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Abstract

Peer-to-peer storage aims to build large-scale, reli-
able and available storage from many small-scale unreli-
able, low-availability distributed hosts. Data redundancy
is the key to any data guarantees. However, preserving
redundancy in the face of highly dynamic membership is
costly. We apply a simple resource usage model to mea-
sured behavior from the Gnutella file-sharing network
to argue that large-scale cooperative storage is limited
by likely dynamics and cross-system bandwidth — not
by local disk space. We examine some bandwidth op-
timization strategies like delayed response to failures,
admission control, and load-shifting and find that they
do not alter the basic problem. We conclude that when
redundancy, data scale, and dynamics are all high, the
requisite cross-system bandwidth is beyond reasonable
expectations.

1 Introduction

Structured peer-to-peer overlays like CAN [5],
Chord [9], Pastry [6], or Tapestry [11] provide a sub-
strate for building highly reliable and highly available
lookup over large numbers of unreliable nodes with fast
membership dynamics. Recent papers [4, 7] suggest
that such indexing techniques can be used to build large
scale, distributed data stores from idle storage and band-
width provided by volunteers. This research has stressed
that these new storage systems scale with large and very
dynamic memberships and these proposals have also tar-
geted highly reliable and available storage via data re-
dundancy.

This paper argues that trying to achieve all three
things — scalability, storage guarantees, and resilience
to highly dynamic membership — overreaches band-
width resources likely to be available. Our argument is
roughly as follows. Simple considerations and current
hardware deployment suggest that idle upstream band-
width is the limiting resource that volunteers contribute,
not idle disk space. Further, since disk space grows
much faster than access point bandwidth, bandwidth is
likely to become even more scarce relative to disk space.

We elaborate this argument in the next section using
a generic resource usage model that describes the costs
associated with maintaining redundancy in systems built
from unreliable parts. Section 3 then adapts the model to
accommodate hosts which are temporarily unavailable
but have not lost their data. In Section 4 we discuss other
issues such as admission control or load-shifting, hard-
ware trends, and the importance of incentives. Along the
way we use numbers from Gnutella, a real peer-to-peer
system, to highlight how bandwidth contributions are the
serious limit to scaling data. We conclude in Section 5.

2 A Simple Model

In this section we consider the bandwidth necessary
for reliable peer-to-peer storage. We present a simple
analytic model for bandwidth usage that attempts to pro-
vide broad intuition and still apply in some approxima-
tion to currently proposed systems.

2.1 Assumptions

We assume a simple redundancy maintenance algo-
rithm: whenever a node leaves or joins the system, the
data that node either held or will hold must be down-
loaded from somewhere. Note that by join and leave
we mean really joining the system for the first time or
leaving forever. We do not refer to transient failures,
but rather the intentional or accidental loss of the con-
tributed data. Section 3 elaborates this model to account
for temporary disconnections that may not trigger data
transfers. We also assume there is a static data placement
strategy (i.e., a function from the current membership to
the set of replicas of each block).

We make a number of simplifying assumptions.
Each one is conservative — increased realism would
increase the bandwidth required. Note that any stor-
age guarantee effectively insists that the probability of
not getting a datum is below some threshold. The time
to create new nodes must therefore consider the worst-
case accidents of data distribution and other variations.
Therefore, the fact that we perform an average case anal-
ysis makes our model conservative.



We assume identical per-node space and bandwidth
contributions. In reality, nodes may store different
amounts of data and have different bandwidth capa-
bilities. Maintaining redundancy may require in cer-
tain cases more bandwidth than the average bandwidth.
Creating more capable nodes from a set of less capa-
ble nodes might take more time. Average space and
bandwidth therefore conservatively bound the worst case
which is the relevant bound for a guarantee.

We assume a constant rate of joining and leaving.
As with resource contributions, the worst case is a more
appropriate figure to use for any probablistic bound.
The average rate bounds the maximum rate from below,
which is again conservative. We also assume indepen-
dence of leave events. Since failures of networks and
machines are not truly independent, more redundancy
would really be required to provide truer guarantees.

We assume a constant steady-state number of nodes
and total data size. A decreasing population requires
more bandwidth while an increasing one cannot be sus-
tained indefinitely. It would also be more realistic to as-
sume data increases with time or changes which would
again require more bandwidth.

2.2 Data Maintenance Model

Consider a collection of N identical hosts connected
to the Internet which cooperatively provide guaranteed
storage. Nodes are added to the collection at rate α and
leave at rate λ, but the average system size is constant,
i.e. α = λ. The average time any node stays a member,
T , is N/λ.

Our data model is that the system reliably stores a
total of D bytes of unique data stored with a redundancy
expansion factor k, for a total of S = kD bytes of con-
tributed storage. One may think of k as either the repli-
cation factor or the expansion due to coding. The de-
sired value of k depends on both the storage guarantees
and redundant encoding scheme and is discussed more
in the next section.

We now consider the data maintenance bandwidth
required to maintain this redundancy in the presence of
a dynamic membership. Note that the model does not
consider the bandwidth consumed by queries, and there-
fore we present a conservative bandwidth estimate.

Each node joining the overlay must download all the
data which it must later serve, however that subset of
data might be mapped to it. The average size of this
transfer is S/N . Join events happen every 1/α time
units. So the aggregate bandwidth to deal with nodes
joining the overlay is αS

N
, or S/T .

When a node leaves the overlay, all the data it housed
must be copied over to new nodes, otherwise redundancy
would be lost. Thus, each leave event also leads to the
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Figure 1. Log-Log plots for the participation requirements of
a) dial-up and b) cable modem networks. Plotted are thresh-
olds below which various amounts of unique data will incur
over 50% link saturation just to maintain the data. These use a
redundancy k = 20.

transfer of S/N bytes of data. Leaves therefore also re-
quire an aggregate bandwidth of λS

N
, or S/T . The total

bandwidth usage for all data maintenance is then 2S

T
, or

a per node average of:

B/N = 2
S/N

T
, or BW/node = 2

space/node

lifetime
(1)

2.3 Understanding the Scaling

Figure 1 plots some example “threshold curves” in
the lifetime-membership plane. This is the basic par-
ticipation space of the system. More popular systems
will have more hosts, and those hosts will stay mem-
bers longer. Points below a line for a particular data
scale require data maintenance bandwidth in excess of
the available bandwidth. We plot thresholds for main-
tenance alone consuming half the total link capacity for
dial-ups and cable modems. The data scales we chose,
1 TB, 50 TB, and 1000 TB, might very roughly cor-
respond to a medium-sized music archive, a large mu-



sic archive, and a small video archive (a few thousand
movies), respectively.

There are two basic points to take away from these
plots. First, short membership times create a need for
enormous node counts to support interesting data scales.
E.g., a million cable modem users must each provide a
continuous month of service to maintain 1000 TB even
if no users ever actually ask for the data! Second, this
strongly impacts how fast the storage of such a network
can grow. At a monthly turnover rate, each cable mo-
dem can only contribute 1 GB of unique data, or 20 GB
of total storage. Given that PCs tend to last only a few
years and a few years ago 80 GB disks were standard
on new PCs, 20 GB is likely about or below current idle
capacity.

Figure 1 uses a fixed redundancy factor k = 20. The
actual redundancy necessary depends on T , N , probabil-
ity targets for data loss or availability. Section 3 exam-
ines in more detail the necessary k for both replication-
style and erasure coded redundancy for availability.

3 Availability and Redundancy

This section expands our model to include hosts that
are transiently disconnected and estimates redundancy
requirements in more detail.

3.1 Downtime vs. Departure

So far our calculations have assumed that the re-
sources a host contributes are always available. Real
sets of hosts vary greatly in availability [2, 3, 8]. The
previous section shows that it takes a lot of bandwidth
to preserve redundancy upon departures. So it helps to
distinguish true departures from temporary downtime or
disconnection, as proposed in [2].

Our model for how systems distinguish true depar-
tures from transient failures is a membership timeout, τ ,
that measures how long the system delays its response
to failures. I.e., the process of making new hosts respon-
sible for a host’s data does not begin until that host has
been out of contact for longer than time τ .

Allowing offline hosts to count as members has two
consequences. First, membership lifetimes are longer
since transient failures are not considered membership
changes. Second, hosts only serve data for a fraction of
the time that they are members. We define this fraction
to be the availability, a. In an aggregate sense, a is also
the fraction of members able to serve data at any given
instant.

Since only a fraction of the members serve data at
a time, more redundancy is needed to achieve the same
level of availability. Also, the effective bandwidth con-

tributed per node is reduced since these nodes serve only
a fraction of the time. Thus, the membership lifetime
benefits gained by delayed response to failures may be
offset by the need for increased redundancy and reduced
effective bandwidth. To understand this effect more
quantitatively we first need to know how much redun-
dancy we need.

3.2 Needed Redundancy: Replication

First we compute the data expansion needed for
high availability in the context of replication-style re-
dundancy. Note that availability implies reliability since
lost data is inherently unavailable.

With timeouts, average lifetime depends on τ ,
T = Tτ . System size and availability also depend on
τ , and Nτ = N0/aτ , by our definition of availability.

We wish to know the replication factor, ka, needed
to achieve some per object unavailability target, εa. (I.e.,
1 − εa has some “number of 9s”.)

εa = P (object o is unavailable)

= P (all ka replicas of o are unavailable)

= P (one replica is unavailable)ka

= (1 − aτ )ka

which upon solving for ka yields

ka =
log εa

log(1 − aτ )
(2)

We can now evaluate the tradeoff between data main-
tenance bandwidth and membership timeout. We ac-
count for partial availability replacing B with aτB in
Equation (1). Solving for B/N and substituting Equa-
tion (2) gives:

Bτ/Nτ =
2kaD

NτaτTτ

=
2D

NτaτTτ

log εa

log(1 − aτ )
(3)

To apply Equation (3) we must know Nτ , aτ , and Tτ ,
which all depend upon participant behavior. We estimate
these parameters using data we collected in a measure-
ment study of the availability of hosts in the Gnutella
file sharing network. We used a methodology similar to
a previous study [8], except that we allowed our crawler
to extract the entire membership, therefore giving us a
precise estimate of Nτ . Our measurements took place
between April 11, 2003 and April 19, 2003.

Figure 2 suggests that discriminating downtime from
departure can lead to a factor of 30 savings in mainte-
nance bandwidth. It seems hopeless to field even 1 TB
at high availability with Gnutella-like participation.



100 Kb/s

1 Mb/s

10 Mb/s

0 5 10 15 20 25 30

Leave Timeout (hours)

Maintenance BW
Upstream Cable Modem BW

Figure 2. Per node bandwidth to maintain 1 TB of unique data
at 6 nines of per-object availability with the system dynamics
of 33, 000 Gnutella hosts. Bandwidth is lessened by longer
delays responding to failures, but remains quite large in terms
of home Internet users. Each host contributes only about 3 GB

of disk.

3.3 Needed Redundancy: Erasure Coding

A technique that has been proposed by several sys-
tems is the use of erasure coding [10, 1]. This is more ef-
ficient than conventional replication since the increased
intra-object redundancy allows the same level of avail-
ability to be achieved with much smaller additional re-
dundancy. We now exhibit the analogue of Equation (2)
for the case of erasure coding.

With an erasure-coded redundancy scheme, each ob-
ject is divided into b blocks which are then stored with
an effective redundancy factor kc. The object can be re-
constructed from any available m blocks taken from the
stored set of kcb blocks (where m ≈ b). Object avail-
ability is given by the probability that at least b out of
kcb blocks are available:

1 − εa =

kcb
∑

i=b

(

i

kcb

)

ai(1 − a)kcb−i.

Using a series of algebraic simplifications and the nor-
mal approximation to the binomial distribution, we ob-
tain the following value for the erasure coding redun-
dancy factor (this derivation can be found in [1]):

kc =





σε

√

a(1−a)
b

+
√

σ2
ε
a(1−a)

b
+ 4a

2a





2

(4)

where σε is the number of standard deviations in a nor-
mal distribution for the required level of availability, as
discussed in [1]. E.g., σε = 4.7 corresponds to six nines
of availability.
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Figure 3. This graph shows that the decreased availability from
delays in responding to failure causes a marked increase in
the necessary data redundancy. While coding definitely beats
replication, the bandwidth savings are only about a factor of 8
for our Gnutella trace.

Figure 3 shows the benefits of coding over replica-
tion when one uses b = 15 fragments. Rather than
a replication factor of 120, one can achieve the same
availability with only 15 times the storage using erasure
codes, for large values of τ , an 8-fold savings. This
makes it borderline feasible to store 1 TB of unique
data with Gnutella-like participation and about 75 Kbps
while-up per node maintenance bandwidth. Utilization
is correspondingly lower for the same amount of unique
data. Only 500 MB of disk per host is contributed. This
is surely less than what peers are willing to donate.

Note that all of this is for maintenance only. It would
be odd to engineer such highly availabile data and not
read it. An actual load is hard to guess, but, as a rule
of thumb, one would probably like maintenance to be
less than half the total bandwidth. So, the total load one
might expect would be greater than 150 Kbps or just at
the limit of what cable modems can provide.

This is also not very much service. Only 5, 000 of
the 33, 000 Gnutella hosts were usually available. If
all these hosts were cable modems, the aggregate band-
width available would be about 500 Mbps, or 250 Mbps
if half that is used for data maintenance. By compari-
son, the same level of service could be provided by five
reliable, dedicated PCs, each with a few $300, 250 GB
drives and 50 Mbps connections up 99% of the time.

4 Discussion

This section discusses other issues related to this
analysis for the agenda of large-scale peer-to-peer stor-
age.
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Figure 4. A graph showing how most of the service time in
Gnutella is provided by a very small fraction of hosts. 5% of
hosts provide about 40% of the total service time in a three day
subset of our trace.

4.1 Admission Control, Load-Shifting

Another strategy to reduce redundancy maintenance
bandwidth is to attempt to not admit highly volatile
nodes or very similarly shift responsibility to non-
volatile hosts. Fundamentally, this strategy weakens
how dynamic and peer-symmetric the network one is
envisioning. Indeed, a strong enough bias converts the
problem into a garden variety distributed systems prob-
lem — building a larger storage from a small number of
highly available collaborators.

As Figure 4 shows, in the Gnutella network, the 5%
most available hosts provide about 29 of the total 72 ser-
vice years or 40%. The availability of these 6,000 nodes
is about 40% on average. If one is generous, one may
also view this 5%-subset of more available hosts as a
fairer model of the behavior of a hypothetical popula-
tion of peer-to-peer service providers. We repeated our
analysis of earlier sections using just this subset of hosts
with a one day membership timeout. The resulting band-
width requirement is 30 Kbps per node per unique-TB
using coding. Using delayed response, coding, and ad-
mission control together enables a 1000-fold savings in
maintenance bandwidth over the bleak results at the left
edge of Figure 2.

The total scale of this storage remains bounded by
bandwidth, though. If the 6,000 best 5% of Gnutella
peers each donated 3 GB each then a total of 3 TB could
be served with six nines of availability. These hosts
would each use 100 Kbps of maintenance bandwidth
whenever they were participating. Assuming the query
load was also about 100 Kbps per host, cable modems
would still be adequate to serve this data. The same ser-
vice also could be supported by 10 universities, each us-
ing 1

3 of the typical OC3 connections and a $1, 500 PC.

Even stricter admission control rapidly leads to a
subset 967 Gnutella hosts with 99.5% availability. This
surpasses even observed enterprise wide behavior [3].
The cost of this improvement is a reduction in service
time by 10-fold. The real service reduction will de-
pend on the correlation between availability and servable
bandwidth. Ideally, this correlation would be strong and
positive.

If the per-node bandwidth of the best hosts is roughly
10-fold the per node bandwidth of the excluded hosts
then the total service is only cut in half by using just
good nodes. Stated in reverse, leveraging tens of thou-
sands of flaky home users only doubles total data ser-
vice. This fact is further backed up by a simple back-
of-the-envelope calculation. Two million cable modem
users at 40% availability can serve about as much band-
width as 2,000 typical high availability universities al-
lowing half their bandwidth for file sharing.

4.2 Hardware Trends

The discussion so far suggests that even highly opti-
mized systems can achieve only a few GB per host with
Gnutella-like hosts and cable-modem like connections.
However, hardware trends are unpromising.

Home access Academic access
Year Disk Speed Days Speed Time

(Kbps) to send (Mbps) to send
1990 60 MB 9.6 0.6 10 48 sec
1995 1 GB 33.6 3 43 3 min
2000 80 GB 128 60 155 1 hour
2005 0.5 TB 384 120 622 2 hour

Table 1. Generous bandwidth estimates suggest distributing lo-
cal disk will get harder. Disk increased by 8000-fold while
bandwidth increased only 50-fold.

A simple thought experiment helps us realize the im-
plications of this trend. Imagine how long it would take
to upload your hard disk to a friend’s machine. Table 1
recalls how this has evolved for “typical” users in recent
times. The fourth and sixth columns show an omnious
trend for disk space distributors. Disk upload time is get-
ting larger quickly. If peers are to contribute meaningful
fractions of their disks their participation must become
more and more stable. This supports a main argument of
this paper: synchronizing highly distributed, large-scale
cooperative storage is expensive now, dynamic member-
ship makes it cost even more, and this situation is only
becoming worse.



4.3 Incentive Issues

Unlike pioneer systems like Napster and Gnutella,
current research trends are toward systems where users
serve data that they may have no particular interest in. A
good fraction of their outbound traffic might be saturated
by access to this data. Storage guarantees exacerbate
the problem by inducing a great deal of synchronization
traffic above and beyond access traffic. These higher
costs may make participation even more capricious than
our example of the Gnutella network. Given that sta-
ble membership is necessary to reach even modest data
scales, participation must be strongly incentivized.

The added value of service guarantees may be one
such incentive. However, it is even more costly to
preserve this value in an economically stable way. A
noticable downward fluctuation in popularity will make
the provided service decline. Any response the system
makes to improve service will cause volunteers to be
more taxed with no added benefit, which can only make
the system less popular still. Also, any response the sys-
tem does make must sacrifice some data, less popular
data being the logical choice. To block a downward spi-
ral, a system trying to ensure guarantees must overpro-
vision the service enough so that declines go unnoticed.

5 Conclusion

In this paper we discuss the difficulty of building
guaranteed storage from volatile members. In particular,
guarantees require redundancy. For DHT-style systems,
maintaining redundancy takes cross-system bandwidth
proportional to data scale and membership dynamics.
Thus, all three properties — redundancy, data, and dy-
namics — can be high only if cross-system bandwidth is
exorbitant.

The fact that highly available and large data scales
imply modest participation dynamics (or unrealistic
bandwidth) raises some questions. In this less dynamic
conception of deployment, are small-state lookup table
optimizations relevant? Alternatively, are strong stor-
age guarantees appropriate to large-scale peer-to-peer
deployment scenarios? If so, should the design take the
expense of wide area bandwidth into account more di-
rectly, such as a self-organizing cluster with strictly lim-
ited WAN communications?
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