particularly on CS data. “Hot”
threads — those that have run recently and have residual LLC
residency — tend to remain “hot”.

Another socket-level shared and rationed resource is ther-
mal and energy headroom. By running fewer threads in a
given interval relative to other locks, CR may reduce energy
use and heat dissipation. Furthermore, by quiescing threads
in the PS and allowing more processors to enter and remain
in deeper low-power sleep states while idle, our approach
can enable turbo mode [28, 68] for the remaining active
threads — critically including the lock holder — accelerating
their progress and improving throughput.

The waiting policy of a lock implementation (discussed
below) defines how a thread waits for admission, and can
have a significant impact on competition for core-level re-
sources such as pipelines, socket-level resources such as ther-
mal and energy headroom, and global resources such as log-
ical CPUs.

4. The MCSCR lock algorithm

We now describe the implementation of MCSCR — a classic
MCS lock [57] modified to provide CR by adding an explicit
list for members of the PS 7. At unlock-time, if there exist
any intermediate nodes in the queue between the owner’s
node and the current tail, then we have surplus threads in the
ACS and we can unlink and excise one of those nodes and
transfer it to the head of the passive list where excess “cold”
threads reside. This constitutes the culling operation. Con-
versely, at unlock-time if the main queue is empty except for
the owner’s node, we then extract a node from the head of
the passive list, insert it into the main queue at the tail, and
pass ownership to that thread, effectively transferring an ele-
ment from the PS back into the ACS. This ensures MCSCR
is work conserving and provides progress and liveness. The
element at the head of passive list is the most recently arrived
member of the PS. Absent sufficient contention, MCSCR op-
erates precisely like classic MCS. MCSCR directly edits the
MCS chain to shift threads back and forth between the main
chain and the explicit list of passivated threads . The ACS
list is implicit, while the PS — the excess list — is explicit.

To ensure long-term fairness, the unlock operator peri-
odically selects the tail T of the PS as the successor and
then grafts T into the main MCS chain immediately after
the lock-holder’s element, passing ownership of the lock to
T. Statistically, we cede ownership to the tail of the PS —
which is the least recently arrived thread — on average once
every 1000 unlock operations. We use a thread-local Marsa-
galia xor-shift pseudo-random number generator [56] to im-
plement Bernoulli trials with probability P = 0.001. The
probability parameter is tunable and reflects the trade-off be-

7Under classic MCS, arriving threads append an element to the tail of the
list of waiting threads and then busy-wait on a flag within that element.
The lock’s tail variable is explicit and the head — the current owner —
is implicit. When the owner releases the lock it reclaims the element it
originally enqueued and sets the flag in the next element, passing ownership.

317

tween fairness and throughput. Transferring a thread from
the PS into the ACS typically results in some other member
of the ACS being displaced and shifted into the PS in subse-
quent culling operations.

Culling acts to minimize the size of the ACS. Under fixed
load, aggressive culling causes the system to devolve to a
desirable state where there is at most one member of the ACS
waiting to acquire the lock. In this state, the ACS consists
of that one waiting thread, the current owner of the lock,
and a number of threads circulating through their respective
non-critical sections. The size of the ACS is determined
automatically and is not a tunable parameter. At unlock-time,
the owner will usually pass ownership of the lock to that
waiting thread. Subsequently, some member of the ACS
will complete its non-critical section and wait for the lock.
In this mode, admission order is effectively cyclic over the
members of the ACS.

All changes to support MCSCR are implemented in the
unlock path; the MCS lock operator remains unchanged. Op-
erations on the PS occur within the unlock operator while
the MCS lock is held — the PS is protected by the MCS lock
itself. This artificially increases the length of the critical sec-
tion, but the additional manipulations are short and constant-
time.

5. Lock Design Fundamentals
5.1

The choice of waiting policy used by a lock implementa-
tion influences competition for CPUs, pipelines and thermal
headroom, making the selection of a waiting policy critical
for CR. The waiting policy also dictates key latencies, fur-
ther informing our design. We identify a number of com-
monly used policies:

Waiting Policies

Unbounded spinning

Classic MCS and test-and-set spin locks (TAS locks)[3] use
unbounded spinning, also called busy-waiting or polling.
Waiting threads simply loop, re-checking the variable of in-
terest. While unbounded spinning appears often in academic
literature, actual deployed software generally avoids indefi-
nite spinning. At some point a spinning thread is expected to
deschedule itself. While convenient and simple, unbounded
spinning can interfere with the performance of other threads
on the system by consuming pipeline resources. Spinning
also expends energy and consumes available thermal head-
room, possibly to the detriment of sibling cores that might
otherwise enjoy turbo mode acceleration. In addition, a spin-
ning thread occupies a processor, possibly prohibiting some
other ready thread from running in a timely fashion. (In fact
spinning threads might wait for the lock holder which has
itself been preempted.) If there are more ready threads than
logical CPUs, then preemption by the kernel would eventu-
ally ensure those other threads run, but those ready threads
may languish on dispatch queues until the spinners exhaust
their time slice. Typical quanta durations far exceed the la-
tency of a voluntary context switch. Despite those concerns,

An extended version of this paper is available at http://arxiv.org/
abs/1511.06035.

http://arxiv.org/abs/1511.06035
http://arxiv.org/abs/1511.06035

spinning remains appealing because it is simple and the lock
handover latency (discussed below) — absent preemption — is
low.

Spinning can be made more polite to sibling threads by us-
ing the PAUSE instruction on x86, or the RD CCR, GO idiom,
a long-latency no-op, on SPARC. These instructions tran-
siently cede pipeline resources to siblings — logical CPUs
that share the core with the spinning thread — allowing those
siblings to run faster . Such instructions may also reduce
power usage.

Parking

Our lock implementations employ a park-unpark infrastruc-
ture for voluntary context switching. The park-unpark facili-
ties allows a waiting thread to surrender its CPU directly to
the operating system while the thread waits for a contended
lock. The park primitive blocks the caller, rendering itself in-
eligible to be scheduled or dispatched onto a CPU. A corre-
sponding unpark(T) system call wakes or resumes the target
thread 7', making it again ready for dispatch and causing con-
trol to return from park if 7 was blocked. An unpark(7) op-
eration can occur before the corresponding park call by 7', in
which case park returns immediately and consumes the pend-
ing unpark action. Waiting for a lock via parking is polite in
the sense that the waiting thread can make its CPU immedi-
ately available to other ready (runnable) threads. The Solaris
operating system exposes Iwp_park and lwp_unpark system
calls while the futex facility can be used to park and unpark
threads on Linux. The park-unpark facility is often imple-
mented via a restricted-range semaphore, allowing values
only of O (neutral) and 1 (unpark pending). The park-unpark
interface moves the decision of which thread to wake out of
the kernel and into the user-space lock subsystem, where ex-
plicit lists of parked threads are typically maintained.
Parking suspends the calling thread and voluntarily sur-
renders the CPU on which the caller ran, making it immedi-
ately available to run other ready threads. If no other threads
are ready, then the CPU may become idle and be able to drop
to deeper sleep states, reducing power consumption and po-
tentially enabling other ready threads on the same chip to
run at faster speeds via turbo mode °. Parking also reduces
competition for intra-core pipeline resources, and promotes
fusion. In turn, other threads — possibly including the lock
holder running in its critical section — may run faster, im-
proving scalability. Parking also allows the operating sys-
tem to rebalance the set of running threads over the avail-
able cores via intra-socket migration. Spinning does not al-
low such redistribution. Parking also reduces the number of
concurrently ready threads, in turn reducing involuntary pre-
emption by the operating system. However the costs to enter
and exit the parked state are high and require operating sys-

8 When only one logical CPU is active in a core, the per-core pipelines
automatically fuse and provide better performance for the single active
CPU. Intel processors with hyperthreading exhibit similar behavior. Polite
spinning via the WRPAUSE instruction or the RD CCR, GO idiom also enables
fusion.

9 Turbo mode is controlled directly by hardware instead of software and

requires sufficient energy headroom to be enabled. Software indirectly in-
fluences the availability of turbo mode via waiting policies.

318

tem services. Thus our policies strive to reduce the rate of
voluntary context switching.

CPUs transition to deeper (lower power) sleep states the
longer they remain idle. Deeper sleep states, however, take
longer to enter and exit. Exit latency significantly impacts
unpark latency — the time between an unpark(7") operation
and the time when T returns from park. Deeper sleep states,
while useful for energy consumption and turbo mode, may
also increase the time it takes to wake a thread. To effec-
tively leverage the benefits of deeper sleep states, the CPU
needs to stay in that state for some period to amortize the en-
try and exit costs. Frequent transitions between idle and run-
ning states also attenuates the turbo mode benefit for sibling
CPUs as the CPU may not idle long enough to reach deeper
states. Lock implementations that act to reduce thread park-
unpark rates will also reduce CPU idle-running transitions
and will incur less unpark latency — by avoiding sleep state
exit latencies — and also allow better use of turbo mode. By
keeping the ACS stable and minimal, CR reduces the park-
unpark voluntary context switch rate, and in turn the idle-
running CPU transition rate.

Spin-Then-Park

To reduce the impact of park-unpark overheads, lock design-
ers may opt to use a hybrid two-phase spin-then-park strat-
egy. Threads spin for a brief period — optimistically waiting
— anticipating a corresponding unpark operation and then, if
no unpark has occurred, they revert to parking as necessary.
The maximum spin period is commonly set to the length of a
context-switch round trip. A thread spins for either the spin
period or until a corresponding unpark is observed '°. If no
unpark occurs within the period, the thread deschedules it-
self by blocking in the kernel. (Unparking a thread that is
spinning or otherwise not blocked in the kernel is inexpen-
sive and does not require calling into the kernel). Karlin et
al. note that spinning for the length of a context switch and
then, if necessary, parking, is 2-competitive [46, 51]. The
spinning phase constitutes local spinning. We prefer park-
ing — passive waiting — over spinning — active waiting — when
the latencies to unpark a thread exceed the expected waiting
period.

Hybrid spin-then-park [21] waiting strategies may reduce
the rate of voluntary blocking and provide some relief from
such voluntary context switching costs. However spin-then-
park tends not to work well with strict FIFO queue-based
locks. The next thread to be granted the lock is also the one
that has waited the longest, and is thus most likely to have
exceeded its spin duration and reverted to parking, in which
case the owner will need to be unparked, significantly length-
ening the critical section with context switching latencies.
Spin-then-park waiting favors a predominantly LIFO admis-

10 A5 a thought experiment, if parking and unparking had no or low laten-
cies, then we would never use spinning or spin-then-park waiting strategies,
but would instead simply park in a prompt fashion. Spinning is an opti-
mistic attempt to avoid park-unpark overheads. Parking and spinning both
reflect wasted administrative work — coordination overheads — that do not
contribute directly to the forward progress of the application. Spinning is
arguable greedy, optimistic and opportunistic, whiling parking reflect altru-
ism.

sion policy. Generally, a waiting strategy that parks and un-
parks threads is inimical to locks that use direct handoff, and
to FIFO locks specifically.

All locks evaluated in this paper use a spin-then-park
waiting policy with a maximum spin duration of approxi-
mately 20000 cycles, where 20000 cycles is an empirically
derived estimate of the average round-trip context switch
time. On SPARC the loop consists of a load and test followed
by a single RD CCR, GO instruction for polite spinning.

5.2 Lock Handover Latency

We define lock handover latency as follows. Say thread A
holds lock L and B waits for lock L. B is the next thread to
acquire ownership when A releases L. The handover latency
is the time between A’s call to unlock and when B returns
from lock and can enter the critical section. Handover la-
tency reflects overheads required to convey ownership from
A to B. Lock implementations attempt to minimize handover
latency, also called responsiveness in the literature. Exces-
sive handover latency degrades scalability. As noted above,
if A must call into the kernel to wake and resume B, making
B eligible for dispatch, then lock handover latency increases
significantly.

5.3 Fairness

The default POSIX pthread mutex_lock specification
does not dictate fairness properties giving significant lati-
tude and license to implementors. Fairness is considered a
quality-of-implementation concern. In fact common mutex
constructions, such as those found in Solaris or Linux, are
based on test-and-set (TAS) locks [3], albeit augmented with
parking, and allow unbounded bypass with potentially indefi-
nite starvation and unfairness. Similarly, the synchronized
implementation in the HotSpot Java Virtual Machine al-
lows indefinite bypass as does java.util.concurrent
ReentrantLock.

5.4 Succession Policies

Broadly, lock implementations use one of two possible suc-
cession policies, which describes how ownership is trans-
ferred at unlock-time when threads are waiting. Under direct
handoff the unlock operation passes ownership to a waiting
successor, without releasing the lock during the transfer, en-
abling the successor to enter the critical section. If no suc-
cessor exists then the lock is set to an available state. MCS
employs direct handoff. Under competitive succession[20] —
also called renouncement[58] — the owner sets the lock to an
available state, and, if there are any waiters, picks at least one
as the heir presumptive, enabling that thread to re-contend
for the lock '!. Enabling an heir presumptive is necessary to
ensure progress. The heir presumptive may compete with ar-
riving threads for the lock. TAS-based locks use competitive
succession and in the simplest forms all waiting threads act
as heir presumptive and no specific enabling is needed.

1" Competitive succession is also called barging, as arriving threads can
barge in front of other waiting threads, allowing unbounded bypass and
grossly unfair admission.

319

Locks that use direct handoff can exhibit poor perfor-
mance if there are more ready threads than CPUs and in-
voluntary context switching — preemption — is in play. The
successor may have been be preempted, in which case lock
handover latency will suffer. Specifically, an unlock opera-
tion may pick thread T as a successor, but 7 has been pre-
empted. Circulation stalls until the operating system even-
tually dispatches T . This leads to the undesirable convoy-
ing phenomenon [4] . With competitive succession, the new
owner must take explicit actions to acquire the lock, and
is thus known to be running, albeit at just the moment of
acquisition. Competitive succession reduces succession la-
tency and works well in conditions of light contention [50].
Direct handoff performs well under high contention [52], ex-
cept when there are so many ready threads that successor
preemption comes into play, in which case competitive suc-
cession may provide better throughput.

Direct handoff suffers from an additional performance
concern related to the waiting policy. If the successor T
parked itself by calling into the operating system, then the
unlock operator needs to make a corresponding system call
to wake and unpark 7', making T eligible for dispatch. The
time from an unpark(7’) call until the corresponding blocked
thread 7T returns and resumes from park can be considerable.
Latencies of more than 30000 cycles are common even in the
best case on an otherwise unloaded system where there are
fewer ready threads than CPUs and an idle CPU is available
on which to dispatch T '?. Crucially, these administrative
latencies required by succession to resume threads accrue
while the lock is held, artificially lengthening the critical sec-
tion. Such lock handover latency greatly impacts throughput
over the contented lock, and can dominate performance un-
der contention.

All strictly FIFO locks use direct handoff. Relatedly, all
locks that use local spinning [29], such as MCS, also use di-
rect handoff. With local spinning, at most one waiting thread
spins on a given location at any given time. Local spin-
ning often implies the existence of an explicit list of waiting
threads '*. Depending on the platform, local spinning may
reduce the “invalidation diameter” of the writes that transfer
ownership, as the location to be written should be monitored
by only one thread and thus reside in only one remote cache.
Lock algorithms such as TAS use global spinning, where all
threads waiting on a given lock busy-wait on a single mem-
ory location .

Given its point-to-point nature where thread A directly un-
parks and wakes B, using park-unpark for locks requires the
lock algorithm to maintain an explicit list of waiting threads,
visible to the unlock operator. Most locks that use local spin-
ning, such as MCS, can therefore be readily converted to
use parking. A simple TAS lock with global spinning and
competitive succession requires no such list be maintained —
the set of of waiting threads is implicit and invisible to the
unlock operator. Lock algorithms that use global spinning,

12 Unpark itself incurs a cost of more than 9000 cycles to the caller on our
SPARC TS5 system.

13 More precisely, at unlock-time the owner thread must be able to identify
the next waiting thread — the successor.

such as ticket locks or TAS locks, are more difficult to adapt
to parking. As noted above, parking is typically inimical to
locks that use direct handoff, as the context switch overheads
artificially increase the critical section length.

We note the following tension. Locks, such as MCS, that
use succession by direct handoff and local spinning can
be more readily adapted to use spin-then-park waiting, the
preferred waiting policy. Under high load, however, with
long waiting periods, direct handoff can interact poorly with
parking because of increased handover latency, where the
successor has reverted to parking and needs to be explicitly
made ready. Spinning becomes less successful and the lock
devolves to a mode where all waiting threads park. MCSCR
uses direct handoff, but can provide relief, relative to a pure
FIFO lock, from handover latency as the successor is more
likely to be spinning instead of fully parked.

6. Evaluation

We used an Oracle SPARC T5-2 [60] for all experiments.
The T5-2 has 2 sockets, each with a single T5 processor run-
ning at 3.6 GHz. Each processor has 16 cores, and each core
has 2 pipelines supporting 8 logical CPUs (“strands”), yield-
ing 128 logical CPUs per socket. If there is only one active
CPU on a core, both pipelines promptly and automatically
fuse to provide improved performance. The extra strands ex-
ist to exploit available memory-level parallelism (MLP) [14].
Each socket has an 8MB unified L3 LLC shared by all cores
on that socket. Each core has a fully associative 128-entry
data TLB shared by all logical CPUs on that core. Each TLB
entry can support all the available page sizes. Each core also
has a 16KB L1 data cache and a 128KB L2 unified cache.
For all experiments we took all the CPUs on the second T5-
2 socket offline, yielding a non-NUMA TS5 system with 128
logical CPUs.

The system ran Solaris 5.11. Unless otherwise speci-
fied, all code was compiled with gcc 4.9.1 in 32-bit mode.
We observed that the performance and scalability of nu-
merous benchmarks were sensitive to the quality of the
malloc-free allocator. The default Solaris allocator pro-
tects the heap with a single global lock and scales poorly.
The poor performance of the default allocator often domi-
nated overall performance of applications, and masked any
sensitivity to lock algorithms. We therefore used the scal-
able LD_PRELOAD CIA-Malloc allocator [1] for all exper-
iments, except where noted. CIA-Malloc does not itself use
the pthread mutex primitives for synchronization.

All locks were implemented as LD_PRELOAD interposi-
tion libraries, exposing the standard POSIX pthread mutex
programming interface. LD_PRELOAD interposition al-
lows us to change lock implementations by varying the
LD_PRELOAD environment variable and without modify-
ing the application code that uses locks.

We use the default free-range threading model, where
the operating system is free to migrate threads between pro-
cessor and nodes in order to balance load or achieve other
scheduling goals. Modern operating systems use aggressive
intra-node migration to balance and disperse the set of ready
threads equally over the available cores and pipelines, avoid-

320

ing situations where some pipelines are overutilized and oth-
ers underutilized '*.

We use a number of small carefully constructed bench-
marks to exhibit various modes of contention for shared hard-
ware resources. The first examples are intentionally simple
o as to be amenable to analysis.

We measure long-term fairness with the relative standard
deviation (RSTDDEYV), which describes the distribution of
work completed by the set participating threads. We also
report the Gini Coefficient [25, 37], popular in the field of
economics as in index of income disparity and unfairness. A
value of 0 is ideally fair (FIFO), and 1 is maximally unfair.

6.1 Random Access Array

The RandArray microbenchmark spawns N concurrent
threads. Each thread loops as follows: acquire a central
lock L; execute a critical section (CS); release L; execute
a non-critical section (NCS). At the end of a 10 second mea-
surement interval the benchmark reports the total number of
aggregate iterations completed by all the threads. RandAr-
ray also reports average LWSS, median time to reacquire,
and long-term fairness statistics. We vary N and the lock
algorithm and report aggregate throughput results in Figure
2, taking the median of 7 runs. The number of threads on the
X-axis is shown in log scale.

The NCS consists of an inner loop of 400 iterations.
Each iteration generates a uniformly distributed random in-
dex into a thread-private array of 256K 32-bit integers, and
then fetches that value. The CS executes the same code, but
has a duration of 100 iterations and accesses a shared array
of 256K 32-bit integers. The ideal speedup is 5x. The IMB
arrays reside on large pages to avoid TLB concerns. The ran-
dom number generators are thread-local. We used random
indexes to avoid the impact of automatic hardware prefetch
mechanisms.

MCS-S is the classic MCS algorithm where the waiting
loop is augmented to include a polite RD CCR, GO instruction.
MCS-STP uses spin-then-park waiting. MCSCR-S is MCSCR
where the waiting loop uses the RD CCR, GO instruction on
every iteration, and MCSCR-STP is MCSCR with spin-then-
park waiting. For reference, we include null where the lock
acquire and release operators are degenerate and return im-
mediately. Null is suitable only for trivial microbenchmarks,
as other more sophisticated applications will immediately
fail with this lock.

As we can see in Figure 2, ignoring null, the peak ap-
pears at about N = 5, where the maximum observed speedup
is slightly more than 3 times that of a single thread. MCS-S
and MCS-STP start to show evidence of collapse at 6 threads
where the total NCS and CS footprint is 7MB, just short of
the total 8MB LLC capacity. The LLC is not perfectly asso-
ciative, so the onset of thrashing appears at footprints slightly
below 8MB. Absent CR, the NCS instances erode LLC CS
residency and impair scalability. As noted above, MCS-STP
performs poorly because spin-then-parking waiting is unsuit-
able for direct handoff FIFO locks such as MCS. Crucially,

14 We observe that explicit binding of threads to CPUs or indefinite spinning
precludes this benefit.

spin-then-park delivers good performance for MCSCR over
all thread counts, but decreases performance of classic MCS
except in the case where there are more ready threads than
CPUs, where pure unbounded spinning breaks down. In-
terestingly, MCSCR-STP achieves better performance than
null beyond 48 threads.

While not immediately visible in the figure, at 256 threads
MCS-STP yields 120x better throughput than MCS-S. Un-
der MCS-S, as we increase the number of ready spinning
threads, we increase the odds that the lock will be transferred
to a preempted successor, degrading performance. Spinning
threads must exhaust their allotted time slice until the owner
is eventually scheduled onto a CPU. At 256 threads, MCS-
STP requires a voluntary context switch for each lock han-
dover, but it sustains reliable and consistent — but relatively
low — performance even if we further increase the number
of threads. This demonstrates why lock designers conser-
vatively opt for parking over unbounded spinning. Typical
time slice periods used by modern operating systems are
far longer than park-unpark latencies. As such, we prefer
progress via voluntary context switching over involuntary
preemption.

In addition to competition for LLC residency, this graph
reflects competition for pipelines '°. At 16 threads — recall
that we have 16 cores — we see MCSCR-S fade. In this case
the spinning threads in the PS compete for pipelines with the
“working” threads in the ACS. (The polite spin loop helps re-
duce the impact of pipeline competition, which would other-
wise be far worse). Using a spin-then-park waiting strategy
avoids this concern. MCSCR-STP manages to avoid collapse
from pipeline competition.

MCS-S and MCS-STP depart from MCSCR-S and MCSCR-

STP at around 8 threads because of LLC thrashing. MCSCR-
S departs from MCSCR-STP at 16 threads because of com-
petition for pipelines. The slow-down arises from the spin-
only waiting policy of those locks. MCS-S and MCSCR-S
exhibit an abrupt cliff at 128 threads because of competition
for logical CPU residency arising from unbounded spinning.
Beyond 128 threads there is system-wide competition for
logical processors. MCSCR-STP is the only algorithm that
maintains performance in this region, again reflecting the
importance of waiting policies.

In Figure 3 we include more details of RandArray execu-
tion at 32 threads. The L3 miss rate is considerably lower un-
der the CR forms. As would be expected, the average LWSS
and the CPU utilization correspond closely under MCSCR-
STP. Note too that the CPU utilization for MCSCR-STP is
low, providing lower energy utilization and improved oppor-
tunities for multi-tenancy. Despite consuming the least CPU-
time, MCSCR-STP yields the best performance. We use the
Solaris 1dmpower facility to measure the wattage above idle,
showing that power consumption is also the lowest with
MCSCR-STP. As evidenced by the LWSS and MTTR val-
ues, CR-based locks reduce the number of distinct NCS in-
stances accessed in short intervals, in turn reducing pressure

15 Other core-level resources such as TLB residency are similarly vulnerable
to competition and can benefit from CR.

321

and miss rates in the LLC, accelerating CS execution, and
improving overall throughput.

o
o 8 o MCS-S
8 & 4 owMcssTP
% 3 ~ MCSCR-$
Q [V + MCSCR-STP
2 null
2] —
£ o
s 8
3 S+
g B
S
>
° 4
<
=
[0}
T 8
(=2 [
¢ 8
j=2)
> Yol
<

o -

1 1 1 1 1 1 1 1
1 2 5 10 20 50 100 200
Threads

Figure 2: Random Access Array

Locks

| Mcss | MCssTP | MCSCR-S | MCSCR-STP

Throughput (ops/sec) 0.7M 0.IM 1.3M 1.6M
Average LWSS (threads) 32 32 53 5.1
MTTR (threads) 31 31 3 3
Gini Coeflicient 0.001 0.001 0.076 0.078
RSTDDEV 0.000 0.000 0.152 0.155
Voluntary Context Switches 0 798K 11 6K
CPU Utilization 32x 16.8x 32x 5.2x
L3 Misses 11M 10M 152K 172K
A Watts above idle 113 79 91 63

Figure 3: In-depth measurements for Random Access Array
benchmark at 32 threads and a 10 second measurement inter-
val

[&]
&
> o MCS-S — — —
o o MCS-STP
S 2 MCSCR-S “
o o + MCSCR-STP
o T
@ o)
X [s5]
o
o
e 8
S F -
= jol
5 \Y]
o
<
g 2
£ ¢
i
T
(=]
£ S
(=2}
o I
< 38 \ \ \ \ \ \ \ \
1 2 5 10 20 50 100 200
Threads
Figure 4: libslock
6.2 libslock

Figure 4 shows the performance of the stress_latency
benchmark from [18] '°. The benchmark spawns the spec-

16 We use the following command line: ./stress_latency -1 1 -d
10000 -a 200 -n <threads> -w 1 -c 1 -p 5000.

o
8 —
3 &
(2}
£
9 o
g B8
[0
Y
T o
[%
L2 8 | cowMcss
© - © MCS-STP
£ 2 MCSCR-S
o + MCSCR-STP \
T o
> \
j=2]
<
o -
T T T T T T T T
1 2 5 10 20 50 100 200
Threads
Figure 5: mmicro
o o
g 8-
g -
[%2}
Q.
2
[}
Tg
Q o _|
s ©
3
£ o MCS-$
2 © MCS-STP
<} o A MCSCR-S
£ 8 - + MCSCR-STP
= T
[
©
[=2]
o
(=2}
j=))
< o |
T T T T T T T T
1 2 5 10 20 50 100 200
Threads

Figure 6: KyotoCabinet kccachetest

ified number of threads, which all run concurrently during
a 10 second measurement interval. Each thread iterates as
follows: acquire a central lock; execute 200 loops of a de-
lay loop; release the lock; execute 5000 iterations of the
same delay loop. The benchmark reports the total number
of iterations of the outer loop. This delay loop and thus the
benchmark itself are cycle-bound, and the main inflection
point appears 16 threads where threads that wait via spinning
compete with working threads for core-level pipelines. This
again demonstrates the impact of waiting policy. Similar to
many other synthetic lock microbenchmarks, very few dis-
tinct locations are accessed: there is only one shared variable
and there are no memory accesses within the non-critical sec-
tion.

6.3 malloc scalability benchmarks

In Figure 5 we use the mmicro malloc-free scalability bench-
mark from [29]. In this case we use the default Solaris 1ibc
memory allocator, which is implemented as a splay tree pro-
tected by a central mutex. While not scalable, this allocator
yields a dense heap and small footprint and thus remains the
default. Mmicro spawns a set of concurrent threads, each of

322

(o]
[
@ N
%) Pt A
5 o
3 o
173
Q
€
c o
S o 7|
€
s @9 |
“@' —
5 “o MCS-S
a © MCS-STP
5 @ _| & MCSCR-S
=1 - + MCSCR-STP
<4
£
o v |
s O
[=2]
[A A
e A
> 1 1 1 1 1 1 1 1
<
1 2 5 10 20 50 100 200
Threads

Figure 7: producer_consumer with 3 consumer threads

+ MCSCR-STP

Aggregate throughput rate : ops/sec

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

T T T T T
10 20

Threads

Figure 8: keymap

which iterates as follows: allocate and zero 1000 blocks of
length 1000 bytes and then release those 1000 blocks. The
measurement interval is 50 seconds and we report the me-
dian of 7 runs. The benchmark reports the aggregate malloc-
free rate. Each malloc and free operation acquires the central
mutex. The benchmark suffers from competition for LLC
residency, and, at above 16 threads, from pipeline compe-
tition. Under CR, fewer threads circulating over the central
mutex lock in a given period also yields fewer malloc-ed
blocks in circulation which in turn yields better hit rates for
core-level TLBs and caches.

6.4 Kyoto Cabinet kccachetest

In Figure 6 we show the benefits of CR for the Kyoto
Cabinet [34] kccachetest benchmark, which exercises
an in-memory database. The performance of the database
is known to be sensitive to the choice of lock algorithm
[9]. We modified the benchmark to use standard POSIX
pthread mutex locks and to run for a fixed time and then
report the aggregate work completed. We used a 300 second
measurement interval and took the median of 3 runs. Finally,
the key range for a run was originally computed as a function

of the number of threads, making it difficult to compare scal-
ing performance while varying the thread count. We fixed
the key range at 10M elements.

Peak performance occurs at 5 threads, dropping rapidly
as we increase the number of threads. Analysis of the pro-
gram with hardware performance counters shows a marked
increase in LLC miss rate above 5 threads. After 16 threads
MCS-S and MCS-STP suffer from both increasing LLC
misses and from pipeline competition. MCSCR-STP man-
ages to avoid the collapse exhibited by the basic MCS forms.

6.5 producer-consumer benchmark

Figure 7 illustrates the benefits of CR on the
producer_consumer benchmark from the COZ package
[17]. The benchmark implements a bounded blocking queue
by means of a pthread mutex, a pair of pthread condition
variables to signal not-empty and not-full conditions, and a
standard C++ std: :queue<int> container for the values.
(This implementation idiom — a lock; a simple queue; and
two condition variables — is common). Threads take on fixed
roles, acting as either producers or consumers. The bench-
mark spawns N concurrent threads, each of which loops,
producing or consuming according to its role. We fix the
number of consumers at 3 threads and vary the number of
producers on the X-axis, modeling an environment with 3
server threads and a variable number of clients. We report
the number of messages conveyed at the end of a 10 second
measurement interval, taking the median of 7 distinct trials.
The queue bound was 10000 elements.

Under a classic FIFO lock, when the arrival rate of pro-
ducers exceeds that of consumer threads, producers will
acquire the lock and then typically find the queue is full
and thus block on the condition variable, releasing the lock.
Eventually they reacquire the lock, insert the value into the
queue, and finally release the lock '7. Each conveyed mes-
sage requires 3 lock acquisitions — 2 by the producer and one
by the consumer. The critical section length for producers
is artificially increased by futile acquisitions where the pro-
ducer immediately surrenders the lock and blocks on the con-
dition variable. When the condition variable is subsequently
signaled, the producer moves to the tail of the lock queue.
Producers typically block 3 times : first on arrival to acquire
the lock; on the condition variable; and on reacquisition of
the lock. Ownership of the lock circulates over all participat-
ing threads. The queue tends to remain full or nearly so, and
consumers do not need to wait on the not-empty condition
variable.

Under a CR lock we find the system tends to enter a desir-
able “fast flow” mode where the futile acquisition by produc-
ers is avoided and each conveyed message requires only 2
lock acquisitions. Threads tend to wait on the mutex instead
of on condition variables. Given sufficient threads, owner-
ship continuously circulates over a small stable balanced set
of producers and consumers. (As usual, long-term fairness
enforcement ensures eventual participation of all threads).
We note that CR’s mode of benefit for the other benchmarks

17 The condition variable implementation used in these experiments pro-
vides FIFO order.

323

involves competition for fixed shared resources, whereas pro-
ducer_consumer demonstrates benefits from reduced lock ac-
quisition rates and hold times

6.6 keymap benchmark

The keymap benchmark in Figure 8 spawns set of concur-
rent threads, each of which loops executing a critical section
followed by a non-critical section. At the end of a 10-second
measurement interval the benchmark reports the aggregate
throughput as the total number of loop iterations completed
by all the threads. The non-critical section advances a C++
std::mt19937 pseudo-random number generator 1000
times. The critical section acquires a central lock and then
picks a random index into its thread-local keyset array. Each
keyset array contains 1000 elements and is initialized to ran-
dom keys before the measurement interval. With probability
P = .9 the thread then extracts a key from its keyset and
updates a central C++ std: :unorderedmap<int,int>
instance with that key. Otherwise the thread generates a new
random key in the range [0, 10000000), updates the keyset
index with that key, and then updates the shared map. All
pseudo-random generators are thread-local and uniform. To
reduce allocation and deallocation during the measurement
interval, we initialize all 10000000 keys in the map prior to
spawning the threads.

Keymap models server threads with short-lived session
connections and moderate temporal key reuse and memory
locality between critical sections executed by a given thread.
There is little or no inter-thread CS access locality or similar-
ity, however. Threads tend to access different regions of the
CS data. The NCS accesses just a small amount of memory,
and CR provides benefit by moderating inter-thread compe-
tition for occupancy of CS data in the shared LLC.

7. Discussion

MCSCR is robust under varying load and adapts the size
of the ACS quickly and automatically, providing predictable
performance. The implementation of MCSCR is entirely in
user-space and requires no special operating system support.
No stateful adaptive mechanisms are employed, resulting in
more predictable behavior and faster response to changing
conditions. The only tunable parameter, other than the spin
duration, is how frequently the unlock operator should pick
the eldest thread from the passive set, which controls the
fairness-throughput trade-off.

CR also actively reduces the voluntary context switch rate.
Since the passive set can remain stable for prolonged peri-
ods, threads in the passive set perform less voluntary context
switching (park-unpark activity), which in turn means that
the CPUs on which those threads were running may be el-
igible to use deeper sleep states and enjoy reduced power
consumption and more thermal headroom for turbo mode.
Relatedly, CR acts to reduce the number of threads concur-
rently spinning on a given lock, reducing wastage of CPU cy-
cles. Voluntary blocking reduces the involuntary preemption
rate as having fewer ready threads results in less preemption.
That is, concurrency restriction techniques may reduce in-
voluntary preemption rates by reducing the number of ready

threads competing for available CPUs. This also serves to
reduce lock-holder preemption and convoying '®.

A common admonition is to never run with more threads
than cores. This advice certainly avoids some types of scal-
ing collapse related to core-level resource competition, but is
not generally valid, ignoring the potential benefit of memory-
level parallelism (MLP), threads that alternate between com-
putation and blocking IO, etc. Many applications achieve
peak throughput with far more threads than cores. Such ad-
vice also assumes a simplistic load with just one applica-
tion, whereas servers may run in conditions of varying load
and multi-tenancy, with multiple concurrent unrelated and
mutually-unaware applications. Even within a single com-
plex application we can find independent components with
their own sets of threads, or thread pools. CR provides par-
ticular benefit in such real-world circumstances.

8. Related Work

Locks continue to underpin most applications and remain
a key synchronization construct. They remain the topic of
numerous recent papers [5, 8, 10, 11, 16, 27, 30, 35, 38, 39,
47, 64, 69].

Our work is most closely related to that of Johnson et
al. [44], which also addresses performance issues arising
from overthreading, using load and admission control to
bound the number of threads allowed to spin concurrently
on contended locks. Their key contribution is controlling the
spin/block waiting decision based on load. If the system is
overloaded, in which case there are more ready threads than
logical CPUs, then some of the excess threads spinning on
locks are prompted to block, reducing futile spinning and
involuntary preemption. Their scheme operates only when
the number of ready threads exceeds the number of logi-
cal CPUs, and some of those threads are spinning, wait-
ing on locks, whereas ours responds earlier, at the onset
of contention, and controls the size of the each individual
lock’s active circulating set. This allows our approach to
moderate competition for other shared resources such as res-
idency in shared caches and pipelines. Their approach oper-
ates system-wide and requires a daemon thread to detect and
respond to contention and load whereas ours uses timely de-
centralized local per-lock decisions and is easier to retrofit
into existing lock implementations. They also requires locks
which are abortable, such as TP-MCS [40]. Threads that
abort — shift from spinning to blocking — must “re-arrive”,
with undefined fairness properties. Their approach can eas-
ily leave too many spinning threads with ensuing intra-core
competition for pipelines, whereas ours is more appropri-
ate for modern multicore processors. We treat the spin/block
waiting policy as a distinct albeit important concern.

Chadha et al. [12] identified cache-level thrashing as a
scalability impediment and proposed system-wide concur-
rency throttling. Throttling concurrency to improve through-

18 Solaris provides the schedctl[23, 49] facility to request advisory deferral
of preemption for lock holders — lock-holder preemption avoidance. Edler
[32] proposed a similar mechanism. Schedctl can also be used to detect if
the lock holder itself is running, allowing better informed waiting decisions.
We did not utilize schedctl in the experiments reported in this paper.

324

put was also suggested by Raman et al. [65] and Pusukuri
et al. [62]. Chandra et al. [13] and Brett et al. [6] analyzed
the impact of inter-thread cache contention. Heirman et al.
[41] suggested intentional undersubscription of threads as a
response to competition for shared caches. Mars et al. [55]
proposed a runtime environment to reduce cross-core inter-
ference. Porterfield et al. [61] suggested throttling concur-
rency in order to constrain energy use. Zhuravlev et al. [72]
studied the impact of kernel-level scheduling decisions —
deciding which and where to dispatch ready threads — on
shared resources, but did investigate the decisions made by
lock subsystems. Cui et al. [15] studied lock thrashing avoid-
ance techniques in the linux kernel where simple ticket locks
with global spinning caused scalability collapse. They inves-
tigated using spin-then-park waiting and local spinning, but
did not explore CR.

Like our approach, Cohort locks [29] explored the trade-
off between throughput and short-term fairness. Cohort
locks restrict the active circulating set to a preferred NUMA
node over the short term. They sacrifice short-term fairness
for aggregate throughput, but still enforce long-term fairness.
NUMA -aware locks exploit the inter-socket topology, while
our approach focuses on intra-socket resources.

Johnson et al. [45] and Lim et al. [51] explored the trade-
offs between spinning and blocking.

Hardware and software transactional memory systems
use contention managers to throttle concurrency in order to
optimize throughput [71]. The issue is particularly acute for
transactional memory as failed optimistic transactions are
wasteful of resources.

9. Conclusion

Modern multicore systems present the illusion of having a
large number of individual independent “classic” processors,
connected via shared memory. This abstraction, which un-
derlies the symmetric multiprocessing SMP programming
model, is a useful simplification for programmers. In prac-
tice, however, the logical processors comprising these multi-
core systems share considerable infrastructure and resources.
Contention for those shared resources manifests in surpris-
ing performance issues.

We describe a lock admission policy — concurrency re-
striction — that is intentionally unfair over the short term.
Our algorithm intentionally culls excess threads — supernu-
merary threads not required to sustain contention — into an
explicit passive set. CR moderates and reduces the size of
the active circulating set, often improving throughput rela-
tive to fair FIFO locks. Periodically, we reschedule, shift-
ing threads between the active and passive sets, affording
long-term fairness. CR conserves shared resources and can
reduce thrashing effects and performance drop that can occur
when too many threads compete for those resources, demon-
strating that judiciously managed and intentionally imposed
short term unfairness can improve throughput. We further
show the subtle interplay of waiting policy, which must be
carefully selected to fully leverage CR.

While scalability collapse is not uncommon, it remains
a challenge to characterize which shared resources underly

a drop in performance. The analysis is difficult and in our
experience, multiple resources are often involved '°. While
CR typically does no harm, it is also difficult to determine
in advance if CR will provide any benefit. CR gates access
to the resources involved in scalability collapse by moderat-
ing access to locks — an unrelated resource. In the future we
hope to employ more direct means to measure and control
scalability collapse. Locks remain convenient, however, and
detecting oversubscription (contention) is relatively simple
compared to determining when some of the complex hard-
ware resources are oversubscribed. Contention is a conve-
nient but imprecise proxy for overthreading.

9.1 Future Work

Throttling in current CR designs is driven by the detection of
contention. In the future we hope to vary the admission rate
(and the ACS size) in order to maximize lock transit rates,
possibly allowing non-working conserving admission [36].
This attempts to close the performance gap between satura-
tion and peak shown in Figure 1. We also plan to apply inten-
tionally unfair CR-based activation policies to semaphores
and the pthread_cond condition variable construct, tending
to wake the most recently arrived threads.

Classic CR is concerned with the size of the ACS. But
we can easily extend CR to be NUMA-aware by taking the
demographics of the ACS into account in the culling crite-
ria. For NUMA environments we prefer the ACS to be ho-
mogeneous and composed of threads from just one NUMA
node. This reduces the NUMA-diversity of the ACS, reduces
lock migrations and improves performance. Our MCSCRN
design starts with MCSCR, but we add two new fields: the
identity of the currently preferred “home” NUMA node, and
a list of remote threads. At unlock-time, the owner thread in-
spects the next threads in the MCS chain and culls remote
threads from the main chain to the remote list. A thread is
considered remote if it runs on some node other than the
currently preferred node. Periodically, the unlock operator
also selects a new home node from the threads on the re-
mote list, and drains threads from that node into the main
MCS chain, conferring long-term fairness. If we encounter a
deficit on the main list at unlock-time, then we simply repro-
vision from the remote list.

Unlike cohort locks, MCSCRN locks are small and of
fixed size. In the uncontended case, cohort locks require ac-
quisition of both the node-level and top-level, although a fast-
path can be implemented that tries to avoid that overhead by
opportunistically bypassing the node-level locks under con-
ditions of no or light contention when cohort formation is
not feasible. MCSCRN is non-hierarchical, and avoids that
concern, always using the fast-path. The system tends to con-
verge quickly to a steady-state where the arriving threads are
largely from the home node, so accesses to lock metadata el-
ements avoids inter-node coherence traffic.

19 Suggesting the need for enhanced hardware performance facilities to
detect excessive competition for shared resources.

325

Acknowledgments

We thank Alex Kogan, Doug Lea, Jon Howell and Paula J.
Bishop for useful discussions.

References

[1] Y. Afek, D. Dice, and A. Morrison. Cache Index-aware Memory Allocation. In-
ternational Symposium on Memory Management — ISMM, 2011. URL http://
doi.acm.org/10.1145/1993478.1993486.

H. Akkan, M. Lang, and L. Ionkov. HPC runtime support for fast and power
efficient locking and synchronization. In 2013 IEEE International Conference
on Cluster Computer— CLUSTER, 2013. URLhttp://dx.doi.org/10.1109/
CLUSTER.2013.6702659.

[2]

[3] T.E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1),

Jan. 1990. URL http://dx.doi.org/10.11089/71.80120.

M. Blasgen, J. Gray, M. Mitoma, and T. Price. The Convoy Phenomenon.
SIGOPS Operating Systems Review, 1979. URL http://doi.acm.org/10.
1145/850657.850659.

S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable
locks are dangerous. In Proceedings of the Linux Symposium, 2012.

B. Brett, P. Kumar, M. Kim, and H. Kim. CHiP: A Profiler to Measure the
Effect of Cache Contention on Scalability. International Parallel and Distributed
Processing Symposium Workshops PhD Forum — IPDPSW. IEEE Computer
Society, 2013. URL http://dx.doi.org/10.1109/IPDPSW.2013.49.

F. P. J. Brooks. The Mythical Man-Month. Addison-Wesley, 1975. ISBN 0-201-
00650-2.

D. Bueso. Scalability Techniques for Practical Synchronization Primitives. Com-
munications of the ACM — CACM, 2014. URL http://doi.acm.org/10.
1145/2687882.

I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and N. Shavit. NUMA-
aware Reader-writer Locks. ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming — PPoPP. ACM, 2013. URL http://doi.
acm.org/10.1145/2442516.2442532.

M. Chabbi and J. Mellor-Crummey. Contention-conscious, Locality-preserving
Locks. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming — PPoPP. ACM, 2016. URL http://doi.acm.org/10.1145/
2851141.2851166.

M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance Locks for
Multi-level NUMA Systems. ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming — PPoPP. ACM, 2015. URL http://doi.
acm.org/10.1145/2688500.2688503.

G. Chadha, S. Mahlke, and S. Narayanasamy. When Less is More
(LIMO):Controlled Parallelism For Improved Efficiency. Conference on Compil-
ers, Architectures and Synthesis for Embedded Systems — CASES, 2012. URL
http://doi.acm.org/10.1145/2380403.2380431.

D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-Thread Cache
Contention on a Chip Multi-Processor Architecture. ~Symposium on High-
Performance Computer Architecture — HPCA. IEEE Computer Society, 2005.
URL http://dx.doi.org/10.1109/HPCA.2005.27.

Y. Chou, B. Fahs, and S. Abraham. Microarchitecture Optimizations for Exploit-
ing Memory-Level Parallelism. International Symposium on Computer Arch-
tecture — ISCA. IEEE Computer Society, 2004. URL http://dl.acm.org/
citation.cfm?id=998680.1006708.

Y. Cui, Y. Chen, and Y. Shi. Comparison of Lock Thrashing Avoidance Methods
and Its Performance Implications for Lock Design. Workshop on Large-scale
System and Application Performance — LSAP. ACM, 2011. URL http://doi.
acm.org/10.1145/1996029.1996033.

Y. Cui, Y. Wang, Y. Chen, and Y. Shi. Requester-Based Spin Lock: A Scalable
and Energy Efficient Locking Scheme on Multicore Systems. IEEE Transactions
on Computers, 2015. URL http://dx.doi.org/10.1109/TC.2013.196.

C. Curtsinger and E. D. Berger. Coz: Finding Code That Counts with Causal
Profiling. Symposium on Operating Systems Principles — SOSP. ACM, 2015.
URL http://doi.acm.org/10.1145/2815400.2815409.

T. David, R. Guerraoui, and V. Trigonakis. Everything You Always Wanted to
Know About Synchronization but Were Afraid to Ask. Symposium on Operating
Systems Principles — SOSP. ACM, 2013. URL http://doi.acm.org/10.
1145/2517349.2522714.

P. J. Denning. Working Sets Past and Present. IEEE Transactions on Software
Engineering, 1980. doi: 10.1109/TSE.1980.230464. URL http://dx.doi.
org/10.1109/TSE.1980.230464.

D. Dice. Implementing Fast Java Monitors with Relaxed-locks. In Proceedings
of the 2001 Symposium on JavaTM Virtual Machine Research and Technology
Symposium - Volume 1, JVM. USENIX Association, 2001. URL https://www.
usenix.org/legacy/event/jvm®1/full_papers/dice/dice.pdf.

[4]

[5]

[6]

(7

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

http://doi.acm.org/10.1145/1993478.1993486
http://doi.acm.org/10.1145/1993478.1993486
http://dx.doi.org/10.1109/CLUSTER.2013.6702659
http://dx.doi.org/10.1109/CLUSTER.2013.6702659
http://dx.doi.org/10.1109/71.80120
http://doi.acm.org/10.1145/850657.850659
http://doi.acm.org/10.1145/850657.850659
http://dx.doi.org/10.1109/IPDPSW.2013.49
http://doi.acm.org/10.1145/2687882
http://doi.acm.org/10.1145/2687882
http://doi.acm.org/10.1145/2442516.2442532
http://doi.acm.org/10.1145/2442516.2442532
http://doi.acm.org/10.1145/2851141.2851166
http://doi.acm.org/10.1145/2851141.2851166
http://doi.acm.org/10.1145/2688500.2688503
http://doi.acm.org/10.1145/2688500.2688503
http://doi.acm.org/10.1145/2380403.2380431
http://dx.doi.org/10.1109/HPCA.2005.27
http://dl.acm.org/citation.cfm?id=998680.1006708
http://dl.acm.org/citation.cfm?id=998680.1006708
http://doi.acm.org/10.1145/1996029.1996033
http://doi.acm.org/10.1145/1996029.1996033
http://dx.doi.org/10.1109/TC.2013.196
http://doi.acm.org/10.1145/2815400.2815409
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
http://dx.doi.org/10.1109/TSE.1980.230464
http://dx.doi.org/10.1109/TSE.1980.230464
https://www.usenix.org/legacy/event/jvm01/full_papers/dice/dice.pdf
https://www.usenix.org/legacy/event/jvm01/full_papers/dice/dice.pdf

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

D. Dice. Adaptive spin-then-block mutual exclusion in multi-threaded process-
ing, Sept. 2009. URL http://www.google.com/patents/US7594234. US
Patent 7,594,234,

D. Dice. Polite busy-waiting with WRPAUSE on SPARC, 2011. URL https://
blogs.oracle.com/dave/entry/polite_busy_waiting_with_wrpause.

D. Dice. Inverted schedctl usage in the JVM, 2011. URL https://blogs.
oracle.com/dave/entry/inverted_schedctl_usage_in_the.

D. Dice. Using MWAIT in spin loops, 2011. URL https://blogs.oracle.
com/dave/resource/mwait-blog-final2.txt.

D. Dice. Measuring long-term fairness for locks, 2014. URL https://blogs.
oracle.com/dave/entry/measuring_long_term_fairness_for.

D. Dice. Preemption Tolerant MCS Locks, 2016. URL https://blogs.
oracle.com/dave/entry/preemption_tolerant_mcs_locks.

D. Dice and T. Harris. Lock Holder Preemption Avoidance via Transac-
tional Lock Elision. ACM SIGPLAN Workshop on Transactional Comput-
ing — Transact, 2016. URL https://blogs.oracle.com/dave/resource/
LHPA-TLE-Feb16.pdf.

D. Dice, N. Shavit, and V. J. Marathe. US Patent US8775837 - Turbo Enablement,
2012. URL http://www.google.com/patents/US8775837.

D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General Technique for
Designing NUMA Locks. ACM Transactions on Parallel Computing — TOPC, 1
(2), Feb 2015. URL http://doi.acm.org/10.1145/2686884.

J. Eastep, D. Wingate, M. D. Santambrogio, and A. Agarwal. Smartlocks:
Lock Acquisition Scheduling for Self-aware Synchronization. International
Conference on Autonomic Computing — ICAC, 2010. URL http://doi.acm.
org/10.1145/1809049.1809079.

E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and
Y. N. Patt. Parallel Application Memory Scheduling. In International Symposium
on Microarchitecture — MICRO-44. ACM, 2011. URL http://doi.acm.org/
10.1145/2155620.2155663.

J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel
UNIX Systems. In Proc. 1988 USENIX Workshop on UNIX and Supercomputers,
1988.

S. Eyerman and L. Eeckhout. Modeling Critical Sections in Amdahl’s Law
and its Implications for Multicore Design. International Symposium on Com-
puter Archtecture —ISCA. ACM, 2010. URL http://doi.acm.org/10.1145/
1815961.1816011.

FAL Labs. Kyoto cabinet. URL http://fallabs.com/kyotocabinet/.

B. Falsafi, R. Guerraoui, J. Picorel, and V. Trigonakis. Unlocking En-
ergy. In USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, 2016. URL https://www.usenix.org/conference/atcl6/
technical-sessions/presentation/falsafi.

C. Gershenson and D. Helbing. When Slower is Faster. CoRR, 2011. URL
http://arxiv.org/abs/1506.06796v2.

C. Gini. Variabilita e Mutabilita. Memorie di Metodologica Statistica, 1912.

H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The Case Is Not
Closed Yet. In USENIX Annual Technical Conference (USENIX ATC 16).
USENIX Association, 2016. URL https://www.usenix.org/conference/
atcl6/technical-sessions/presentation/guiroux.

J. Gustedt. Futex Based Locks for C11’s Generic Atomics. Symposium on
Applied Computing — SAC. ACM, 2016. URL http://doi.acm.org/10.
1145/2851613.2851956.

B. He, W. N. Scherer, and M. L. Scott. Preemption Adaptivity in Time-published
Queue-based Spin Locks. High Performance Computing — HiPC. Springer-
Verlag, 2005. URL http://dx.doi.org/10.1007/11602569_6.

W. Heirman, T. Carlson, K. Van Craeynest, I. Hur, A. Jaleel, and L. Eeckhout.
Undersubscribed Threading on Clustered Cache Architectures. In 2014 IEEE
20th International Symposium on High Performance Computer Architecture —
HPCA. URL http://dx.doi.org/10.1109/HPCA.2014.6835975.

J. Holtman and N. J. Gunther. Getting in the Zone for Successful Scalability.
CoRR,2008. URL http://arxiv.org/abs/0809.2541.

Intel. Improving Real-Time Performance by Utilizing Cache
Allocation Technology. URL http://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf.

F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decoupling Contention
Management from Scheduling. Architectural Support for Programming Lan-

guages and Operating Systems — ASPLOS XV. ACM, 2010. URL http://doi.

acm.org/10.1145/1736020.1736035.

R. Johnson, M. Athanassoulis, R. Stoica, and A. Ailamaki. A New Look at the
Roles of Spinning and Blocking. Proceedings of the Fifth International Workshop
on Data Management on New Hardware — DaMoN. ACM, 2009. URL http://
doi.acm.org/10.1145/1565694.1565700.

326

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies of Com-
petitve Spinning for a Shared-memory Multiprocessor. SIGOPS Operating Sys-
tems Review, 1991. URL http://doi.acm.org/10.1145/121133.286599.

S. Kashyap, C. Min, and T. Kim. Opportunistic Spinlocks: Achieving Virtual
Machine Scalability in the Clouds. SIGOPS Operating Systems Review, 2016.
URL http://doi.acm.org/10.1145/2903267.2903271.

L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-Conscious
Synchronization. ACM Transations on Computing Systems, 1997. URL http://
doi.acm.org/10.1145/244764.244765.

N. Kosche, D. Singleton, B. Smaalders, and A. Tucker. Method and apparatus for
execution and preemption control of computer process entities: US Patent num-
ber 5937187, 1999. URL http://www.google.com/patents/US5937187.

D. Lea. java.util.concurrent abstractqueuedsynchronizer, 2016. URL http://
download.java.net/java/jdk9/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.html.

B.-H. Lim and A. Agarwal. Waiting Algorithms for Synchronization in Large-
scale Multiprocessors. ACM Transactions on Computing Systems, 1993. URL
http://doi.acm.org/10.1145/152864.152869.

B.-H. Lim and A. Agarwal. Reactive Synchronization Algorithms for Multipro-
cessors. Architectural Support for Programming Languages and Operating Sys-
tems — ASPLOS. ACM, 1994. URL http://doi.acm.org/10.1145/195473.
195490.

V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH Queue Lock.
In Euro-Par 2006 Parallel Processing. 2006. URL http://dx.doi.org/10.
1007,/11823285_84.

E. P. Markatos and T. J. LeBlanc. Multiprocessor synchronization primitives with
priorities. 8th IEEE Workshop on Real-Time Operating Systems and Software.
IEEE, 1991.

J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. Contention Aware Exe-
cution: Online Contention Detection and Response. International Symposium
on Code Generation and Optimization — CGO. ACM, 2010. URL http://doi.
acm.org/10.1145/1772954.1772991.

G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(1), 2003.
doi: 10.18637/jss.v008.i14. URL http://dx.doi.org/10.18637/jss.v008.
il4.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchro-
nization on Shared-memory Multiprocessors. ACM Transactions on Comput-
ing Systems, 9(1), Feb. 1991. URL http://doi.acm.org/10.1145/103727.
103729.

R. Odaira and K. Hiraki. Selective Optimization of Locks by Runtime Statistics
and Just-in-Time Compilation. International Parallel and Distributed Processing
Symposium Workshops — IPDPS. IEEE Computer Society, 2003. URL http://
dl.acm.org/citation.cfm?id=838237.838665.

Open Solaris. Synch.c : pthread_mutex implementation. URL https://
github.com/sonnens/illumos- joyent /blob/master/usr/src/lib/
libc/port/threads/synch.c.

Oracle Corporation. Oracle’s SPARC T5-2, SPARC T5-4, SPARC T5-
8, and SPARC T5-1B Server Architecture, 2014. URL http://www.
oracle.com/technetwork/server-storage/sun-sparc-enterprise/
documentation/o13-024-sparc-t5-architecture-1920540.pdf.

A. K. Porterfield, S. L. Olivier, S. Bhalachandra, and J. F. Prins. Power Mea-
surement and Concurrency Throttling for Energy Reduction in OpenMP Pro-
grams. International Parallel and Distributed Processing Symposium Workshops
— IPDPSW. IEEE Computer Society, 2013. URL http://dx.doi.org/10.
1109/IPDPSW.2013.15.

K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread Reinforcer: Dynamically
Determining Number of Threads via OS Level Monitoring. International Sym-
posium on Workload Characterization — IISWC. IEEE Computer Society, 2011.
URL http://dx.doi.org/10.1109/IISWC.2011.6114208.

Z. Radovi¢ and E. Hagersten. Hierarchical Backoff Locks for Nonuniform Com-
munication Architectures. In International Symposium on High Performance
Computer Architecture — HPCA. IEEE Computer Society, 2003. URL http://
dl.acm.org/citation.cfm?id=822080.822810.

P. Ramalhete and A. Correia. Tidex: A Mutual Exclusion Lock. ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming — PPoPP. ACM,
2016. URL http://doi.acm.org/10.1145/2851141.2851171.

A.Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August. Parallelism Orchestration
Using DoPE: The Degree of Parallelism Executive. Programming Language
Design and Implementation — PLDI. ACM, 2011. URL http://doi.acm.org/
10.1145/1993498.1993502.

K. Ren, J. M. Faleiro, and D. J. Abadi. Design Principles for Scaling Multi-core
OLTP Under High Contention. CoRR, 2015. URL http://arxiv.org/abs/
1512.06168.

G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache
Memory. Journal of Supercomputing, 2004. URL http://dx.doi.org/10.
1023/B:SUPE.0000014800.27383.8f.

http://www.google.com/patents/US7594234
https://blogs.oracle.com/dave/entry/polite_busy_waiting_with_wrpause
https://blogs.oracle.com/dave/entry/polite_busy_waiting_with_wrpause
https://blogs.oracle.com/dave/entry/inverted_schedctl_usage_in_the
https://blogs.oracle.com/dave/entry/inverted_schedctl_usage_in_the
https://blogs.oracle.com/dave/resource/mwait-blog-final2.txt
https://blogs.oracle.com/dave/resource/mwait-blog-final2.txt
https://blogs.oracle.com/dave/entry/measuring_long_term_fairness_for
https://blogs.oracle.com/dave/entry/measuring_long_term_fairness_for
https://blogs.oracle.com/dave/entry/preemption_tolerant_mcs_locks
https://blogs.oracle.com/dave/entry/preemption_tolerant_mcs_locks
https://blogs.oracle.com/dave/resource/LHPA-TLE-Feb16.pdf
https://blogs.oracle.com/dave/resource/LHPA-TLE-Feb16.pdf
http://www.google.com/patents/US8775837
http://doi.acm.org/10.1145/2686884
http://doi.acm.org/10.1145/1809049.1809079
http://doi.acm.org/10.1145/1809049.1809079
http://doi.acm.org/10.1145/2155620.2155663
http://doi.acm.org/10.1145/2155620.2155663
http://doi.acm.org/10.1145/1815961.1816011
http://doi.acm.org/10.1145/1815961.1816011
http://fallabs.com/kyotocabinet/
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
http://arxiv.org/abs/1506.06796v2
https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux
https://www.usenix.org/conference/atc16/technical-sessions/presentation/guiroux
http://doi.acm.org/10.1145/2851613.2851956
http://doi.acm.org/10.1145/2851613.2851956
http://dx.doi.org/10.1007/11602569_6
http://dx.doi.org/10.1109/HPCA.2014.6835975
http://arxiv.org/abs/0809.2541
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://doi.acm.org/10.1145/1736020.1736035
http://doi.acm.org/10.1145/1736020.1736035
http://doi.acm.org/10.1145/1565694.1565700
http://doi.acm.org/10.1145/1565694.1565700
http://doi.acm.org/10.1145/121133.286599
http://doi.acm.org/10.1145/2903267.2903271
http://doi.acm.org/10.1145/244764.244765
http://doi.acm.org/10.1145/244764.244765
http://www.google.com/patents/US5937187
http://download.java.net/java/jdk9/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
http://download.java.net/java/jdk9/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
http://download.java.net/java/jdk9/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
http://doi.acm.org/10.1145/152864.152869
http://doi.acm.org/10.1145/195473.195490
http://doi.acm.org/10.1145/195473.195490
http://dx.doi.org/10.1007/11823285_84
http://dx.doi.org/10.1007/11823285_84
http://doi.acm.org/10.1145/1772954.1772991
http://doi.acm.org/10.1145/1772954.1772991
http://dx.doi.org/10.18637/jss.v008.i14
http://dx.doi.org/10.18637/jss.v008.i14
http://doi.acm.org/10.1145/103727.103729
http://doi.acm.org/10.1145/103727.103729
http://dl.acm.org/citation.cfm?id=838237.838665
http://dl.acm.org/citation.cfm?id=838237.838665
https://github.com/sonnens/illumos-joyent/blob/master/usr/src/lib/libc/port/threads/synch.c
https://github.com/sonnens/illumos-joyent/blob/master/usr/src/lib/libc/port/threads/synch.c
https://github.com/sonnens/illumos-joyent/blob/master/usr/src/lib/libc/port/threads/synch.c
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf
http://dx.doi.org/10.1109/IPDPSW.2013.15
http://dx.doi.org/10.1109/IPDPSW.2013.15
http://dx.doi.org/10.1109/IISWC.2011.6114208
http://dl.acm.org/citation.cfm?id=822080.822810
http://dl.acm.org/citation.cfm?id=822080.822810
http://doi.acm.org/10.1145/2851141.2851171
http://doi.acm.org/10.1145/1993498.1993502
http://doi.acm.org/10.1145/1993498.1993502
http://arxiv.org/abs/1512.06168
http://arxiv.org/abs/1512.06168
http://dx.doi.org/10.1023/B:SUPE.0000014800.27383.8f
http://dx.doi.org/10.1023/B:SUPE.0000014800.27383.8f

[68] J.-T. Wamhoff, S. Diestelhorst, C. Fetzer, P. Marlier, P. Felber, and D. Dice. The
TURBO Diaries: Application-controlled Frequency Scaling Explained. In 2014
USENIX Annual Technical Conference (USENIX ATC 14). URL https://www.
usenix.org/conference/atcl4/technical-sessions/presentation/
wamhoff.

T. Wang, M. Chabbi, and H. Kimura. Be My Guest: MCS Lock Now Welcomes
Guests. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming — PPoPP. ACM, 2016. URL http://doi.acm.org/10.1145/
2851141.2851160.

Wikipedia. Malthusianism, 2015. URL https://en.wikipedia.org/wiki/
Malthusianism [Online; accessed 2015-08-07].

R. M. Yoo and H.-H. S. Lee. Adaptive Transaction Scheduling for Transac-
tional Memory Systems. ACM Symposium on Parallelism in Algorithms and

[69]

[70]

[71]

Architectures — SPAA, 2008. URL http://doi.acm.org/10.1145/1378533.

1378564.

S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey
of Scheduling Techniques for Addressing Shared Resources in Multicore Proces-
sors. ACM Computing Surveys, 2012. URL http://doi.acm.org/10.1145/
2379776.2379780.

[72]

A. Additional lock formulations that provide
concurrency restriction

We provide additional examples to illustrate generality and show that other
locks providing concurrency restriction can be constructed.

A.1 LOITER Locks

Simple TAS or more polite test-and-test-and-set spin locks can be deeply
unfair. A thread can repeatedly barge in front of and bypass threads that
have waited longer. A simple TAS lock without back-off can also suffer
from considerable futile coherence traffic when the owner releases the lock
and the waiting threads observe the transition and N such spinning threads
pounce, trying to obtain ownership via an atomic instruction, producing a
thundering herd effect. N—1 will fail, but in doing so force coherence traffic
on the underlying cache line. As such, modern TAS locks are typically
augmented with randomized back-off, which reduces coherence traffic from
polling and also reduces the odds of futile attempts to acquire the lock. Back-
off strives to balance those benefits against reduced lock responsiveness.
Longer back-off periods entail longer possible “dead time” where the lock
has been released but the waiting threads have not detected that transition
20, Traditional randomized back-off for TAS locks is anti-FIFO in the sense
that threads that have waited longer are less likely to acquire the lock in unit
time. Absent remediation, such back-off may partition threads into those
that wait for long periods and those that wait for short periods and circulate
rapidly 2!

Fairness of TAS locks is further determined by platform-specific aspects
of the system such as the underlying hardware arbitration mechanism for
cache lines. On some platforms, threads running “near” the most recent
owner — near in the system topology — may enjoy a persistent statistical
advantage acquiring the lock, dominating ownership. On some platforms,
threads on the home node of the memory underlying the lock will have a
persistent advantage. Somewhat perversely, such behavior can be NUMA-
friendly over the short-term as it tends to reduce lock migrations. The
unfairness can persist for long periods, however.

Despite these disadvantages, TAS locks confer a key benefit: the lock is
never passed to a preempted thread as might be the case with MCS This re-
duces undesirable convoying behavior and latencies waiting for a ready but
descheduled thread to again be dispatched onto a CPU. Furthermore, wait-
ing threads do not need to register or otherwise make themselves visible to
threads performing the unlock operation, reducing administrative overheads
and coherence costs related to lock metadata. As such, these locks perform
better under mixed load, and in particular when the number of runnable
threads exceeds the number of logical CPUs. They also have very low la-
tency hand-off under light or no contention.

We design a simple TAS lock enhanced with CR as follows. Our new
LOITER (Locking : Outer-Inner with ThRottling) lock has an outer TAS
lock. Arriving threads try to obtain the outer lock using a bounded spin
phase — busy waiting — with randomized back-off. If they acquire the outer

20 Arguably, back-off is not work conserving.

21 The back-off can also provide inadvertent and unintended but beneficial
concurrency restriction.

327

lock, they can enter the critical section. We refer to this as the fast-path. If
the spinning attempt fails, control then reverts to an inner lock. An MCS
lock with spin-then-park waiting is suitable for use as the inner lock. The
thread that manages to acquire the inner lock is called the standby thread —
there is at most one standby thread per lock at any given moment. The inner
lock constitutes a so-called slow path. The standby thread then proceeds to
contend for the outer lock. Again, it uses a spin-then-park waiting policy.
When the standby thread ultimately acquires the outer lock it can enter the
critical section. At unlock time, if the current owner acquired the lock via
the slow path, it releases both the outer lock and the inner lock. Otherwise
if it releases the outer lock and, if a standby thread exists, it unparks that
standby thread as the heir presumptive.

The ACS consists of the owner, threads passing through their non-
critical sections, and threads spinning in the fast path arrival phase. The PS
consists of threads waiting for the inner lock. The standby thread is on the
cusp and is transitional between the two sets. Under steady state the system
converges to a mode where we have a stable set of threads circulating over
the outer lock (the ACS), at most one thread spinning or parking in the
standby position, and the remainder of the threads are blocked on the inner
locks (the PS).

We impose long-term fairness by detecting that the standby thread has
waiting too long and is “impatient”, in which case it requests direct handoff
of ownership to the standby thread upon the next unlock operation. This
construction attempts to retain the desirable properties of TAS-based lock
while providing CR and long-term fairness. The result is a hybrid that uses
competitive handoff in most cases, reverting to direct handoff as part of an
anti-starvation mechanism when the standby thread languishes too long.

Arriving threads start with global spinning on the outer lock, and if they
can’t manage to obtain the lock within the arrival spinning phase, they then
revert to the MCS lock, which uses local waiting. Global spinning allows
more efficient lock hand-over, but local spinning generates less coherence
traffic and provides gracefully performance under high contention [52].
Threads waiting on the inner MCS lock simply spin or spin-then-park on
the thread-local variable, avoiding concerns about back-off policies. All
park-unpark activity takes place on paths outside the critical section. The
inner lock provides succession by direct handoft via MCS, while the outer
lock provides succession by competitive handoff. This constitutes a 3-stage
waiting policy : threads first spin globally; then, if necessary, enqueue and
spin locally; and then park.

The LOITER transformation allows us to convert a lock such as MCS,
which uses direct handoff, into a composite form that allows a fast path with
barging. The resultant composite LOITER lock enjoys the benefits of both
direct handoff and competitive succession, while mitigating the undesirable
aspects of each of those policies. Specifically, the new construct uses direct
handoff for threads in the slow contention path, but allows competitive
succession for threads circulating outside the slow path, retaining the best
properties of both MCS and TAS locks.

A.2 LIFO-CR

This design starts with a pure LIFO lock >*> with an explicit stack of
waiting threads. Contended threads push an MCS-like node onto the stack
and then spin or spin-then-park on a thread-local flag. When threads are
waiting, the unlock operator pops the head of stack — the most recently
arrived thread — and directly passes ownership to that thread. Both “push”
and “pop” operations are implemented via atomic compare-and-swap CAS
instructions. Only the lock holder can “pop” elements, so the approach is
immune to ABA pathologies. The stack is multiple-producer but, by virtue
of the lock itself, single-consumer. The ACS consists of the owner, the
threads circulating through their respective NCS regions, and the top of the
stack. The PS consists of the threads deeper on the stack. Admission order
is effectively cyclic round-robin over the members of the ACS, regardless
of the prevailing LIFO lock admission policy. We then augment the lock
to periodically pick the tail of the stack — the eldest thread — to be the
next owner. This imposes long-term fairness. We refer to the resultant
lock as LIFO-CR. LIFO admission order may improve temporal locality
and reduce misses in shared caches. Both LIFO-CR and LOITER offer
performance competitive with MCSCR.

221f we use a pure LIFO lock then the LWSS should correspond to the
ACS size, giving an easy way to measure the ideally minimal ACS size and
maximum benefit afforded by CR.

https://www.usenix.org/conference/atc14/technical-sessions/presentation/wamhoff
https://www.usenix.org/conference/atc14/technical-sessions/presentation/wamhoff
https://www.usenix.org/conference/atc14/technical-sessions/presentation/wamhoff
http://doi.acm.org/10.1145/2851141.2851160
http://doi.acm.org/10.1145/2851141.2851160
https://en.wikipedia.org/wiki/Malthusianism
https://en.wikipedia.org/wiki/Malthusianism
http://doi.acm.org/10.1145/1378533.1378564
http://doi.acm.org/10.1145/1378533.1378564
http://doi.acm.org/10.1145/2379776.2379780
http://doi.acm.org/10.1145/2379776.2379780

