
Observations on the Development of an Operating System

Hugh C. Lauer
Xerox Corporation

Palo Alto, California

The development of Pilot, an operating system for a personal
computer, is reviewed, including a brief history and some of the
problems and lessons encountered during this development. As part
of understanding how Pilot and other operating systems come about,
an hypothesis is presented that systems can be classified into five
kinds according to the style and direction of their development,
independent of their structure. A further hypothesis is presented that
systems such as Pilot, and many others in widespread use, take about
five to seven years to reach maturity, independent of the quality and
quantity of the talent anplied to their development. The pressures,
constraints, and problems of producing Pilot are discussed in the
context of these hypotheses.

Key words and phrases: Operating system, system development,
software engineering, Pilot, personal computer, system classification.

CR Categories: 4.35, 4.30.

This paper contains my personal observations about the
development of Pilot, an operating system for a personal computer
[Redell et all, compared and contrasted with some other operating
systems with which I have had contact. In these observations, I
concentrate not on the anatomy of these systems but rather on their
life cycles, particularly their formative years from conception to birth
to maturity. This is a somewhat unorthodox point of view in the
technical literature which abounds with papers on operating system
techniques and structures, software engineering tools and methods,
and general exhortations about the right and wrong ways to develop
systems. But it is a useful one, not only for the student of operating
systems and system development, but also for the managers or
sponsors of development projects who need some understanding
about why systems are so dramatically different from each other, why
some succeed and others fail, and what might expected from
development organizations.

In comparing Pilot with other operating systems, 1 have found it
useful to classify operating systems into five categories according to
how they came about, how successful they were, and their impact on
the computing community. This classification is one of the main
themes of this paper. It is interesting to observe that systems
classified as the second kind, including Pilot and many of the major
operating systems in widespread use, seem to take from five to seven
years to grow from birth to maturity. Furthermore, it seems that this
five to seven years is necessary, independent of the amount or
quality of the talent applied to an operating system development
project.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

The paper has four main parts. In the first two parts, I chronic,~
the development of Pilot and some of the data and problems
pertaining to it: this chronicle is presented not because it is new,
different, or novel, but because we rarely talk about these things in
the literature and there are lessons to be learned. In the third part. I
offer the classification and some comments on systems in each
category. In the final part, 1 make some observations about the five-
to-seven year rule, why it seems to be true. and what its
consequences are.

History of Pilot

We use the term 'Pilot" in three different ways, to mean an
operating system kernel, a major project and system, and a way of
life.

• As an operating system kernel, Pilot is the system described
in [Redell. et al]. It consists of approximately 25,000-50,000
lines of code (depending apcn how you count) in the Ivltsa
programming language [Mitchell et all and was developed
over four years by a group of four to eight people, many of
whom had other responsibilities at the same time.

• As a system development project, Pilot consists of
approximately 250,000 lines of Mesa code in about two
dozen major subsystems, including the operating system
kernel, CoPilot (the Mesa debugger), a common user
interface package and framework for building development
tools, various utilities and communications packages,
miqrocode for defining the Mesa architecture in several
processors, and other facilities. For historical and
organizational reasons, another 200,000 lines of code in
compilers, binders, Mesa utilites, librarian tools, change
request tools, etc.--much of which was Alto-based until early
1981--are not included in Pilot. Together, these two bodies
of software represent both the operating system to be
embedded in client application systems and the necessary
support to develop and test those applications.
Approximately 40 people have contributed to these systems
over five years.
As a way of life, Pilot defines a framework for thinking
about, designing, and implementing systems and for
communicating among subsystems within machines and
across networks. It is the operating system for the Mesa
machine architecture and hence part of a number of Xerox
products, the foundation for the Mesa development
environment, and a tool for supporting software research
through the Cedar system [Deutsch and Taft].

Most other operating systems suffer the same multiple uses of
their names. In this paper, I will use the term Pilot and any other
operating sytem in the second sense, to include all the supporting
software that makes the system usable. Note that Pilot is not
ordinarily visible to Xerox customers; it was primarily intended to be
embedded in products and to be used internally in the research and
development environments.

© 1981ACM0-89791-062-1-12/81-0030 $00.75

30

Although it has roots in earlier work on the Alto system [Sproull
and Lampson] and Mesa at the Xerox Palo Alto Research Center
(PARC), serious work on Pilot began in the System Development
Department (SDD) in early 1976. Most of the people who worked
on Pilot over the past five years had previous experience primarily in
the academic and research communities, and very few had ever built
any 'production' system, let alone an operating system, to commercial
pressures of schedule and budgets. We knew about the differences
between the big, ponderous, ungainly systems sold by some
computer manufacturers and the simple, elegant, lightweight systems
imagined in the research community, and we were determined to do
it right. This meant using a good, high-level language (Mesa),
assigning a fairly small group of knowledgeable people to the project,
carefully studying the lessons of others in the computer science
community and from the Alto environment at PARC, and designing
the hardware and software together. This ought to take two or
perhaps three years, after which the designers would be available to
work on advanced, Pilot-based applications for products, research,
and development. The following is a short chronicle of our actual
experience:

Jan. 1976: Architectural principles established: work began
on design of a machine architecture optimized for
Mesa. The Mesa machine extended the Alto
architecture in a number of ways, including
expansion of the basic machine address from 16
to 32 bits, stack-oriented operation, addition of
virtual memory, improved handling of I/O
devices, etc.

mid-1976: Mesa language and system becomes operational
on the Alto [Geschke et at].

Dec. 1976: Pilot Functional Specification (version 1) released
to clients. Unfortunately, the system specified in
this document looked a lot like a traditional
operating system and did not take account of the
characteristics of a personal computer, the role of
Mesa. or the (dimly perceived) needs of
distributed applications.

early 1977: Mesa process facilities [Lampson and Redell] and
Pilot file system redefined.

Sept. 1977: Pilot Functional Specification (version 2) released
to clients. This set the style of Pilot as it is today
and used the Mesa interface language as the
primary specification tool [Lauer and
Satterthwaite].

Sept. 77-Apr. 78: Design of Pilot kernel implementation.

Apr. 78--Oct. 78: Implementation of Pilot kernel and basic
communication facilities.

July 1978: First Dolphin processor delivered to Pilot group
(the Dolphin is one of three machines supported
by Pilot). This was microcoded to be compatible
with the Alto but with virtual memory: some
Mesa emulator functions were still coded in
BCPL and compiled into Alto machine language,

Oct. 1978: First release of Pilot to clients. This version
retained compatiblility with the Alto system in
many areas such as disk layout, boot file formats,
and Mesa instruction set, even though they were
not adequate for our long term needs. The
debugger was a modification of the Alto/Mesa
debugger and operated in Alto mode. Since a t
this time there was no established client base,
there was very little testing except from our own
test programs; consequently, this release was of
limited use.

Nov. 78-Dec. 79: Bootstrapped away from the Alto environment.
During this time, we eliminated remaining Alto
compatibility from Pilot, implemented the Mesa
architecture entirely in microcode, supported Pilot
disk and boot file formats, etc. CoPilot, the Pilot
debugger, became operational as the first major
Pilot client. This was a oarticularly painful
period for the implementors.

Dec. 1979: Second release of Pilot to clients. Note that at
this time, the Mesa compiler, binder, and other
facilities, as well as the program editors, were still
based on the Alto. The performance, reliability,
and usability of Pilot was grim; as each new
client tried it, a new set of disabling bugs was
uncovered. Among other things, we discovered
that Pilot could read or write the disk at the rate
of only one 256-word sector per revolution.

Mar. 1980: Third release of Pilot to clients. This was a
cleaned up version of the second release and the
first to appear in a product (the Xerox 5700
electronic printing system). We redesigned the
file system to solve the disk performance problem
and concentrated on the reliability issues with
respect to that specific client. Even so, the
application programmers had to resort to some
unnatural contortions to avoid problem areas in
the operating system.

May. 1980: First Dandelion processor available, but with no
disk or Ethernet (the Dandelion is the basis of all
Xerox 8000 series products).

July. 1980: The Pilot disk utility runs on the Dandelion (with
a simulated Ethernet).

OcL 1980: Fourth release of Pilot to clients. The primary
emphasis of this release was to provide the
function necessary to support Xerox 8000 series
products, the Mesa development environment,
and the Cedar project at PARC. Unfortunately,
Pilot by this time had become too large and too
slow to do any of these very well.

Dec. 1980: Pilot runs on the Dorado processor at PARC (the
Dorado is a very high speed, single-user system
for the research environment [Dorado]).

Feb. 1981: First Xerox 8000 network system, including Pilot,
delivered to a customer.

Apr. 1981: Fifth release of Pilot to clients. The emphasis of
this release was to improve the performance and
reliability and to reduce the working set size of
the system to acceptable levels within the memory
available on the various processors. The first
version of the Pilot-based Mesa development
environment (i.e., compiler, binder, editor,
utilities, etc.) was made available to friendly
clients.

In April 1981, we received a letter from our most demanding
clients in PAR~ indicating that with the fifth release, Pilot had
become the system of choice (on processors that were capable of
running either Pilot or Alto software). After five years, Pilot had
,:ome of age.

During this whole time, we always had the support of the
corporation, even during the hard years when we 'should have' had a
nicely running system. Of course, it was necessary to regularly show
progress, which we did partly by demonstrating some early but
limited applications (to show that Pilot actual worked) and partly by
demonstrating Alto-based prototypes of some advanced applications
(to show the feasibility of the kinds of things we were aiming for).
We also had to fend off the usual kinds of pressures from other parts
of the corporation--for example, that we use a commercially
available language (e.g., Pascal) rather than Mesa or that we purchase
OEM computers rather than design our own architecture.

Selected problems and lessons

In this section, I will recount a few of the problems we
encountered and lessons we learned during the development. Most
of these we should have avoided, and afterwards there were plenty of
people to say they told us so (none of whom had any responsibility
for actually releasing the system, of course). Nevertheless, these
problems and lessons happened anyway.

3]

Sizes of the system. Table I shows some statistics for the five
releases of Pilot. Included are the sizes of the Pilot kernel and of the
entire system in terms of lines of Mesa code, bytes of object code,
and numbers of modules. From the table it can he seen that the
Pilot kernel dominated the first release, but by the fifth release it
represented barely more than twenty percent of the system. The
growth of the total system is accounted for partly by new
development and partly by absorbing and converting code which was
orginally developed for other systems. Other development, in which
major subsystems were completely rewritten or replaced, is not
apparent in this kind of summary table, but represents a non-trivial
portion of the work that went into all but the first release.

When we began work on Pilot, none of us imagined that we
would be developing and managing a system so large, Yet in
retrospect this was probably inevitable, given that it was intended to
support several major products plus all of our software development,
some research, and a number of specialized applications. As we look
to the future, it is not clear whether the sizes of either the kernel or
the system will stabilize soon or whether they will continue to grow
as we respond to new or different needs from our clients.

Working Set sizes. Table 1 also shows the size of the working set of
the Pilot kernel when supporting 'typical' applications--i.e., the
amount of real memory required to hold the virtual memory actively
needed by Pilot without thrashing. A working set size is inferred by
first artificially restricting the amount of real memory available on
the machine and then timing a selected benchmark with a stopwatch.
This is repeated for various memory sizes and the results plotted.
The total system working set for that benchmark is defined to be at
the knee of the curve and can be determined accurately within 1%.
Then another experiment is run by setting the real memory size to
the working set size, executing the benchmark again (most
be~.chmarks take a few ~econds), and takiLg a memory dump. With
some detective work, it is possible to attribute specific pages swapped
into real memory to the Pilot kernel, common software and other
packages, and the application. This whole exercise is repeated for
various benchmarks and for each release of Pilot (and also for each
release of critical applications on a given version of Pilot).

An unexpected result was that the content of the working set of
the Pilot kernel (i.e., the actual pages swapped in) is nearly constant
across all benchmarks. We were also surprised that by April 1980,
Pilot exceeded its share of the real memory of our product
configurations by nearly a factor of two. In retrospect, of course,
we should not have been surprised. Although the requirement for a
small working set was in the front of our minds, we had no feedback
or reinforcement to achieve it, even at the expense of some features
or function. In this sense, the developers suffered from the
availability of a good virtual memory system. It is too easy to add
more memory to their machines in order to meet critical schedules,
even if business reasons precluded such memory in the products.
The result was a year of hard work to bring the Pilot memory
requirement down to a reasonable level, at some cost in the overall
schedule. (An Alto programmer, by contrast, is forced to make his
applications fit into a non-expandable real memory and address
space because he cannot proceed with his own work until they do.)

Unfortunately, similar pressures affect many of our clients, and some
are caught by the convenience of virtual memory the way we were.

Programmer Productivity. None of the ways that we know of for
measuring the productivity of our developers is very statisfying, We
do, of course, measure whether or not a release is on time, how
many trouble reports are submitted against it, how big it is, etc. But
none of these tell us how good the system is. We also have, on
occasion, tried to make one traditional measurement of programmer
productivity, namely the number of lines of code produced per work-
year. There are two types of problems with this measurement, an
obvious one and a subtle one. The obvious one is deciding which
people and what time to count, so that an effective comparison might
be made among organizations and/or programming environments
(companies such as Xerox are always interested in such comparisons,
even if individual development groups are not). There is also the
question of how to count the lines of code, especially when someone
is reorganizing or making major modifications to existing modules.

The subtle problem is illustrated by the following observation: in
my organization, a group of four or five developers, including a
project leader, can specify, design, implement, test, and release a
complete system or subsystem of approximately 25,000 lines of Mesa
code in twelve months. This includes vacations and holidays and
time to attend conferences and seminars, to write professional papers
or continue education, to get and train some users or clients to test
the system, and to be generally effective members of the
organization. In most cases, t f the same people had twice as much
t#ne, they couM produce as good a systen7 in, perhaps, half that
amount of code--i.e., the extra year yields negative productivity.
Thus, one of the conflicts that we have to manage constantly is that
between the need to get a system done and working satisfactorily and
the desire to make it smaller, faster, easier to use, etc.

Holy wars. In the early days of Pilot development, we got bogged
down in a uumber of Icasic questions of operating system design and
spent a lot of time, energy, and emotions before resolving them.
One of these concerned the model of processes and synchronization
and whether we should have a facility based on procedures and
monitors or a facility based on messages. Each side was firmly
entrenched and unable to accept the position of the other; not until
we developed the duality hypothesis presented in [Lauer and
Need_ham] were we able to resolve the issue and implement the
scheme described in [Lampson and Redell], Even afterward, our
organization bore serious scars from this debate.

Another basic question concerned the kind of access to the file
system that Pilot would provide. One alternative was a simple read-
write facility with which client programs transfer pages directly
between virtual memory and files. The other alternative was a
'mapping' facility, whereby a portion of the file is made the backing
store for a portion of virtual memory (for example, as in MULTICS
[Bensoussan et a/]). While dais question did not inflame emotions
the way the process question did, the proponents of each view felt
that the two models were incompatible with each other. Pilot chose
the mapping approach, providing a convenience for some but causing
headaches for others, particularly those who were trying to convert

Release I

TABLE I - - SIZES OF PILOT RELEASES

II III IV V

Date Oct 78
Contributors* ~ 20

Pilot Kernel:
lines 24K
codebytes 89K
modules 88
interfaces 93

Pilot System:
lines 48K
codebytes 211K
modules 390

Working Sets unknown
(256-word pages)

Dec 79 Mar 80
-27 -27

30K 33K
l l l K l l 0K
102 114
132 146

129K 125K
508K 508K
420 unknown

unknown ~320

Most contributors had responsibility for other, non-Pilot software at the same time.

Oct 80 Apr 81
-35 -35

44K 53K
152K 162K
123 135
183 204

171K 249K
754K 1025K
530 710

~260 -190

32

programs from other systems based on the read-write model.
Subsequently, the perception grew that perhaps the two approaches
are duals of each other, and that a client program structured for one
approach might have a natural counter'part of similar performance
and complexity for the other approach. However, we never found a
duality transformation to support this view. Finally, we realized that
neither model excludes the other. In particular, code files and
certain data files of limited size are better supported by the mapping
model--the swapping characteristics are understood and address
space management in virtual memory is more convenient than
explicit reading and writing. Large data files with known, high
performance access requirements, on the other hand. are better
served by the read-write approach--these files are oRen larger than
the virtual address space, and the complexity and overhead of buffer
management is worthwhile to achieve the desired performance. Pilot
now supports both approaches with consistent interfaces.

Files and transactions. When the Pilot file system was being
designed, the question naturally arose about whether or not it should
include a transaction facility for crash recovery and atomic updating
of files. We did not include one because ou; experience was limited
and we were only just beginning to see results from research in this
area at PAP,¢. However, we did provide enough facilities so that a
client could build a specialized transaction mechanism on top of the
Pilot kernel. Someone built such a facility and also undertook an
evangelical mission to persuade people that it offered the solution to
all file reliability and recovery problems. As a consequence, several
of our major clients came to depend upon the transaction concept,
even in cases where it is not appropriate.

'Naturally, a transaction facility built on top of Pilot could not
have as high performance as one integral with it, and in this case, its
interfaces were of a substantially different style than those of Pilot
itself. It was also extremely unreliable. Thus we were forced to do a
quick implementation of a new transaction facility as part of, and
consistent with, the Pilot kernel This has significantly better
performance and is reliable in spite of known bugs; client programs
that depended on the previous facility became simpler with the new
one. However, the performance is still not good enough for high
intensity activities such as data base accesses and updates. At the
same time, some of the clients began to realize that even the best
transaction facility would offer inappropriate performance for their
applications and that their failure modes did not require this
generality. For example, in the user level directory facility for the
Xerox 8000 series products, it is much better to accept that crashes
can occasionally occur in the middle of updates and to rely on a
scavenger to restore things from the natural redundancy in the file
system.

It is not clear what the future of transactions in Pilot will be, but
since we currently satisfy no one in this area, it is likely that the
facility will change substantially again.

Virtual memory implementation. In designing the Pilot virtual
memory facilities, we recognized the client program would want to
manage the address space, map files to pieces of virtual memory, and
control (or influence) the swapping between real memory and the
backing file. We began with three different interfaces and concepts,
but quickly unified them into the single concept of the space. The
Pilot space is the unit of allocation, mapping, and swapping; spaces
can be declared within other spaces, so that the set of all spaces
forms a hierarchy according to the containment relation. This was a
remarkably simple generalization, but it was hard to implement and
is not used by clients. Clients have evoh, ed a style in which almost
all mapped spaces are subspaces of the primordial space (all of
virtual memory) and only a few of these are further partitioned into
subspaces for swapping control. The implementation requires such
large data structures for each space that they have to be swappable,
and only the very active items are cached in real memory. In the
end, several caches were needed and a lot of resident code was
written to manage them.

An assumption of the virtual memory implementation is that
disk accesses are expensive. Thus, we set up a lot of queues and
expected a lot of multiprogramming to overlap computing with disk
operation. In fact, disk accesses are cheap on both the Dandelion
and Dolphin configurations. If no arm movement is required (this
appears to be true most of the time), the computation required to
field a page fault, locate the disk address, set up a disk command,
receive the disk interrupt, and dispatch the faulted process takes
about the same time as the average latency to read a sector. We
found that the system could not accept back-to-back requests for
adjacent sectors and read them on the same revolution, and thus we

had to rewrite the file system to submit single disk requests for runs
of pages whenever it could. Even so, it would almost be cheaper to
treat the disk as a synchronous device and simply wait until each
operation completes without trying to do anything else.

In view of this experience, we are currently reexamining the
basic design of the Pilot kernel virtual memory system and will
probably make major revisions in both the strategy and the
implementation.

Pipes, filters, and streams. One of the strong features of the UNIX
system [Ritchie and Thompson] is the uniform facility for input and
output which allows separate programs to be connected together by
'pipes.' The UNIx programmer's toolkit includes a large number of
simple programs (called 'filters') which perform simple
transfonna:ions o~ str~'amf of data, and it is commor practice :o
concatenate a number of these together for a desired result. We
thought that Pilot should have a similar facility but consistent with
and implementable in Mesa, and so we designed Pilot streams (see
[Redell et all for an overview).

Unfortunately, although the Pilot stream facility works
satisfactorily, it was not very well received and is not widely used by
us or by our clients. One reason probably lies in the Mesa model of
program modularity. The type-safety and interface language of Mesa
make it convenient to design programs with clearly specified
procedural interfaces and bind them together with a little bit of
control code for a desired result. Thus the Mesa programmer's
toolkit consists of a large number of modules of varying complexity
and different kinds of control structures. For example, a module
which produces a sequence of objects of some abstract type will
export a procedure for its clients to access these one at a time. This
can be easily bound to another module that expects to get objects of
that type, and it is often more flexible than parsing a stream of
characters. Thus, Pilot streams are used almost exclusively at the
interface with terminals and other systems over industry standard
communication lines and protocols. Procedural interfaces are
preferred, both within Pilot-based programs and between system
elements over the Ethernet.

Comparing Pilot ~vith other operating systems

From the success of the April 1981 release, it is evident that Pilot
will take its place among the ranks of mature, evolving operating
systems and have a useful life long after its original designers have
moved on to other pursuits. However, it did not happen as planned
and its development was very different from that of the Alto system.
In reflecting upon this. I found it useful to enumerate some of the
other operating systems I have known, either from direct contact or
from study of the literature or from contact with others. These
systems seem to fall into five categories, which I shall first enumerate
and then describe.

1. The Alto system. UNIx,
2. IBM's OS/360, MULTICS, Pilot, etc.
3. MTS (the Michigan Terminal System), TEXEX, CP-67
4. CAL-TSS, Project SUE, HYDRA, etc.
5. DOS/360, RS-11, etc.

These categories are the result of my personal observations, not of a
systematic study, and hence many systems are not listed because I
don't know enough about them to classify them. The ordering of
the categories is not significant. An important part of the
classification is the maturity or success of a system--i.e., acceptance
by its clients as a useful, economic tool for helping to get work done,
for "supporting applications, or for fulfilling other goals. A
characteristic of a successful system is that it is accepted by a non-
trivial community of users outside its developing organization as a
matter of choice and that this community contributes, directly or
indirectly, to its further development and growth.

Systems of the first kind. These are everyone's favourite systems.
They are successful by our measure and by most other measures
(sometimes too successful for their developers). Tl'.ey beg~n life as
small, simple, unambitious systems meant to serve only their authors
and perhaps their immediate colleagues. They have limited
requirements, usually in the research area. But their excellence and
simplicity attract others who are willing to contribute to the further
development, additional features, or maintenance responsiblities in
exchange for being able to use such systems in their own work.
They become successful partly because potential users find it simple
and easy to adapt them when needed facilities are missing or ill-

33

conceived. Systems of the first kind rarely evolve according to any
coherent plan agreed to between the implementors and clients, but
rather by the willingness to contribute facilities and features as
needed. Thus it is not surprising that these systems sometimes
appear a little haphazard.

Systems of the second kind. These the planned systems. They are
cut "from whole cloth," designed and implemented as major projects,
directed toward objectives defined by negotiation, often (but not
always) aimed at new architectures, meant to satisfy major clients.
and built according to schedules and budget constraints imposed for
business, contract, or other external reasons.

Some. but not all, of the major operating systems sold by
computer manufacturers fall into this category. For example, IBM's
OS/360 was conceived as a whole system to satisfy a new, broad
marketplace and to incorporate many of the technological
achievements of the previous five years, and thus it is a system of the
second kind. So is MULTICS, which was built primarily at MIT as a
'real' system based on the previous experimental system CTSS. Pilot
is a system of the second kind: it was conceived as a successor to the
Alto system and intended to support a range of product,
development, and research applications within Xerox over a specified
number of years on a new machine architecture.

Not all systems of the second kind are successes. Some notable
failures include IBM's TSS/360, the Berkeley Computer Corporation
system [Lampson], and the Elliot 503 Mark II system [Hoare]. Each
of these was conceived as a major system and a fairly ambitious
project, but none survived the patience of its sponsors or clients to
reach maturity.

Systems of the third kind. These systems borrow much of their
supporting software from an existing system but represent a
fundamental change in the way of life. The Michigan Terminal
System, for example, provides a paging, terminal-oriented, time-
sharing system especially suited for university use on the IBM 360/67
and IBM 370 systems, Most of its compilers, run-time support,
subroutine libraries, program development tools, etc., were taken and
converted directly from OS/360, but its operating system kernel is
dramatically different from OS/360 and it supports new applications
that OS/360 never could. (Of course, there are also many OS/360
applications that MTS cannot support.) The obvious motiviation for
building a system of this kind is to avoid the time and expense of
designing, implementing, and maintaining all new supporting
software for the operating system when it is desired only to
implement an operating system kernel and some basic functions.

Systems of the fourth kind. While the population of systems of the
first three kinds is relatively small, there are many systems, of the
eourth kind. They make major contributions to the art ~nd science
of operating systems but either never reach maturity or never gain
acceptance outside the developing organization. For many of them,
there is never any serious intent to promote them for widespread use,
to support a variety of applications, or to be 'complete.' They are
primarily laboratory exercises to support research and to teach about
operating system structures, or to support other laboratory work.
Note that systems of the first kind begin life as systems of the fourth
kind but suffer the calamity of success.

Systems of the fifth kind. Finally, the world is full of small,
uninteresting systems which do little to enhance the machines they
support and which contribute little to the technology or have little
impact on the computing community. These systems come in all
sizes, shapes, colors, and prices, and I have nothing interesting to say
about them.

This taxonomy is helpful in comparing like with like when we
talk about operating systems in a context of which work and which
do not. For example, it does not make sense to berate the excessive
generality of OS/360, which did succeed, in comparison with the
more limited objectives and elegant structures of, say, CAL-TSS or
Project StE, both of which failed to become generally usable. It was
observed in [kampson and Sturgis] that there is much more work
involved in making an operating system usable by general
programmers than just providing a nice kei'nel. Similarly, when we
ask why the Pilot development was so different from that of the Alto
system, it is important to bear in mind the fundamental difference in
objectives and ground rules for the two systems. The following were
explicitly not objectives of the Alto system:

"This system must satisfy the corporate needs for the next
10-15 years in specific areas."

"A (nearly) complete list and specification of the functions
and facilities required of the system over the next five years
must he provided before design starts."

"This system must incorporate all of the wonderful lessons
of operating system technology from the past five years."

"This system is expected to have more than one hundred
users or to be installed in more than one hundred
locations.'"

These or similar objectives did apply, however, to Pilot and to
most other systems of the second kind. The developers of the Alto
system are chagrined to find that they now have to spend
considerable time and energy supporting a system which has several
thousand users and supports a wide variety of corporate needs. By
contrast, in the Pilot development, we were chagrined to discover
thai in striving to meet these objectives or our schedule, we often
found ourselves unable to apply what we felt was the best technical
solution to a problem.

The five-to-seven-year rule

The above classification identifies operating systems in terms of
how they were developed and their impact. It separates systems of
the second kind, which are willed into existence and operation, from
those of the first, third, and fourth kinds, which evolve in a less
deliberate manner or as part of some other research or project.
While I have no recipe for producing successful systems of the latter
kinds, I can offer an hypothesis which, if true, will be useful to
anyone setting out to build a system of the second kind: it takes
from five to seven)'ears for a system of the second kind to grow from
birth to maturity, For example, in the systems I enumerated above:

OS/360 was begun in 1963-1964, Despite early availability
and vigourous promotion by its manufacturer, it was not
until 1968-1969 that it really gained wide acceptance by its
users as a valuable, economic tool.

MLLTICS development began in about 1965. After an
initial flurry of publications about the system, its design,
and its goals, the outside world heard very little from
Mt:LTICS-land until the early 1970's, when it started to
acquire a following outside MIT and was subsequently
adopted by Honeywell, the manufacturer of MULTICS
hardware.

The first five years of the life of Pilot were chronicled
above. Although the previous skepticism by its users is now
changing to enthusiasm, there is still much to be done
before Pilot fulfills their expectations.

It also appears that it takes from five to seven years for other
operating systems produced by major manufacturers or as major
system projects to mature. Let us consider what happens during
those years.

First, there is the period of planning and design. This is a time
of exceptional optimism, of desire to incorporate the past successes
and avoid past mistakes, of a determination to 'do it right.' In the
Pilot project, for example, an attitude that prevailed was "'the Alto
system demonstrated a lot about personal computing: now let's build
one for real, to support the company's business. And incidentally,
we should build it in Mesa, and build it with virtual memory, and
re-engineer the Ethernet, and unify the protocols, improve the file
system, etc., etc., etc."

Next comes the initial implementation and first release. There
are no operational client programs against which to validate it, so it
gets little testing. Anyway. some of the promised function was
deferred in the interests of meeting the delivery schedule.

Then comes a period of trying to make the system work at all.
Those first hardy users have had to pick their way through
minefields of bugs and problems, and some may have become
discouraged and turned to other alternatives. However, through
perseverance, the problems are solved one by one, and eventually the
system seems to work passably, at least for its few active users.

But now it is important to make it work well. It is too slow or
too big; it supports too few users/clients; or it fails to match the
performance of. its predecessors. Promised enhancements and/or
deferred functions are abandoned and development is concentrated

34

on very simple matters. During these two phases, client or user
participation is essential, although painful. Without the appropriate
feedback from others who are trying to use the system tbr non-trivial
reasons (other than its own development), the implementors do not
have enough information to guide their work and identify problems
in performance, style, or function.

Finally, if the sponsor has not lost patience, there is a period of
eyolving expectations about the new system. Clients realize that it is
not the same as a previous one and that their old models of
performance, behaviour, and usage need to be modified to take
advantage of the new facilities and the new constraints. Some
functions or facilities of the new system may never work as well or
as fast as the corresponding ones of the old, and programs converted
from the old may appear sluggish in the new environment. This is
the beginning of the period of 'community involvement' with the
operating system, during which clients learn how to live within the
framework defined by that system and how to contribute to its
further success and growth.

The five-to-seven-year rule for systems of the second kind is a
strong generalization from weak evidence. I know of no analysis
which might lead to it as a conclusion. I would even like to see it
disproved (and to learn how to disprove it at will). Nevertheless,
from my own experience and from observations of the experience of
others, it seems to be true. at least most of the time. It seems to
apply both to the professional system designers and programmers
who populate the industry and to the elite corps of computer
scientists from the academic/research community. Even people with
impressive credentials fail in their attempts to build systems in less
time, and very few succeed. We believed from the beginning that
we could do better in the development of Pilot.

Both in casual conversations and detailed analyses of the
successes and failures of systems of the second kind, the same terms
keep recurring: that the systems are "too ambitious" and/or "too
general." Hoare used these terms in his Turing Lecture [Hoare]. I
can remember as a graduate student that my colleagues and I would
sneer at the manufacturer-supplied operating systems (IBM's OS/360,
Univac's Exec VIII, Burroughs' MCP, and all the rest) in exactly the
same terms. In almost any cocktail conversation about a system in
trouble or one which the users find unsatisfactory, criticism is
focused on the generality or amibitousness of the project goals. In
my discussions with the original implementors of the kernel of the
Alto system, the same terms were used again: "if only we had set
more limited goals for Pilot by concentrating on, say, real memory
requirements rather than on features, we would have produced a
nice, well-performing system in two or three years, just the way they
did." However, that begs the question: we did concentrate on real
memory, usage, execution speed, simple structure, and all of the other
things that are important in making a successful design. We made
task lists of things to do, problems to solve, features to support; we
assigned priorities and worked on first things first; we parried
reqt~ests for yet more features or complexity; we ignored
unreasonable constraints imposed externally and let our computer
science wisdom prevail. It still took us five years, and our critics at
the time still worried about the grandiosity of our system.

I suspect that there is something about the ground rules of
projects like Pilot, the Berkeley Computer Corporation system,
MULTICS, and other systems of the second kind that makes it
difficult or impossible to plan or carry out projects the way we do
for systems of the other kinds. (Note that by definition, systems of
the other kinds cannot be too ambitious or general: either they
succeed on their merits, meaning that they have exactly the right
blend of generality and simplicity, or they were never meant to fulfill
the kinds of goals that a system of the second kind is.) Part of it is,
no doubt, in the way that projects are sponsored. Systems of the
first, third, and fourth kinds are usually financed as part of some
other project or research.

But systems of the second kind are investments. As such they
are subject to the kinds of review of planning, budgeting, scheduling,
and scrutiny that the sponsor needs to confirm continuing support
(neither the Alto system, MTS, or HYDRA, for example, were ever
subject to this kind of review). Furthermore, investments in system
development are still so risky these days that most sponsors would
rather purchase a satisfactory system, if available, than build one.

Thus, by definition, the new system has to be more ambitious and/or
more general than its predecessors. If it is necessary to finance a
new system, then the sponsors and/or their clients feel entitled to
some voice in the facilities, features, style, character, or other
attributes of the system. I.e., the system designers do not get to go
off alone to build the system of their dreams, and the five-to-seven-
year rule prevails.

Summary

I have been a member of the Pilot project since early 1977 and
have managed it in its later years. Coming from an academic and
research background, I have been somewhat surprised at what it has
been possible for us to do and also at what we have not been able to
do. I think it is important for people to write about these things
occasionally because we too often concentrate on the objects we are
creating and not enough on the process of creating them. The world
of programming methodology and structured programming is
devoted to helping us achieve perfection in the systems we
design--an important goal but somewhat at odds with the need to
get something done. Pilot had to be delivered and work well
enough, despite the fact that we never had time to make it perfect or
even as small and as simple as we would have liked. It is helpful to
treat the major system as an organism itself, with a life cycle and a
personality and characteristics derived from the organizations that
build, use, and sponsor it. The successful ones usually outlive the
interests and participation of their implementors, and they captivate
or even dominate the professional lives and interests of many other
people.

I have believed in the five-to-seven-year rule for at least a
decade and have not found much evidence against it, Yet this is not
proper science, so I challenge graduate students and researchers in
the operating system field to conduct systematic studies about how
systems are conceived and born and which ones grow, mature, and
lead productive.lives. This would be a study partly of technology
but partly of the sociology and dynamics of system development, and
it would teach us how to build better, simpler, less ambitious systems
more predictably.

The classification of operating systems into five kmos came about
as I tried to compare Pilot with other systems and see where the five-
to-seven-year rule applied and where it did not. There is definitely a
qualitative difference between the kind of development we carried
out and the kind that I have watched or been associated with in
universities and research laboratories. Thus it is not surprising that
there is a difference in character between the kinds of systems that
emerge from these activities, I do not know whether this
classification is 'right.' so again I challenge research students to
explore the field of operating systems from this point of view,
making systematic studies to help us understand how we do better at
building them.

Finally. a word of advice to designers, implementors, sponsors,
and users: if you are involved with a new, challenging system
planned and cut out of whole cloth and meant as a service, not as an
experiment, but intended to stretch our horizons and
expectations--i.e., a system of the second kind--then have patience.
I have not yet seen anyone who has been able to build one as
quickly and as well as he thought he could.

Acknowledgements

Approximately forty people in Xerox System Development
Department have made contributions to Pilot, all of them valuable.
In addition, we gained great benefit from close location to and many
conversations with our colleagues at PARC. The number of people
deserving acknowledgement is far too great to list here. However, I
wish to specially acknowledge Dr. David E. Liddle, who created and
sustained SDD and the Pilot project as part of it.

35

References

[Belady and Lehman]
Belady, L. A,, and Lehman, M. M., 'A model of large program
development,' IBM Syston Journal, no. 3, 1976.

[Bensoussan eta/]
Bensoussan, A., Clingen, C. T., and Daley, R. C., 'The MLLTICS
Virtual Memory: Concepts and Design,' Communications of the
ACM, vol 15, no 5, May 1972, pp 308-318.

[Deutsch and Taft]
Deutsch, L. P. and Taft, E. A., 'Requirements for an
Experimental Programming Environment,' report # CSL-80-10,
Xerox Corporation, Palo Alto Research Center, Palo Alto, 1980.

[Dorado]
The Dorado: A High-performance Personal Computer, Three
Papers. Technical Report CSL-81-1, Xerox Palo Alto Research
Center, Palo Alto, California, January 1981.

[Gescbke et alJ
Geschke, C. M., Morris, J. H., and Satterthwaite, E. H., 'Early
Experience with Mesa.' Communications of the ACM, vol. 20, no,
8, August 1977

[Hoare]
Hoare, C. A. R., 'The Emperor's Old Clothes,' (1980 ACM
Turing Award Lecture), Communications of the ACM, vol. 24,
no. 2, February 1981.

[Lampson]
Lampson, B. W., 'Dynamic protection structures,' Proceedings of
the AFIPS Fall Joint Computer Conference. 1969, pp 27-38.
(Note: The Berkeley Computer Corpoi'ation was a widely
publicized venture by a number of respected computer scientists
to build a major time-sharing system and utility in 1968-1970. I
can find no references to it in the literature except this one,
which is mostly about the operating system structure.)

[Lampson and Redell]
kampson. B. W. and Redell, D. D.. 'Experience with Processes
and Monitors in Mesa," Communications of the ACM, vol. 23, no.
2, February 1980.

[Lampson and Sturgis]
Lampson. B. W. and Sturgis, H. E., 'Reflections on an Operating
System .Design." Communications of the ACM, vol. 19, no. 5,
May 1976.

[Lauer and Needham]
Lauer. H.C. and Needham, R.M.. 'On the Duality of
Operating System Structures,' Proc. Second International
Symposium on Operating Systems, IRIA, Oct. 1978, reprinted in
Operating Systems Review. vol. 13, no 2, April 1979, pp 3-19.

[Lauer and Satterthwaite]
Lauer, H. C. and Satterthwaite, E. H., 'Impact of Mesa on
System Design,' Proceedings of Fourth International Conference
on Software Engineering, Munich, September 1979, pp 174-182.

[Mitchell et all
Mitchell. J. G., Maybury, W. and Sweet, R., Mesa Language
Manual report # CSL-79-3, Xerox Corporation, Palo Alto
Research Center, Palo Alto, California, 1979.

[Redell et all
Redell, D.D., Dalal, Y. K., Horsley, T.R., Lauer. H.C.,
Lynch, W. C. McJones, P. R., Murray, H. G,, Purcell, S. C.,
'Pilot: An Operating System for a Personal Computer,'
Communications of the ACM, vol. 23, no. 2, February 1980.

[Ritchie and Thompson]
Ritchie, D. M. and Thompson, K., 'The UNIX Time-Sharing
System,' Communications of the ACM, vol. 17, no. 7, July 1974.

[Sproull and Lampson]
Sproull, R. F. and Lampson, B. W., 'An open operating system
for a single-user machine,' Proceeding of the Seventh Symposium
on Operat:ng System Principles, Asilomar, December 1979.

36

