Does Systems Research Measure Up?

Christopher Small, Narendra Ghosh, Hany Saleeb, Margo Seltzer, Keith Smith
Harvard University
{chris,nkghosh,saleeb,ngu, keith}@eecs.hamard.edu

We surveyed more than two hundred systems research
papers published in the last six years, and found that, in
experiment after experiment, systems researchers
measure the same things, but in the majority of casesthe
reported results are not reproducible, comparable, or
statistically rigorous. In this paper we present data
describing the state of systems experimentation and
suggest guidelines for structuring commonly run
experiments, so that results from work by different
researchers can be compared more easily. We conclude
with recommendations on how to improve the rigor of
published computer systems research.

1 Introduction
Systems papers tend to either presewtideas or quan-

the measured #@&tion (or confidence inteals), and the
experimental errorA meaningful comparison okperi-
mental results cannot be made without this information,
which we call statistical rigoWhen &periments and
their results are sfi€iently explained as to be reproduc-
ible, a papes results are much more eimcing since
the evidence is &r more credible.

We sureyed the proceedings from ten recent com-
puter systems conferencese\et a minimum standard
for reproducibility and calculated the percentage of
papers that included results that were reproducible by
these standards, assuming thailability of appropriate
hardware and softare.

We then cheadd the results for comparability
determining which results could be reasonably com-

titatively report the performance of systems. While it ispared with the results of other research. In cases where

reasonable for papers in the former gatg to contain

the authors used well-kmm benchmarks, or widely

no performance measurements, it is crucial that thavailable code, we found that the reported results usu-
results described in the latter share three critical qualially were easily compared. Mever, in more than 80%

ties:

* reproducibility: the paper must include enough
information to reproduce the xperiments for
independenterification.

comparability: the e&periments run should be
structured in such a ay that thg allow the
behaior of the system being measured to be
compared with that of other systems and those
described in other papers.

* statistical rigor: the results must be statistically
valid.

In essence, comparability and rigor felldrom
reproducibility If another researcherants to erify the

experiment, a suitable description of the benchmark

of the cases we found that the authors designed their
own ad hoc method for benchmarking a commonly mea-
sured quantitybe it null system call time, UDP through-
put, or contgt switch time. In these cases, we found that
it was virtually impossible to compare results reported
in different papers.

The third critical quality of ay result reported is
statistical rigor; in more than 40% of the results, the
authors did not includany information about the statis-
tical validity of their results, notwen the number of test
runs. In 64% of the results reported, the authors did not
indicate whether the resultaw a mean, minimum, max-
imum, or the only measuredalue, the distribtion of
results, or ap measure of confidence or error

We find this distressing. &n our minimal criteria

hardvare, softvare, and system conditions must befor reproducibility comparability and rigor we con-
given so that thexperiment can be recreated. This is thecluded that most quantitaé systems papers pide

property of reproducibilityTo allow the reader to under-
stand the published results in the cantef related

research, commonly reported metrics should be mes

inadequate information about thexperimental data
used to support the papeclaims.
We obsered that there are a small number of com-

sured in similar \&ys on similar systems. This is the monly reported metrics,ub researchers repeatedly cre-

property of comparabilityin order to alidate the pub-

ate indvidualized tests to measure quantities such as

lished results, an independent researcher not only has system call werhead, netark lateny, and file system

know the result, bt also the xpected range ofalues,

throughput.

In the folloving section, we gue for well-
designed, common benchmarks. Section 3 discusses the
conference proceedings that we syed and the data

that we collected; Section 4 presents the results of theith a coarse-grained timewill not work in this case,
suney. In Section 5 we include suggestions for designsince the result ofet pi d() is cached after the first
ing and choosing tests. Section 6 discusses statisticaall.

rigor, and Section 7 lists guidelines forvh@o present The Imbench suite [May96] avoids theget -
experimental results. Section 8 includes a discussion gbi d() pitfall in its null system call benchmark by writ-
related vork on constructing andvaluating bench- ing a single byte todev/ nul | , under the assumption

marks, and we conclude in Section 9. that it is unlilely that a system euld check (at user
level) to see if a write is directed taev/ nul | , and if
2 TheArgument for Standard Tests so, not perform the write. kaver, on some systems

Designing robst, meaningful tests is challenging. Small (notably Linux), the krnel determines that the gat is

differences in the test code or in the testrenment /dev/ nul | substantially earlier in the path through

can cause substantial changes not only in the test resulteg file system than on others (e.g., FreeBSD). In an

but even in what is being measured by a test. &gue attempt to remee one bias from the test (caching of

against this practice on the follang grounds: process IDs), this test introduces another (the path

« It is difficult to write tests that actually measure length required to identify dev/ nul |). Neither test
what thg are intended to measure. There are accurately captures the sought after quantity: the cost of
pitfalls associated with ven the simplest changing protection domains in a particular operating
benchmarks. system.

» However well intentioned the authoand havever Othe? _problems in (_jesigning a meaningful test are
carefully designed, tavdifferent tests will perform hot specific to measuring _system cguem_ead. One
different measurements. Reusing a standard test CO"T_‘m‘?T"V used benchmarkmg technique is to measure
greatly increases the comparability of results. an indwidual call, hu_t to Iissue the caII_repeatedIy na

. tight loop to determine itsvarage duration. If the code

* It is a waste of dbrt to re-create tests.e$t code

) path through the user anckrkel code is sfitiently
zlr:;\/l:;l/d i?Zthillltten once and shared. It should change g5 “this technique alles the code in the tested path

to remain in the cache, hence measuring only the time
* It is difficult to statistically analyze and present required to run the code when it is already in cache. In
results so that tlyeare meaningful. The techniques the common case it is unéky that a short code
commonly used (e.g., computing the standard sequence will atays be found in the cache, so results
deviation for normal distribtions) are not gathered in this @y are unrealistic. In some casest b
applicable in all cases. not all, it is acceptable to report “hot cache” results; a
To demonstrate these challenges, we consider thest should ted this into account.
difficulties involved in creating a simple benchmark pro- In addition to enhancing the scientific rigor of mea-
gram. One of the most frequently cited numbers in opersuring computer systems, benchmark standardization
ating systems research literature is system vallhead. would sae mary researchers a great deal of time. One
This quantity is usually calculated by measuring therecent trend is for researchers to mdkeir test code
time required to mak a triial or “null” system call. and dataailable on the internet. While this is a step in
Even this simple test is fraught with ambiguities. the right direction, it is not a substitute for standardized
First, the candidate “null” system call is often the benchmarks. @st code written for a single platform may
get pi d() call, which should do almost ncovk in the not run on other platforms, or mdike the Imbench null
kernel (typically a fer cycles to cop the process ID system call test, not really measure what it is intended to
from a structure into a returngument). Havever, on measure.

some systems, thealue returned byget pi d() is Through our sumy of past quantitafe system
cached at uservel, so only the first wocation actually papers we hee identified ®isting benchmarks that are
performs a system call. implemented well, qualities thatxgerimental results

In order to use@et pi d() to measure system call often lack, and general properties that benchmarks need.
overhead, a test program might measure the lateha In this paper we are adwating a general method for
single call toget pi d() . To achiee statistical signifi- systems gperimentation and presentation, not propos-
cance, this program could bgeeuted repeatedly until ing a nev set of benchmarks or insisting that particular
enough data points ¥ been acquired. Unfortunatgly ones be used. The first component of this method is the
on mairy systems the timing granularity is too coarse touse of @isting, standard benchmarks. wever, this is
accurately measure the latgnof a single system call. not alvays possible since appropriate benchmarks may
Timing multiple, succesee calls toget pi d(), the not &ist for nav system ideas. Therefore the second
usual technique for measuring a short-duratisene component of our method is the creation of/fench-

marks according to certain principles we describe. Aftenull system call times cannot be compared if/theed
presenting our suey and conclusions dnan from it, different techniques for measuring the null system call,
we explain our method for designing webenchmarks, such as those described in Section 2.

interpreting &perimental results, and presenting the At this stage we did not attempt to determine the

results in a meaningful ay. rigor or \value of ay particular test or benchmarkutb
_ instead generated a list of commonly used teststsT
3 Experimental Setup that were not represented in the list of commonly used

We sureyed ten systems conference proceedings: th&ests were identified as ad hoc. The tests and ad hoc cat-
13th, 14th, and 15th Symposia on Operating Systemegories are listed inable 6, in the appendix.
Principles [SOSP91, SOSP93, SOSP95], the First and

Second Symposia on Operating Systems Design and Area Description Example
Implementation [OSDI94, OSDI96], the Fifth and Sixth general | general-purpose standard benchl Imbench
Conferences on Architectural Support for Programming marks that measure quantities

Languages and Operating Systems [ASPLOS92, from more than one area.

ASPLOS94], and the 1994, 1995, and 1996 USENIX cpu cpu time, instruction count, multi{ dhrystone
Technical Conferences [USENIX94, USENIX95, programming wrkload, idle time.
USENIX96]. We reviewed 235 papers in all. There were g database benchmarks. TPC/B

between 280 and 311 measurements reported in ea\.:?s

file system or disk tests. Andrew
conference (seedble 2).
22 of the papers (9%) did not includeyaneasure- ~ Mem | memory (RAM) tests. beopy
ments. The remaining 213 include the results of a total net network throughput and lategc | ttcp
of 1163 eperiments. Br each gperiment, we para parallel system and DSM tests. | splash
recorded: .
sys system throughput and load. aim

* The area of thexperiment.
® Table 1. Test Areas. After a preliminary reiew of all the

* The test that @s run or quantity that as being papers, thexperiments were found to be in one of these areas.
measured.

» The characteristics of thegerimental setup.

« The attritutes of the presentation of the results. 32 Test Details

The catgories that we used may not be appropriatd ©' €ach test, weaghered information on o the
for all systems papers. These gatees were chosen experiment vas run and he the results were presented.
after we performed an initial view of the ten confer- | ne test detailsdll into three cagories: comparability
ence proceedings, to describe our sample set of papef§Producibility and statistical rigor
Although not all verk in systems is presented at these?,lzl1 Compar ability

conferences, these papers, and the areggepeesent, In conducting our suey, we found that results were

are a good indication of whaionk is be'f‘g dqne N SYS™ most easily compared when researchers used standard
tems and what the systems community thinks of as ItEcienchmarks. In general, each area included a small
beStTVﬁékaata collected from this sewwere used to number of well-knwn tests, which were rarely used,

. . e) and a lager number of ad hoc benchmarks, which were
derive the statistical results found in Section 4 and tcfrequently used. This @ distressing because iasv
determine the Commorests listed there. often dificult or impossible to compare results in papers
31 Areasand Tests that reported the same quantity (e.g., null system call

First, we oganized the measurements into the test cateliMe), ut measured it in diérent vays. _ _
In Section 4.1, we discuss the results in more detalil,

gories described inable 1. Wthin each catgory, there X) >

were tvo general types of tests: standard benchmark@nd In Section 5.3, we discussahto construct a good
(or well-knavn programs), and ad hoc benchmarks (nopenchmark, when no standard benchmaikts for the
in common use). When ad hoc benchmarks were usefuantity that a researcher needs to measure.

the comparability and reproducibility of the results suf-

fered. or example, results from tav papers reporting 3.2.2 Reproducibility

In evaluating for reproducibilityour goal vas to deter-
mine whether a researcher in the field couldeigithe

1. We group multiple runs of a test as a singlpegiment. Br information found in the papereproduce the results
example, if a test is run twenty timesrying a parametewe presented there.
report this as a singleeriment.

Trace-based simulation is often the simpleaywo to note that inclusion of detail does not requineying
guarantee that arxgeriment is reproducible,ub it is noteworthy results. It is not difcult to include both the
not the only vay. If a paper includes enough detail aboutimportant details of h@ a measurementag talen and a
how an eperiment is set up and run, theperiments summary of the importance of the major result.
can be reproduced by a kmedgeable reader In addition, statistical rigor can highlight additional

In the case of trace-based simulation, making botmamifications of the data collected from a system. If the
the traces and the simulator itself publiclkaidable is authors find that the distubion of a set of measure-
the simplest @y to ensure reproducibilityln the ments is gponential, where a normal (bell shaped) dis-
absence of anvailable simulator (as might be the casetribution might be ®pected, this is in itself an
for proprietary simulation efronments), the research- interesting result. Inafkct, this will frequently reeal
ers must be sure to describe the simulation algorithms ieither an error in the test or a particularly maighy
sufficient detail that another researcher could produce affect.
comparable simulatoin the absence ofailable traces, For example, in recent ark, we measured a reason-
the researchers must characterize the traces used in sable mean X), but a lage standard dgation (nearly
ficient detail that another researcher could determine i£00% of the mean) in a test that we were running.
the traces were suitably represenmtiWhen traces can- Although we had a (somdat) plausible xplanation
not be made \ailable, stochastic simulation with a for the lage deiation, we went back andkamined the
parameterized arkload pr@ides a cowenient alterna- data more closely\e discwered that the measurements
tive. formed a classic bimodal disttition, caused by a prob-

Simulation is only one ay of making an>geri- lem in the test where mdifferentquantities were being
ment reproducible. Anexperiment can be made repro- measured, one with mear®, the other with meaBx/2
ducible if the &perimental testbed is described inIf we had not ramined the data in more detail, we
sufficient detail. In systems research, this usuallywould not hae noted the problem with our test code.
requires describing the hardve and softare. A hard- Furthermore, had we published the memnwithout
ware description should usually include the type of pronoting the high standard dation, the reader auld
cessor its clock speed, and the system in which thehave been none the wiser
processor resides (e.g., the motherboard for a Pentium The characteristics that determine statistical rigor
processoj It is often important to include information vary with the &perimental setup. When the quantity
about the memory system (main memory size and cacheeing measured i&ed(e.g., the number of instructions
sizes)and details about the 1/0O subsystem as well. Than applicationxecutes on a particular input or the num-
software description should identify a specifiersion ber of occurrences of an operation in a trace) there is lit-
of the operating system and application (where reletle need for statistical analysis. Wever, when the

vant). experimental setup producesanation (e.g., you are
measuring an actual system) or there is an ggtjon

3.2.3 Statistical Rigor of data, the need for statistical rigor increases.

Mary authors preide only a single number as a mea- |n the presence of aggated data, it is imperag

sure of the performance of a system or a component oftg report the number of measurements that are being

system, without a detailed description ofshthe num- aggrejated and the quantity that is being reported (e.g.,

ber was computed or measureditigut this informa- mean, median, mode). K it is useful to present an

tion, readers cannot accurately interpret results. It is ngidication of the ariability of the data. Standard\da-

our intention to cast aspersions on taédity of results tion, minimum, maximum, and disttiion information

presented without this information, just to point out thatare all useful tools for indicating Wwoaccurately the

data collected or computed in felifent fishions should aggreate represents the entire data Samp|e_

often be interpreted dérently. Timer resolution is closely tied to statistical rigor;
In systems research, we measure the performanggarse grain timing leads to greater gias of error In

of systems in the realarld, and the real arld is neither conducting our sumy, we looled for the use of high-

perfectly consistent nor perfectly predictable. A lack ofresolution counters or timers to reduce the probable
statistical rigor does not necessarily lead to unbalti® main of error in &periments.

numbers, bt without information on the number of

measurements tek, the distribtion of the measured 4 Results

results, error bars, oraviance, we, as readers, can notin this section, we present the data and analysis from our
know how to interpret the results. suney. Wherever possible we attempted to err on the

Not everything listed here is necessary for rigor side of generosityhence the results summarized here
but, in general, the more detail the betteis important

are a best-case estimate of the comparahibfyroduc- as might begpected, ASPLOS had a higher percentage
ibility, and statistical rigor of the measurementsof ad hoc CPU and memory tests (26%).

reported. Only two of the standard tests listed iable 6 (in
the appendix) were used for more than 2% of the
4.1 Standard and ad hoc tests reported measurements (Imbench at 2.2%, SPEC at

We were astonished to dis@ that more than 80% of 7.19). USENIX accounted for the majority of the use of

the tests run were ad hoc, i.e., did not use standaighbench while ASPLOS accounted for the majority of
benchmark tests. the use of SPEC.

It was surprising he infrequently standard bench-

total || asplos| osdi | sosp | usenix o were used. In the SOSP proceedingsastmore
g;ltrgls){esr 1163 280 289 311 283 common te f|nd_ ad hoc measurements of null system
call time (eight times) than itag to see use of the SPEC

standard 19% || 27% 16% 13% 23% benchmarks (fie times). This is not just a reflection on
ad hoc 81% 1| 73% | 84% | 87% 77% the use of SPEC; it is indice#i of the frequencof use
of other standard benchmarks as well.

Test Breakdown by Area

general | 9.6%|| 23.6%| 2.1%| 1.9%| 129 4.2 Reproducibility and Comparability
Many of the reproducibility and comparability attuiies

cpu 4.2%| 12.1%) 2.4%] 1.0%] 1.8% (see Section 3.2) were rarely seen. The results are out-
adhoc | 35% || 11.1% | 1.0% | 06% | 18% |ined in Table 3.

db 3.0% 0% | 6.2%| 4.8%| 0.7% Although 75% of the tests included information
adhoc | 1.5% 0% | 45% | 1.6% 0% about the hardare platform used, only 39% included

filesys 55 19% 1 10.0% | 19.79% | 305% | 39.6% enough dete|l about the sofive platform. to rep_roduce
the test evironment. The papers published in OSDI
adhoc | 22.6% || 86% | 18.3% | 28.3% | 34.6% most often included information on the hasie plat-
memory 53% | 14.6% | 2.4% | 4.5% 0% form (93%), and the papers published in USENIX most

adhoc | 53% || 146% | 24% | 45% 0% often had softare information (53%).
network 13.5% 6.4% | 10.7% | 12.5% | 24.4% total asplos | osdi sosp usenix
ad hoc | 12.5% 6.4% | 10.7% | 12.2% | 20.8% hard-
0, 0, 0, 0, 0,
parallel 13.2%|| 9.3% | 25.3% | 17.4% 0.4% ware 5% 6% 93% 65% 67%
ad hoc | 10.1% 8.2% | 18.3% | 13.5% 0% 3\,(2:;9 39% 21% 42% 40% 53%
system 26.0% || 23.9% | 31.1% | 27.3% | 21.2% :
adhoc | 24.7% || 23.9% | 28.6% | 23.4% | 21.1% fi'(;'r‘]”'a' 15%|| 22% | 16% | 9% | 11%
Table 2. Summary of Test Statistics, Aeas.Tests from each ™~ {5ce 11% 15% 12% 7% 12%
area, brokn out by conference and agbey. Below the
percentage of tests from each area we report the percentage é’féijsee 5% 2% 6% 7% 4%
tests from that area that were ad hoc. The sum of the

percentage of tests in each area is 100%. The sumad tive Table 3. Summary of Test Statistics, Repoducibility and
rows of a column is the percentage in #tehocrow of that ~ Comparability. Details of the test results sexed, reported
column. Note that there are no ad hoc general tests; all genees a percentage of the number of tests.

tests were standard benchmarks.

As mentioned in Section 3.2.2, simulation and

The type of testaried by conference (sealdle 2), trace-based tests are the most easily reproduced. W
but the results were not substantiallyfeliént. We found found that simulation as used most often in ASPLOS
it surprising that papers published at USENIX, which ispapers (22%) and least often in SOSP (9%&)c&s were
often considered to be a less prestigious conferencased in 12% or more of the measurements reported in
more often used standard benchmarks than papers pubSENIX, OSDI, and ASPLOS ub only 7% of the mea-
lished in SOSP or OSDI. surements in the SOSP papers.

Across the four conferences (ASPLOS, OSDI, Reuse of well-knan traces aried from 2% (ASP-
SOSPand USENIX) 23% of the tests were ad hoc fileLOS) to 7% (SOSP). Where 11% of the tests (138) used
system tests and 25% were ad hoc system tests. This digaces, only 5% (62) used (or reused) commowmila
tribution varied somehat by conference.df example,

able traces. fhces arexdremely useful things; Bak et total || asplos| osdi | sosp | usenix
al’s Sprite filesystem traces [Ba®1l] hae outlved fixed

both the operating system and haadevon which the oo its 24.0%| 49.3%| 19.7%| 13.8%| 14.5%
were @thered. The traces themsedvhae been used in

several subsequent studies. Although aguamnent can ng%tﬁgsd 42.5%| 23.6%| 50.5%| 56.6%| 37.5%
be made that the applicability of these traces hded
with time, reuse of these traces alostudies of dfér- f’;a;srte 4 | 335%| 27.1%| 29.8% 29.6% 48.1%

ent file systems, diérent cache designs, and so on, to be
directly compared. Stats Reported

. numruns| 32.8%4| 57.7%| 21.6%| 20.1%| 43.0%
4.3 Rigor

We were surprised by twlittle statistical rigor is mean| 35.3%| 30.3% 35.8% 35.4% 37.6%
evident in the literature (seeable 4). 24% of the mea- std dev| 14.7%| 8.5%| 17.2%| 15.3%| 15.3%

surements reported the output okfixruns and needed t4p1e 4. Summary of Test Statistics, Statistical RigarTests

little other supporting data. kaever, of the remaining ith fixed results include trace-based simulation and counts of
76% of the measurements, only 33% of the resultiixed quantities (e.g., memory references), reported as a

reported the mean of multiple test runs; onlg fof the percentage of the number of tests. Of the remaining tests,
reports included the median, and only one included thtewer than one-third of the results included information on the
mode. In the rest of thexgeriments (67% of them), a number of runs, and less than 15% included the standard
single number is presented as the result of the measuféiation. Of papers without fed results, we break out the

ment without ay additional information specifying the stats reported by each test in the bottom half of the tabte. F
number of times that the testas run or ha the each statistic, thealue reflects the percentage of the tests
reported result as denved from these tests without fixed results that report the statistic. Due to rourid-of

Few of the non-fied \alue results (15%) include the percentages may not sum to 100% in all cases.
the standard d#ation, or some other measure of the
variance of the measurements. Only three of the 116garks aailable and he to determine which are appro-
measurements included information on the type of dispriate for the task at hand. Xewe describe he to
tribution obsered. design a benchmark if the standard benchmarks are
High-resolution counters are waavailable on s ynsuitable. Once the benchmark is selected, we discuss
eral commonly used hardwe platforms (e.g., Alpha, how to properly run a benchmark anerify that the
Pentium, and SuperSparc). The systems communitiesults are meaningful and accurate. Finally discuss

should use them where possible, and encourage harfow to present thexperiments so that others will find
ware deelopers to mak them wmailable on the plat- the results useful and informadi

forms that hae not yet adopted them.

5.1 Types of Benchmarks

4.4 Common Tests There are tw major classes of benchmarksaiero-
In Table 5 we list the quantities most commonly meatenchmarks and macro-benchmarks. Micro-bench-
sured in ad hoc tegtSSe/eral of the tests we list here marks are used to measure the performance of specific
are found in ®isting benchmark sets (e.g., Imbenchfeatures of a system, such as system saittead, RPC
[MCVOy96] and Ousterhowg’ microbenchmark suite |aten(;/ or file system throughput_
[Ousterhout90]). Our goal here is to encourage the com- Macro-benchmarks, in contrast, are used to mea-
munity to standardize on a common set of tests for thesgre the gerall performance of a system undefefiént
measurements, not to endorse one test suite or anotheWork|oads_ Macro-benchmarks can beidid into tvwo

. broad classes. Some macrobenchmarks reproduce real
5 How To Build Good Tests workloads, such as a g lernel hiild, or the replay of
The goal of this section (and this paper) is tovig® 3 file system trace. Other macro-benchmarks such as
advice about designing, selecting, analyzing, and usinghrystone [Wicker84] and LADDIS [Vittle93] use
good benchmarks. First we discuss the types of benclynthetically generatedakloads. Synthetically gener-
ated vorkloads strik a balance between reproducibility
and releance. Real traces or measurements of actual

accurate measure of which ad hoc tests were most frequent?. s_tem actiity pr_OVIde good refeance, bt are often
run. We plan to mak another passver the sureyed ifficult to precisely reproduce. Additionallythey

proceedings to more formally generate this list of commorModel only a Single. point in the spectrum afritoads.
tests for the final paper In contrast, synthetic evkloads may not be representa-

2. Note to program committee: Mo not currently he an

tive of aty authentic wrkload, lut are easily repro- Similarly, if the benchmark only spends 5% of its time
duced. Vith proper tuning and parameterization, it canactually eecuting the RPC, there may be a problem
also be agued that synthetic evkloads can be made to with the benchmark.
model a wide range of authentiotkloads. For macro-benchmarks, there arefatiént con-
There is a natural interplay between the use oterns. Macro-benchmarks should reproduce or represent
micro- and macro-benchmarks. Micro-benchmarks areeal-world workloads. This is easy to do if the macro-
illustrative, and can be used to highlight specifiedif = benchmark runs actual applications, or isvelti by
ences between systems. Macro-benchmarks can then tvaces of real wrkloads. Unfortunate)ythere are f&
used to ealuate the déct these dferences hae on standard macro-benchmarks based on reakieads.
overall performance. If macro-benchmarks are run firstMany researchers use ad hoc macro-benchmarks based
micro-benchmarks can be used «&plain the difer- on applications that arevailable or are of interest to
ences in the macro-benchmark results. Micro-benchthem. Thus man kernel lilds and video players are
marks are also useful as diagnostic tools. A number afsed in diferent publications. It wuld be a great ser-
the tests that comprise the Imbench suite werevetkri vice to the research community if these tests were
from performance problems obsedv by customers clearly documented, and their data sets made publicly

[McVoy96]. available so that these benchmarks can be reused by
other researchers.
5.2 What to Measure Many macro-benchmarks use artificially generated

The first step in benchmarking a system is determiningyorkloads. The goal of using a synthetiorkload is
what should be measured. A goodyo decide whatto ysually to create a benchmark that is meaningful to a
measure (and fo to measure it) is to consider the wider range of users than a specific applicasiowrk-
known differences between the systems under test. If thad. An artificial vorkload introduces the dangéow-
differences are relarely minor (SUCh a modified file ever, that it is not representﬂﬁ' of ary users workload,
system, or an impked protocol stack), start with or worse, that the benchmark results will not map to the
micro-benchmarks designed to highlight thepected results obserd by users in their applications.
differences between the systems. Then run macro- The ley issue in designing a synthetic macro-
benchmarks to shothe efect of these changes on real- benchmark is the relance of the wrkload that is used.
workloads. Benchmarks that use a completely random mix of oper-
If systems are being compared thatehaubstantial ations are highly suspect. A more reasonable approach
differences, such as entirelyfdifent operating systems, s to base the distriltion of \arious operations in the
file systems, or hardave platforms, one mayamt to synthetic verkload on obserd distrilutions in a real
start by running macro-benchmarks. These results Wilyorkload. (The LADDIS benchmark [#e93] is an
suggest thedy differences between the systems. Thesexample of a synthetic evkload based on actual data.)
differences can then be quantified using the appropriatetter yet is a benchmark that captures the dependencies

micro-benchmarks. between succesa& operations that are obsedvin the
Once the author has determined what kind ofeal world.
benchmark to use, the xtequestion to consider is Another concern when writing both micro- and

whether to use arxisting benchmark or to design ame macro- benchmarks is eliminating system dependencies.
one. Our hope is thaver time the systems community Consider file system benchmarks. In order to ensure that
will come to repeatedly use a small set of standargheasurements reflect the performance of the file sys-
benchmarks. As we hia seen from our suey, there are tem, rather than theuffer cache, it may be desirable to
a small number of commonly measured quantities (segxplicitly flush the hiffer cache to ensure that the
Section 4.4). Therefore, the need to designaliench- penchmark is utilizing the file system. Onayof doing
mark should not arise often. tever, new ideas will this might be to read ten wabytes of “unk files”
sometimes require measuring original quantities. before each benchmark run. This technique introduces
o two assumptions about the underlyingffer cache—
5.3 Designing a Benchmark o that it is no lager than ten ngabytes, and that it uses an
In designing a micro-benchmark, it is vital to raure | pyj replacement polic These dependencies are unde-
that its results reflect the time spent in the part of thei sple because the benchmark willeginvalid results
system being measured. If the goal is to measure null, gystems that violate these assumptionenBorse,
RPC time, bt a benchmark spends most of its time pagy; may be dificult for other users of the benchmark to
ing, then the results are not indiatiof null-RPC time. yetermine whether these assumptions hold on their sys-
tems. A better way to flush the file cache is to unmount
and then remount the file system. Another sure fag w

to flush the bffer cache is to run the benchmark on aobsened behsior (e.g., “With a lager luffer size, there
newly booted system. is worse cache locality”). Finallyest this n& hypothe-

A final point about designing a webenchmark is sis to see if it does indeedp#ain the results (e.g., use
the question of he it actually performs measurements. CPU-based performance counters to determine the num-
Marny benchmarksdil to factor out the cost of their ber of cache misses during the benchmark.)
measurement techniques (e.g., tlverbhead of calling Although it is easy to focusxelusively on the
get ti meof day()). This is especially important when results that do not matclymectations about the systems
measuring short duratiorvents, because the measure-under measurement, it is important to scrutinize all mea-
ment werhead can he a lage efect on the measured surements with equal vigdmplicit in each “&pected”

times. result is a fipothesis about what is causing it. These
_ hypotheses also need to kbaigated.
5.4 Running a Benchmark Examining results in this manner also yides an

There are tw important issues toelep in mind when opportunity to shak out potential fias in the bench-
setting up the efronment in which to run a bench- mark. Flavs may include programmingigs as well as
mark—control and rei@nce. unexpected behdors of the benchmark. As mentioned
When we run benchmarks, we are usually attemptapove, usingget pi d() may be an easyay to mea-
ing to evaluate the déct of some change in system syre the system callverhead of an operating system.
design on the performance of the system in question. Bgince some systems cache the results from the first time
controlling the ewironment in which we run a bench- a program callgget pi d(), this technique may not
mark, we ensure that wnperformance dférences \work. Comparing the results to other simple system
reported by the benchmark can be atiiélol to the par- calls or performing back-of-the-eglope [Bentlg84]
ticular design change that we are studying. Thus, altalculation of the number of/cles it took to gecute a
aspects of the testironment—the hardare platform, get pi d() call are tvo ways to check that the results
the operating system configuration, netkvconnecti- gre reasonable.
ity, versions of softare tools, etc.—should be the same Another adentage to using standardized bench-
during all of the benchmark tests. The only things thafarks is that the are (ideally) less lily to include
should change between benchmark runs are the parts ffese types of flas. A standard benchmark alle the
the test system that are being compared. researcher to concentrate on changing the system, rather

The other issue to consider when setting up ahan worrying about the alidity of the benchmark
benchmarking platform is that, ideallthe benchmark resylts.

ervironment should mimic the gimonment in which the

test systems owld actually be used. In benchmarking 5.6 Describing a Benchmark

process switch times, foxample, the easiest course is The goal in describing a benchmark is to vinle

to run the system with a small number of processesnough information so that another researcher can
belonging to the test suite. In reabfhd usage, hwever, reproduce the »x@eriment. Further the description
there are often a mixture of processes in the systenshould cowmince the reader that the benchmarksw
some readyothers blockd. A better \@y to run a con- appropriate for the measurement, well-designed, and
text switch benchmark auld be in the conse of a real- properly run. In other wrds, it should address thery

istic number of ready and bloett processes. Of course, questions we he discussed in the lastésub-sections.

in order to guarantee a controlled and reproducible test It is not necessary to prole a detailed waik-
ervironment, the processes must be created in a detethrough of the benchmarking code. Instead, it is essen-

ministic and reproducible manner tial to provide a description of the purpose of the bench-
_ mark (i.e., what is it designed to measure)w hbe
55 Understanding Results benchmark measures the quantiyy subtleties that

After running a benchmark, it is vitally important alv arose in designing the benchmark, and hiee bench-
idate the results that it\gs. Initially the question will mark was run. Br example, it is important to indicate

be whether the change in the system impdosome the cache state (hot or cold), the congestion of the test
facet of system performance. Mever, the questions network, the utilization of the file system, andyasther
cannot end there. Understanding benchmark results isfactors that might &ct the outcome. Making the code
microcosm of the scientific method. In looking at theavailable on-line also prxades another el of repro-
results from a benchmark, it is impevatithat all of the ducibility. Finally, the standardization of benchmarks
results can bexplained (e.g., “Wi does this test get eases this task since the benchmark itself will not be in
slower as the size of theuffer increases?”). This may question, although it is still necessary to accurately
require forming a ne hypothesis that »plains the describe the conditions under which the test is run.

6 Statistical Rigor the midpoint of the data is, and is a coarsg W esti-

Understanding common statistical methodsvslimble ~ Mate the distrittion of the data.

in being able to represent results coherently and accu- The mode is the measurement that appears most
rately In this section we pride an werview of the sta- often in the data set. The modees a feeling for what
tistical tools that a systems researcher shoulk ha Value is most likly to occur if the xperiment is run

available when analyzing data and mrate their use. again.
When data follavs a normal (bell shaped) distuib

6.1 Mean, Median, Mode and Distribution tion, the mean, median, and mode al/éhdhe same
As we stated in Section 4.3, 35% of all the tests we anasalue (see Figure 1a), so all three are\exjantly \alu-
lyzed use the mean as the result of a benchmark. In onble as measures of centralitynfortunately mary
15% of the measurements withoutefikresults did the experimental data sets do not fella normal distrib-
authors preided an indication of theaviance of the tion, and the mean, median, and mode of other distrib
data \alues, typically through the inclusion of the stan-tions do not line up so neatljust reporting the mean in
dard deiation. In over 40% of the cases withoutdict this case can be misleading.
results, no information was praided by the authors For example, on a computer with a multiskd
about the statistical rigor of the results. cache, timing of indidual memory accesses will yield
If a researcher does not use sound statistical tecldata with multiple clusters, each cluster representing the
nigues when athering data and presenting results,time required to service a request from onell®f the
drawing inferences about the befiar of the measured cache. In this case, the mean describes tlezage
system is a guessinguge. Sound statistical techniqgues memory access timepbin all likelihood does not rep-
must be used to ensure that the results presented inr@sent the lateyoof ary actual memory access. Because
paper truly represent the befa of the underlying sys- of the increasedvailability of high-resolution timers on
tem. modern processors, it has become easier for researchers
It is important to note that if the behar that is to time indvidual short-terments, thus unaering the
being measured does natry, statistical analysis is hot underlying distrilntion of ezent latencies.
necessaryFor example, if we are measuring the number Normal distritutions are more often seen in nature.
of instructions generated by a compiler for a particulafor example, monthly rair#ll over a period of years,
program, or the number of disk blocks needed to store laeights of indiiduals in a population, and results of 1Q
fixed data set, we only need to measure the quantitests for a population are &k to ehibit normal distri-
once. butions. Additionally the sums or diérences of random
When measuring a system that does ngetiked numbers are lély to ehibit a normal distribtion.
behaior, the best technique forwgoping an accurate However, computer measurements are not naturally
model of the system is to perform multiple measure-occurring phenomena, nor areylmmmpletely random.
ments, analyze them, and distill them to one (or a small Additionally, most &perimental data setxlgbit a
number of) representaé values. phenomenon knen as deft wall. That is, there is some
When doing this, themost important datum to minimum \alue, belav which it is impossible for the
include is the number of measurement®etaAithout values in the data set to reside [Gould96]. The presence
this quantity the \alidity and significance of the other of such a\all can introduce a distnittion that is skwed
results reported is di€ult or impossible to discern. The in one direction or another (not symmetrical about the
larger the number of measurementsetakthe greater mean). Br example, when measuring neiuk transfer
the confidence that the results shicare meaningful. time, the speed of light imposes avér bound (left
Second, when dealing with a d@r data set, it is wall). Transfer time could, theoreticalliake infinitely
often useful to choose a single represeveatfor a long (and often seems thaayy, so there is no rightadl
given data set, there areveml diferent measures of to the distrilntion. This is lilely to introduce a skved
centrality, or values that represent anvéaage” \alue distribution.
for the data set. Skewed distrilutions are not well-represented by
The most commonly used measure of centrality ishe mean dataalue. In the wrds of Stephen J. Gould,
the (arithmetic) mean (the sum of the data points “means can be grossly misleading ... whariation can
divided by the number of pointd)/hen data are distrib- expand markdly in one direction and little or not at all
uted according to a normal (bell shaped) digtidn, in the other” [Gould96].
the mean is a reasonable represergdtr the data set. In these cases, it is often useful to include the
The median is the central point in the data, where median and mode along with the mean. The median and
half the measuredalues are ah@ the median and half mode, in combination with the meanygithe reader a
are belav the median. The median tells the reader where

sense of he the data is distrited and what the
expected behaor of the system will be.

In general, if the mean and median are rather close,
but the mode is astly diferent (or there are twcandi-
dates for the mode), l@modal or multi-modal distribu-
tion is suggested (see Figure 1b). As describedeaimo
Section 3.2.3, the standardviion of a bimodal distri-
bution can be quite lge, which can seevas a check on
the assumption that a distuitton is normal.

It is important to note that these guidelines are not
fool-proof; comparing the mean, median, and mode can
only suggest the type of distribtion from which data
was collected. Unfortunatelyhere is no rule of thumb
that alvays works, and when in doubt, the best course of
action is to plot the data, look at it, and try to determine
what is happening.

It is critical to select the appropriate metric of cen-
trality in order to properly present data. “No mathemati-
cal rule can tell us which measure of central tengenc
will be most appropriate for gnparticular problem.
Proper decisions rest upon kvledge of all &ctors in a
given case, and upon basic honesty” [Gould96].

6.2 Expressing Variation

Measures of centrality are not fcient to completely
describe a data set. It is often helpful to include a mea-
sure of the &riance of the data. A smakrance implies
that the mean is a good representatof the data,
whereas a lge \ariance implies that it is a poor one. In
the papers we sugyed, we found that feer than 15%

of experiments included some measure afiance.

The most commonly used measure afiance is
the standard deviation, which is a measure of Wwo
widely spread the data points are. As a rule of thumb, in
a normal distrilation, about 2/3 of the datalfs within
one standard dation of the mean (in either direction,
on the horizontal axis). 95% of the dasdlS within two
standard déations of the mean, and three standard
deviations account for more than 99% of the data.

For example, in Figure 1a, which folles a normal
distribution, the mean, median, and mode are equal, and
the standard deation is approximately 40% of the
mean. Havever, in Figure 1b, which shs a bimodal
distribution, the mean, median, and mode are quite dif-
ferent, and the standardwvietion is 75% of the medn
Figure 1c shes an &ponential distribtion where the
median and mode are closet bather diferent than the
mean. (V& discuss techniques for determining the distri-

Median
Mean
Mode

120}
100} _
80t
60
40t
20t

0 5 10 15 20
A: Normal Distribution
180

‘Mode " [Mean
150k M Median

120 F 1M
90 |+

60

30

0 5 10 15 20 25 30 35 40

B: Bimodal Distribution

Mod
Medlian
Mean

2000 4000 6000 8000

C: Exponential Distribution

Figure 1. Sample distributions. The relationship
between the mean, median, and mode gints about the
distribution of the data collected. In a normal digitibn,
the mean is representadi of the data set, while in ar
exponential distrintion, the mode and median are mol
representatie. In a bimodal distrilttion, no single metric
accurately describes the data.

bution of a data set in Section 6.3.)

3. The lage standard deation here is because the distition
is bimodal, lnt bimodal distrintions do not necessarily ve&
to have a lage standard dgation. The peaks of a bimodal
distribution can be close together; in thi@eple thg are not.

Another metric for analyzing the usefulness of the
mean in an)geriment is thanargin of error. The mar-
gin of error epresses a range odlues about the mean
in which there is a high Vel of confidence that the true
value flls. For example, if one were concluding that the
lateng of a disk seek is within four percent of the mean,

the magin of error would be four percent. Assuming
that this magin of error had been computed for a 0.05
level of significance, then if thexperiment were
repeated 100 times, 95 of those times the observ
lateng would be within four percent of theale com-
puted in the correspondingeriment.

Figure 2 is anxample of the importance of shie
ing the magin of error In our xkample, Figure 2a is put
forward to support a claim that awdechnigue has
reduced latencby 10%. Havever, this graph does not
include ay indication of the majin of error or confi-
dence interals on the data. If the nwn of error is
small, as in Figure 2b, it is reasonable to lelithat
lateny has been reduced. Figure 2cwieer, shavs a
maugin of error that is as lge as the stated impe-
ment. The 10% reduction in latgndalls within the
error bars, and might i@ arisen from xperimental
error.

It is very useful to be able to place results in the
contet of an error magin, and it is essential to be able
to do so when trying to determine thalue of a ne
technique.

A related problem, which appears when measure-
ments are tadn, is mistaking measuremeanecision for
measuremerdccuracy. For example, on may versions
of Unix, get t i meof day() returns the current time in
microseconds (its precision)utis only updatedwery
ten milliseconds (its accungdc Timing measurements
taken usingget t i meof day() on these systems will be
rounded up (or den) to nearest multiple of ten millisec-
onds. In situations such as these, it is critical tonma
not only of hav precise a measurement isit lalso hav
accurate. On a system with a 10ms clock granujatity
is a waste of time to attempt to maklistinctions at the
microsecond leel.

6.3 Probability Distributions and Testing

As stated abee, normal distribtions are commonly
found in nature, Wt rarely found in computer science.
When measuring xperimental systems, one is more
likely to encounter other types of distrilons. Unfortu-
nately it is not a trvial task to correctly identify which
distribution best models aygn a dataset. From a statis-
tical point of viev, anestimate of the mean and standard
deviation of can be calculated from measured daté, b
without knawving the actual distrilition, it is impossible
to calculate thérue mean and standardwdation. Fortu-
nately there are simple methods for determining the dis
tribution of a dataset.

Plotting a histogram of thealues in a sampled data
set is easy ay to get an idea of what type of distriton
the data follavs. Figure 1 shes examples of seeral
common distribtions with noticeably diérent shapes.
Normal distritutions (Figure 1a) are common in the nat-

140t Graphl— -
Graph2- -
o> 120}
E
& 100}
c
5 -
S 8} __————77
60 |
0 2 4 6 8 10 12
Number of packets
A: Latency mprovement without error margins
140} Graphl~— |
Graph2— ~
o 120}
E
& 100}
o
= 1
§ s} ;prerriET
60 |
0 2 4 6 8 10 12
Number of packets
B: Latency Improvement with small error margins
140t Graphl—— |
Graph2— —
o> 120}
E
& 100} W)
c
:]
S 8o} }JFJFJFJF]LJfJfJF]
60 .
0 2 4 6 8 10 12

Number of packets

C: Latency Improvement with large error margins

Figure 2. Graphing and Error Margins. The alue of
the error magins will depict the results in completel:
different vays.

ural sciences, and often represent the characteristics of
repeated samples of a homogenous population. As men-
tioned in Section 6.1, sWwed distrilutions often occur
when some phenomenon limits either the high ar lo
values in a distribtion. Personal income is araenple

of a skewed distrilution. An eponential distrilation
(Figure 1c) might be seen when modeling a continuous
memoryless system, such as irderval time of net-

work paclets, while a Poisson disttition results from a The graphs shen in Figure 3 present the same
discrete rare occurrence. (Poisson distidns are sel- data, It encourage dramatically thfent interpreta-
dom seen in computer systems research.) tions. In reality the two different data sets tia very
The)(2 (chi squared) test can be used to determine i§imilar values (within 3% of each other for all cases),
sampled data folles a specific distrilition. Gven the yet this diference can be magnified by limiting the
sampled data points and thepected distribtion of range of the dependerdnable. Although the 3% dér-
data point§ the square of the ddrence between the ence here may be a genuine imyanment, it is impor-
number of points seen and the number of pointséant to not misrepresent the magnitude of the
expected, at each sampledilve, is computed and improvement. In may cases, a 3% dédrence in perfor-
summed. The smaller the sum, the better tledistri- mance is not interesting to systems researchers.

butions match. érmally, In order to clearly and accurately represent data,
w2 = - (sampled - expected)? common _sen.se dictates the fellag rules for graphical
Z expected presentation:
X2 can be used to obtainpavalue from a amily of . lSJ:aeleO-based @s when data is plotted on a linear

x2 distributions. The lager the p-alue, the higher the .
probability that the measured disttion matches the * USe l0g scales to depiciales that rangever

candidate distrittion. several orders of magnitude.
* Label all axes clearly (noting the units shn and
6.4 Summary the scale if it is not linear).
By presenting a singlealue, with no eplanation, an . yse consistent graphical representation throughout
author gves almost no information about the baba a publication.

of the system measured. At a minimum, byvating
the number of samples &k the meanalue, and the
standard daation, the author alles the reader to @
to understand the data. By including more detail (e.g.,) o)
mode, median, and disttibon information), the author As with ary set of guidelines, there argoeptions.

gives the reader more werful tools to analyze and For example, in Figure 1c, the x-axis is linear although
understand the beviar of the system. the data g&lues span four orders of magnitude. Since the

However, without confidence inteals or error bars, Purpose of the graph is to stdhe shape of anxpo-

it is difficult to compare sets of data. It is important for ahential distrilution, plotting it on a linearrather than

reader to kne not just the measured fiifence, bt also ~ 10garithmic scale mags sense. Similarlyve hae omit-

the relatve size of the main of error If the magin of ted axis labels in Figure 3, to @rattention to the data

error is smaller than the measuredatiénce, the results Values themsebs and ha the selection of Y alues

shaw a true diference; if the magin of error is lager ~ |€ads to dramatically dérently-shaped graphs.

than the measured téfence, the diérence may just be Even after applying common sense, selecting an

due to perimental errar appropriate representation for data is notagss triial.
Statistical analysis of results can be arcane. Ofteﬁd"‘@rd“ Tufte’s prime directie of gra"ph|cal representa-

the simplest and mostvealing thing to do is to plot the 0N is “abwe all else sho the data” [Tifte83]. There

measured data; if the data forms a normal or multi&® ™0 components to this: selecting an appropriate
modal distrilution, it will be clear from a graphical representation for the data and then using that represen-

* Be wary of graphing packages that will putyan
value you specify on an axis; this can lead to
meaningless scales on theeax

depiction. tation in aclear andeffective mannerEwvery graphical
element (e.g., a pie-chart, bar graph, line graph, scatter
7 Presentation of Results plot) encourages a particular interpretatioor Bxam-

Performing a goodx@eriment, collecting statisti- PI€: it is &r too common to see graphs such as that

cally sound data, and properly analyzing the results arg!@vn in Figure 4. In thisxample, the selection of a
three of the four important steps in conducting quantitalin® graph to represent three unrelated dataes leads
tive research; presenting the data in a coherent and illu1€ réader to beke that the y alue is some function of
trative manner is the final step. It is also, perhaps, th& A bar graph wuld be a better ay to present this
most important step, in that poorly presented data cafiata. Bble 5 lists some guidelines for the selection of an

result in misleading or misinterpreted results. appropriate graphical representation. _
Once a suitable representation has been selected, it

is important to display the data well. &g, we turn to

4. Methods for computing samplepectations can be found in - Tufte who encourages the maximization of data ink (ele-
ary probability textbook (e.g., Larsen and Marx [Larsen86]).

tions) as opposed to thfent colors or stipple patterns.
100 —_— Variations in shade are easily detected by yee and
provide a much wider range ofakiation with greater
simplicity [Tufte90].

Graph Type When To Use

line graph The datapoints represent a continuum of
values on the X axis and the ¥lues are

a function of the X alues. It is instructie
(and \alid) to interpolate thealues for
points that hae not beenxplicitly mea-
sured.

scatter plot | The interesting feature is the pattern or
clustering (or lack thereof) of the data.

bar graph Discrete alues are being presented.

100 ==] Comparison betweeralues is useful, i
——F-— -7 there is no constant relationship between
80} 4 the \alues presented.
pie chart The issue of interest is Wwosomething
60 | 1 decomposes into its constituent elements.
Table 5. Hints on Graph Selection. These are general
40 1 guidelines for selection of an appropriate representation of
data.
20t
01 e T e e e o 1w 8 PreviousWork
Figure 3. Misleading and Well-Labeled Y Axes. By The problems we discuss here are not limited to com-

limiting the Y axis to a narwe range of alues, there puter science systems research. Cohen performed a sur-
ap?ﬁafts tofbe a @egrﬁnference gettw‘?e“ rt1h'e ﬂt/ﬁati’:l sets vey of the 1990 AAAI conference [Cohen91], where he

In the top figure. € same data Iswhan the laver
with bettgr Ygaxis selection. The data setéediby only a found that 41% of systems-centered papers (papers that
small amount. discussed the betiar of a system that had beeuilh
described only a single illustraéi example of the sys-

tem, without applying the system toyawell-defined

10 r r r benchmark. His later book on empirical methods for
Artificial Intelligence research [Cohen95] includes
8t 1 information on &perimental design, statistical methods,
and lypothesis testing.
6| 1 Performing sound x@erimental systems research
requires a firm grounding in statisticwadable in ay
41 1 undegraduate statistics »xe [Walpole93, Larsen86].
“Back-of-the-ewelope” calculations [Bentyé4,
2t | Bentley86] provide a useful method for sanity checking
results. Presenting data in a clear arfieloi’e manner is
0 : : : equally important. Gifte’s books on information presen-
Oranges Apples Bananas tation [Tufte83, Tufte90] are widely rgarded as the pre-
Figure 4. Improper graph selection. In this eample, mier references on this topic.
the three data points represent three unrelaikbs that We found that manof the problems that arise in

are implicitly being compared. By representing this d¢ . .
as a line graph. we suggest that we are presenting y the analysis of computer systems data occunatue

function of x. tionary biology as well. \&found a kindred spirit in nat-
ments on the graph that depict the actual data) and t@l scientist Steen Jay Gould. His booksull House
minimization of chart ink (e.g., grid lines, labels, shad-(G0ud96], clearly and entertainingly discusseswho
ing) [Tufte83]. A second suggestion is to use the “mini_seemmgly reasonable statisticaj@ments ,can baf of
mum efective difference’. He suggests usingawying the mark. The book uses some of Gafdvorite exam-

shades of the same color (giia most systems publica- ples, including the disappearance of .400 hitting in

major league baseball. The idea that some disioibs File Systent, Proceedings of the Thirteenth SQSP
have an implicit “left wall” or “right wall” is clearly and Pacific Grore, CA, pp. 198-212, October 1991.
concisely gplained.
Obtaining accurate and quantitally useful data on [Bentley84] Bentlg, J., “The Back of the Blope;
a system is quite waluable. It allavs one to locate the Communications of theGM, 27, 3, pp. 180-184,
bottlenecks limiting performance and monitor system March 1984.
resources [Lucas71]. Monitoring requires an analysis of
vast amounts of statistics and data. In order to acconjBentley86] Bentle, J., “The Erelope is Back, Com-
plish this efectively, a rigorous eperimental procedure munications of the @M, 29 3, pp. 176-182, March
is required. 1986.
Rather than instrument separate benchmark pro-
grams, the system itself can be instrumented and contificohen91] Cohen,.P‘A Surwy of the Eighth National
uously monitored. The Multics operating system Conference on Artificial Intelligence: Pulling
[Saltzer70] vas an early>ample of a system thatas Together or Pulling Apart?Al Magazine 12,1, pp.
designed from the ground up for continuous monitoring 16—41, 1991.
and profiling, with the goal of gular analysis of the
data and feedback into the design and tuning of the syfcohen95] Cohen,.PEmpirical Methods for Atrtificial
tem. Intelligence MIT Press, Cambridge, MA, 1995.
We are not suggesting a radical change in systems
research. Our wrk here can be considered a fallon [Gould96] Gould, S. J.Full House Harmory Books,
to, and a reiteration of, k& and Redel analysis of New York, NY, pp. 36-37, 1996.
the 9th SOSP submissions {iie83], which ofered
guidelines for constructing a submission to SOS& [Larsen86] Larsen, R., Marx, MAn Introduction to
goal is to induce authors to concentrate on statistical Mathematics Statistics and Its Applicatioriaren-
rigor and repeatability ofxperiments. tice-Hall, Englevood Cliffs, NJ, 1983.

9 Summary [Levin88] Levin, R., Redell, D., An Evaluation of the
Computer Sciencghould live up to its name—it should Ninth SOSP Submissiofis,Opemating Systems
be a research science. This is especially true of com- Review, 17,3, pp. 35-40, July 1983.

puter systems research. Results of scientific research

must, by definition, include a description of theeri- [Lucas71] Lucas, Henry C., “Performancealtation
ments performed that is clear enough that others can and Monitoring, ACM Computing Suryes, 3 3, pp.
repeat the@eriments, and must perform Saient sta- 79-91, September 1971.

tistical analysis that the numbers reported are\mie.

Upon analyzing the proceedings of ten recent syspMcVoy96] Mc\oy, L., Staelin, C., “Imbench: Portable
tems conferences, we were dismayed at the lack of rigor Tools for Performance Analysi?roceedings of the
and comparability of the publishedovk. In this paper 1996 USENIX Confence San Digo, CA, pp. 279—
we hare outlined a suggested minimum set of require- 294, January 1996.
ments for systems research, and velidnat the research
produced by the communityould be greatly impned [OSDI94] Proceedings of theifst USENIX Symposium

by their adoption. on Opeating Systems Design and Implementation
(OSDI), Montergy, CA. USENIX Association, Ber-
10 References keley, CA, November 1994.

[ASPLOS92]Fifth International Confeznce on Achi-
tectural Support for Pogramming Languges and [OSDI96] Proceedings of the Second USENIX Sympo-

Opeiating System®oston, MA, October 1992. sium on Opaating Systems Design and Implementa-
tion (OSDI) Seattle, . USENIX Association,
[ASPLOS94]Sixth International Confence on Achi- Berkeley, CA, November 1996.

tectural Support for Pogramming Languges and
Opeiating Systems$an Jose, CA, October 1994. [Ousterhout90] Ousterhout, J., “WHren't Operating
Systems Gettingdster As Bst As Hardwre] Pro-
[Baker91] Baler, M., Hartman, J., Kpfer, M., Shirriff, ceedings of the 1990 Summer USENBthmical
K., Ousterhout, J., “Measurements of a Disttédal Confeence Anaheim, CA, pp. 247-256, June 1990.

[Saltzer70] Saltzerd., Gintell, J., “The Instrumentation
of Multics,” Communications of the ACM, 13, 8, pp.
495-500, August 1970.

[SOSP91]Proceedings of the Thirteenth ACM Sympo-
sium on Operating Systems Principles, Pacific
Grove, CA, October 1991.

[SOSP93]Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles, Asheville,
NC, December 1993.

[SOSP95]Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles, Copper
Mountain, CO, December 1993.

[Tufte83] Tufte, E., “The \sual Display of Quantitate
Information; Graphics Press, Cheshire, (IB83.

[Tufte90] Tufte, E., “Ewisioning Informatiori, Graph-
ics Press, Cheshire, CT990.

[USENIX94] Proceedings of the Summer 1994 USENIX
Conference, Boston, MA, June 1994.

[USENIX95] Proceedings of the 1995 USENI X Techni-
cal Conference, New Orleans, LA, January 1995.

[USENIX96] Proceedings of the 1996 USENI X Techni-
cal Conference, San Digo, CA, January 1996.

[Walpole93] Valpole, R., Myers, R.Probability and
Satistics for Engineers and Scientists, 5th ed., Mac-
millan Publishing Compan New York, New York,
1993.

[Weicker84] Weicker, R. P “Dhrystone: A Synthetic
Systems Programming BenchmarkZommunica-
tions of the ACM, 27, 10, pp. 1013-1030, Octoher
1984.

[Wittle93] Wittle, M., Keith, B. “LADDIS: The Nat
Generation in NFS File Seew Benchmarking,Pro-
ceedings of the Summer 1993 USENIX Conference,
Cincinnati, OH, pp. 111-128, June 1993.

11 Appendix

Test Type | Test Name OOfc_(lzg;trences Test Description
general spec 82 (7.1%) ary SPEC test
Imbench 26 (2.2%) ary of the Imbench test (fs, mem, net, sys)
ouster 4 (0.3%) ary of the Ousterhout benchmarks (fs, sys)
cpu dhrystone 8 (0.7%) dhrystone test
md5 0 (0.0%) computing md5 checksum
adhoc-cpu 41 (3.5%) ary other cpu measurement test
db (0]0) 8 (0.7%) 001 or OO7 benchmark
postgres 5 (0.4%) postgres or Sequoia 2000 benchmark
tpc 4 (0.3%) tp1, tpc-a, tpc-b, tpc-c, tpe-d
adhoc-db 18 (1.5%) ary database microbenchmark (join, checkpoint, read, write)
fs andrev 14 (1.2%) (modified) andrer benchmark
bonnie 4 (0.3%) bonnie fs benchmark
connect 1 (0.1%) Connectathon benchmark
laddis 10 (0.9%) laddis or nhfsstone
adhoc-fs 263 (22.6%) ary create, read, write, cgpfind
mem adhoc-bcop 3 (0.3%) ary bcopy test
adhoc-mem 59 (5.1%) cache miss, tlb miss, cpi, stajlates, num pageafilts, mem throughput
net netperf 5 (0.4%) the NetPerf tool
ttep 6 (0.5%) tcp throughput measurement tool
adhoc-rpc 15 (1.3%) ary ad hoc RPC measurement (null rpc, one byte, whgte
adhoc-packt 5 (0.4%) ary ad hoc pao#t filter test
adhoc-net 126 (10.8%) ary ad hoc neterk measurement (latepahroughput)
para dsm 15 (1.3%) ary subset of (FF,TSOR, TSPWater Barnes-Hut)
nas 8 (0.7%) NASA Ames parallel benchmark suite
splash 13 (1.1%) SPLASH suite (raytrace, ocean, etc.)
adhoc-para 118 (10.1%) ary ad hoc parallel benchmark (matrixént or multiply FFT)
sys appel 4 (0.3%) the Appel-Li VM benchmarks (usually hand-implemented)
dinero 2 (0.2%) dinero simulator run
kernel-luild 5 (0.4%) building a (well-specified) érnel
aim 2 (0.2%) AIM benchmark (simulation of multiple concurrent users)
smalltalk-macro | 1 (0.1%) the Smalltalk “macro” benchmark
webstone 0 (0.0%) SGI's webstone benchmark
adhoc-ipc 6 (0.5%) ary ad hoc ipc test
adhoc-syscall 11 (0.9%) ary ad hoc (null) system call
adhoc-http 2 (0.2%) ary ad hoc web seer test (other than gthstone)
adhoc-sys 269 (23.1%) ary ad hoc system performance test

Table 6. Tests: the benchmarks and tests, anevhmay times each a&s used in the 1163 reports of the 213 paperggeay

