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The development of Pilot, an operating system for a personal 
computer, is reviewed, including a brief history and some of the 
problems and lessons encountered during this development. As part  
of understanding how Pilot and other operating systems come about, 
an hypothesis is presented that systems can be classified into five 
kinds according to the style and direction of their development, 
independent of their structure. A further hypothesis is presented that 
systems such as Pilot, and many others in widespread use, take about 
five to seven years to reach maturity, independent of the quality and 
quantity of the talent anplied to their development. The pressures, 
constraints, and problems of producing Pilot are discussed in the 
context of these hypotheses. 
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This paper contains my personal observations about the 
development of Pilot, an operating system for a personal computer 
[Redell et all, compared and contrasted with some other operating 
systems with which I have had contact. In these observations, I 
concentrate not on the anatomy of these systems but rather on their 
life cycles, particularly their formative years from conception to birth 
to maturity. This is a somewhat unorthodox point of view in the 
technical literature which abounds with papers on operating system 
techniques and structures, software engineering tools and methods, 
and general exhortations about the right and wrong ways to develop 
systems. But it is a useful one, not only for the student of operating 
systems and system development, but also for the managers or 
sponsors of development projects who need some understanding 
about why systems are so dramatically different from each other, why 
some succeed and others fail, and what might expected from 
development organizations. 

In comparing Pilot with other operating systems, 1 have found it 
useful to classify operating systems into five categories according to 
how they came about, how successful they were, and their impact on 
the computing community. This classification is one of the main 
themes of this paper. It is interesting to observe that systems 
classified as the second kind, including Pilot and many of the major 
operating systems in widespread use, seem to take from five to seven 
years to grow from birth to maturity. Furthermore, it seems that this 
five to seven years is necessary, independent of  the amount or 
quality of the talent applied to an operating system development 
project. 
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The paper has four main parts. In the first two parts, I chronic,~ 
the development of  Pilot and some of the data and problems 
pertaining to it: this chronicle is presented not because it is new, 
different, or novel, but because we rarely talk about these things in 
the literature and there are lessons to be learned. In the third part. I 
offer the classification and some comments on systems in each 
category. In the final part, 1 make some observations about the five- 
to-seven year rule, why it seems to be true. and what its 
consequences are. 

History of Pilot 

We use the term 'Pilot" in three different ways, to mean an 
operating system kernel, a major project and system, and a way of 
life. 

• As an operating system kernel, Pilot is the system described 
in [Redell. et al]. It consists of approximately 25,000-50,000 
lines of code (depending apcn how you count) in the Ivltsa 
programming language [Mitchell et all and was developed 
over four years by a group of four to eight people, many of 
whom had other responsibilities at the same time. 

• As a system development project, Pilot consists of 
approximately 250,000 lines of Mesa code in about two 
dozen major subsystems, including the operating system 
kernel, CoPilot (the Mesa debugger), a common user 
interface package and framework for building development 
tools, various utilities and communications packages, 
miqrocode for defining the Mesa architecture in several 
processors, and other facilities. For historical and 
organizational reasons, another 200,000 lines of  code in 
compilers, binders, Mesa utilites, librarian tools, change 
request tools, etc.--much of which was Alto-based until early 
1981--are not included in Pilot. Together, these two bodies 
of  software represent both the operating system to be 
embedded in client application systems and the necessary 
support to develop and test those applications. 
Approximately 40 people have contributed to these systems 
over five years. 
As a way of life, Pilot defines a framework for thinking 
about, designing, and implementing systems and for 
communicating among subsystems within machines and 
across networks. It is the operating system for the Mesa 
machine architecture and hence part of a number of  Xerox 
products, the foundation for the Mesa development 
environment, and a tool for supporting software research 
through the Cedar system [Deutsch and Taft]. 

Most other operating systems suffer the same multiple uses of 
their names. In this paper, I will use the term Pilot and any other 
operating sytem in the second sense, to include all the supporting 
software that makes the system usable. Note that Pilot is not 
ordinarily visible to Xerox customers; it was primarily intended to be 
embedded in products and to be used internally in the research and 
development environments. 
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Although it has roots in earlier work on the Alto system [Sproull 
and Lampson] and Mesa at the Xerox Palo Alto Research Center 
(PARC), serious work on Pilot began in the System Development 
Department (SDD) in early 1976. Most of  the people who worked 
on Pilot over the past five years had previous experience primarily in 
the academic and research communities, and very few had ever built 
any 'production' system, let alone an operating system, to commercial 
pressures of schedule and budgets. We knew about the differences 
between the big, ponderous, ungainly systems sold by some 
computer manufacturers and the simple, elegant, lightweight systems 
imagined in the research community, and we were determined to do 
it right. This meant using a good, high-level language (Mesa), 
assigning a fairly small group of knowledgeable people to the project, 
carefully studying the lessons of others in the computer science 
community and from the Alto environment at PARC, and designing 
the hardware and software together. This ought to take two or 
perhaps three years, after which the designers would be available to 
work on advanced, Pilot-based applications for products, research, 
and development. The following is a short chronicle of  our actual 
experience: 

Jan. 1976: Architectural principles established: work began 
on design of a machine architecture optimized for 
Mesa. The Mesa machine extended the Alto 
architecture in a number of ways, including 
expansion of the basic machine address from 16 
to 32 bits, stack-oriented operation, addition of 
virtual memory, improved handling of  I/O 
devices, etc. 

mid-1976: Mesa language and system becomes operational 
on the Alto [Geschke et at]. 

Dec. 1976: Pilot Functional Specification (version 1) released 
to clients. Unfortunately, the system specified in 
this document looked a lot like a traditional 
operating system and did not take account of the 
characteristics of  a personal computer, the role of 
Mesa. or the (dimly perceived) needs of 
distributed applications. 

early 1977: Mesa process facilities [Lampson and Redell] and 
Pilot file system redefined. 

Sept. 1977: Pilot Functional Specification (version 2) released 
to clients. This set the style of Pilot as it is today 
and used the Mesa interface language as the 
primary specification tool [Lauer and 
Satterthwaite]. 

Sept. 77-Apr. 78: Design of Pilot kernel implementation. 

Apr. 78--Oct. 78: Implementation of Pilot kernel and basic 
communication facilities. 

July 1978: First Dolphin processor delivered to Pilot group 
(the Dolphin is one of three machines supported 
by Pilot). This was microcoded to be compatible 
with the Alto but with virtual memory: some 
Mesa emulator functions were still coded in 
BCPL and compiled into Alto machine language, 

Oct. 1978: First release of  Pilot to clients. This version 
retained compatiblility with the Alto system in 
many areas such as disk layout, boot file formats, 
and Mesa instruction set, even though they were 
not adequate for our long term needs. The 
debugger was a modification of the Alto/Mesa 
debugger and operated in Alto mode. Since a t  
this time there was no established client base, 
there was very little testing except from our own 
test programs; consequently, this release was of  
limited use. 

Nov. 78-Dec. 79: Bootstrapped away from the Alto environment. 
During this time, we eliminated remaining Alto 
compatibility from Pilot, implemented the Mesa 
architecture entirely in microcode, supported Pilot 
disk and boot file formats, etc. CoPilot, the Pilot 
debugger, became operational as the first major 
Pilot client. This was a oarticularly painful 
period for the implementors. 

Dec. 1979: Second release of Pilot to clients. Note that at 
this time, the Mesa compiler, binder, and other 
facilities, as well as the program editors, were still 
based on the Alto. The performance, reliability, 
and usability of  Pilot was grim; as each new 
client tried it, a new set of  disabling bugs was 
uncovered. Among other things, we discovered 
that Pilot could read or write the disk at the rate 
of  only one 256-word sector per revolution. 

Mar. 1980: Third release of Pilot to clients. This was a 
cleaned up version of the second release and the 
first to appear in a product (the Xerox 5700 
electronic printing system). We redesigned the 
file system to solve the disk performance problem 
and concentrated on the reliability issues with 
respect to that specific client. Even so, the 
application programmers had to resort to some 
unnatural contortions to avoid problem areas in 
the operating system. 

May. 1980: First Dandelion processor available, but with no 
disk or Ethernet (the Dandelion is the basis of  all 
Xerox 8000 series products). 

July. 1980: The Pilot disk utility runs on the Dandelion (with 
a simulated Ethernet). 

OcL 1980: Fourth release of Pilot to clients. The primary 
emphasis of  this release was to provide the 
function necessary to support Xerox 8000 series 
products, the Mesa development environment, 
and the Cedar project at PARC. Unfortunately, 
Pilot by this time had become too large and too 
slow to do any of these very well. 

Dec. 1980: Pilot runs on the Dorado processor at PARC (the 
Dorado is a very high speed, single-user system 
for the research environment [Dorado]). 

Feb. 1981: First Xerox 8000 network system, including Pilot, 
delivered to a customer. 

Apr. 1981: Fifth release of Pilot to clients. The emphasis of  
this release was to improve the performance and 
reliability and to reduce the working set size of  
the system to acceptable levels within the memory 
available on the various processors. The first 
version of the Pilot-based Mesa development 
environment (i.e., compiler, binder, editor, 
utilities, etc.) was made available to friendly 
clients. 

In April 1981, we received a letter from our most demanding 
clients in PAR~ indicating that with the fifth release, Pilot had 
become the system of choice (on processors that were capable of  
running either Pilot or Alto software). After five years, Pilot had 
,:ome of age. 

During this whole time, we always had the support of  the 
corporation, even during the hard years when we 'should have' had a 
nicely running system. Of  course, it was necessary to regularly show 
progress, which we did partly by demonstrating some early but 
limited applications (to show that Pilot actual worked) and partly by 
demonstrating Alto-based prototypes of some advanced applications 
(to show the feasibility of  the kinds of things we were aiming for). 
We also had to fend off the usual kinds of  pressures from other parts 
of the corporation--for example, that we use a commercially 
available language (e.g., Pascal) rather than Mesa or that we purchase 
OEM computers rather than design our own architecture. 

Selected problems and lessons 

In this section, I will recount a few of the problems we 
encountered and lessons we learned during the development. Most 
of  these we should have avoided, and afterwards there were plenty of 
people to say they told us so (none of whom had any responsibility 
for actually releasing the system, of  course). Nevertheless, these 
problems and lessons happened anyway. 
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Sizes of the system. Table I shows some statistics for the five 
releases of Pilot. Included are the sizes of the Pilot kernel and of the 
entire system in terms of lines of  Mesa code, bytes of  object code, 
and numbers of modules. From the table it can he seen that the 
Pilot kernel dominated the first release, but by the fifth release it 
represented barely more than twenty percent of  the system. The 
growth of the total system is accounted for partly by new 
development and partly by absorbing and converting code which was 
orginally developed for other systems. Other development, in which 
major subsystems were completely rewritten or replaced, is not 
apparent in this kind of summary table, but represents a non-trivial 
portion of the work that went into all but the first release. 

When we began work on Pilot, none of us imagined that we 
would be developing and managing a system so large, Yet in 
retrospect this was probably inevitable, given that it was intended to 
support several major products plus all of  our software development, 
some research, and a number of  specialized applications. As we look 
to the future, it is not clear whether the sizes of either the kernel or 
the system will stabilize soon or whether they will continue to grow 
as we respond to new or different needs from our clients. 

Working Set sizes. Table 1 also shows the size of the working set of 
the Pilot kernel when supporting 'typical' applications--i.e., the 
amount of real memory required to hold the virtual memory actively 
needed by Pilot without thrashing. A working set size is inferred by 
first artificially restricting the amount of real memory available on 
the machine and then timing a selected benchmark with a stopwatch. 
This is repeated for various memory sizes and the results plotted. 
The total system working set for that benchmark is defined to be at 
the knee of the curve and can be determined accurately within 1%. 
Then another experiment is run by setting the real memory size to 
the working set size, executing the benchmark again (most 
be~.chmarks take a few ~econds), and takiLg a memory dump. With 
some detective work, it is possible to attribute specific pages swapped 
into real memory to the Pilot kernel, common software and other 
packages, and the application. This whole exercise is repeated for 
various benchmarks and for each release of Pilot (and also for each 
release of critical applications on a given version of Pilot). 

An unexpected result was that the content of the working set of 
the Pilot kernel (i.e., the actual pages swapped in) is nearly constant 
across all benchmarks. We were also surprised that by April 1980, 
Pilot exceeded its share of  the real memory of  our product 
configurations by nearly a factor of  two. In retrospect, of  course, 
we should not have been surprised. Although the requirement for a 
small working set was in the front of  our minds, we had no feedback 
or reinforcement to achieve it, even at the expense of some features 
or function. In this sense, the developers suffered from the 
availability of a good virtual memory system. It is too easy to add 
more memory to their machines in order to meet critical schedules, 
even if business reasons precluded such memory in the products. 
The result was a year of  hard work to bring the Pilot memory 
requirement down to a reasonable level, at some cost in the overall 
schedule. (An Alto programmer, by contrast, is forced to make his 
applications fit into a non-expandable real memory and address 
space because he cannot proceed with his own work until they do.) 

Unfortunately, similar pressures affect many of our clients, and some 
are caught by the convenience of virtual memory the way we were. 

Programmer Productivity. None of the ways that we know of  for 
measuring the productivity of our developers is very statisfying, We 
do, of  course, measure whether or not a release is on time, how 
many trouble reports are submitted against it, how big it is, etc. But 
none of these tell us how good the system is. We also have, on 
occasion, tried to make one traditional measurement of  programmer 
productivity, namely the number of  lines of code produced per work- 
year. There are two types of problems with this measurement, an 
obvious one and a subtle one. The obvious one is deciding which 
people and what time to count, so that an effective comparison might 
be made among organizations and/or  programming environments 
(companies such as Xerox are always interested in such comparisons, 
even if individual development groups are not). There is also the 
question of how to count the lines of  code, especially when someone 
is reorganizing or making major modifications to existing modules. 

The subtle problem is illustrated by the following observation: in 
my organization, a group of  four or five developers, including a 
project leader, can specify, design, implement, test, and release a 
complete system or subsystem of  approximately 25,000 lines of  Mesa 
code in twelve months. This includes vacations and holidays and 
time to attend conferences and seminars, to write professional papers 
or continue education, to get and train some users or clients to test 
the system, and to be generally effective members of the 
organization. In most cases, t f  the same people had twice as much 
t#ne, they couM produce as good a systen7 in, perhaps, half that 
amount of  code--i.e., the extra year yields negative productivity. 
Thus, one of the conflicts that we have to manage constantly is that 
between the need to get a system done and working satisfactorily and 
the desire to make it smaller, faster, easier to use, etc. 

Holy wars. In the early days of Pilot development, we got bogged 
down in a uumber of Icasic questions of operating system design and 
spent a lot of time, energy, and emotions before resolving them. 
One of these concerned the model of  processes and synchronization 
and whether we should have a facility based on procedures and 
monitors or a facility based on messages. Each side was firmly 
entrenched and unable to accept the position of the other; not until 
we developed the duality hypothesis presented in [Lauer and 
Need_ham] were we able to resolve the issue and implement the 
scheme described in [Lampson and Redell], Even afterward, our 
organization bore serious scars from this debate. 

Another basic question concerned the kind of access to the file 
system that Pilot would provide. One alternative was a simple read- 
write facility with which client programs transfer pages directly 
between virtual memory and files. The other alternative was a 
'mapping' facility, whereby a portion of the file is made the backing 
store for a portion of virtual memory (for example, as in MULTICS 
[Bensoussan et a/]). While dais question did not inflame emotions 
the way the process question did, the proponents of  each view felt 
that the two models were incompatible with each other. Pilot chose 
the mapping approach, providing a convenience for some but causing 
headaches for others, particularly those who were trying to convert 

Release I 

TABLE I - -  SIZES OF PILOT RELEASES 

II III IV V 

Date Oct 78 
Contributors* ~ 20 

Pilot Kernel: 
lines 24K 
codebytes 89K 
modules 88 
interfaces 93 

Pilot System: 
lines 48K 
codebytes 211K 
modules 390 

Working Sets unknown 
(256-word pages) 

Dec 79 Mar 80 
-27  -27  

30K 33K 
l l l K  l l 0K  
102 114 
132 146 

129K 125K 
508K 508K 
420 unknown 

unknown ~320 

Most contributors had responsibility for other, non-Pilot software at the same time. 

Oct 80 Apr 81 
-35  -35  

44K 53K 
152K 162K 
123 135 
183 204 

171K 249K 
754K 1025K 
530 710 

~260 -190 
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programs from other systems based on the read-write model. 
Subsequently, the perception grew that perhaps the two approaches 
are duals of each other, and that a client program structured for one 
approach might have a natural counter'part of similar performance 
and complexity for the other approach. However, we never found a 
duality transformation to support this view. Finally, we realized that 
neither model excludes the other. In particular, code files and 
certain data files of limited size are better supported by the mapping 
model--the swapping characteristics are understood and address 
space management in virtual memory is more convenient than 
explicit reading and writing. Large data files with known, high 
performance access requirements, on the other hand. are better 
served by the read-write approach--these files are oRen larger than 
the virtual address space, and the complexity and overhead of buffer 
management is worthwhile to achieve the desired performance. Pilot 
now supports both approaches with consistent interfaces. 

Files and transactions. When the Pilot file system was being 
designed, the question naturally arose about whether or not it should 
include a transaction facility for crash recovery and atomic updating 
of files. We did not include one because ou; experience was limited 
and we were only just beginning to see results from research in this 
area at PAP,¢. However, we did provide enough facilities so that a 
client could build a specialized transaction mechanism on top of the 
Pilot kernel. Someone built such a facility and also undertook an 
evangelical mission to persuade people that it offered the solution to 
all file reliability and recovery problems. As a consequence, several 
of  our  major clients came to depend upon the transaction concept, 
even in cases where it is not appropriate. 

'Naturally, a transaction facility built on top of  Pilot could not 
have as high performance as one integral with it, and in this case, its 
interfaces were of a substantially different style than those of Pilot 
itself. It was also extremely unreliable. Thus we were forced to do a 
quick implementation of a new transaction facility as part of, and 
consistent with, the Pilot kernel This has significantly better 
performance and is reliable in spite of  known bugs; client programs 
that depended on the previous facility became simpler with the new 
one. However, the performance is still not good enough for high 
intensity activities such as data base accesses and updates. At the 
same time, some of  the clients began to realize that even the best 
transaction facility would offer inappropriate performance for their 
applications and that their failure modes did not require this 
generality. For example, in the user level directory facility for the 
Xerox 8000 series products, it is much better to accept that crashes 
can occasionally occur in the middle of  updates and to rely on a 
scavenger to restore things from the natural redundancy in the file 
system. 

It is not clear what the future of  transactions in Pilot will be, but 
since we currently satisfy no one in this area, it is likely that the 
facility will change substantially again. 

Virtual memory implementation. In designing the Pilot virtual 
memory facilities, we recognized the client program would want to 
manage the address space, map files to pieces of virtual memory, and 
control (or influence) the swapping between real memory and the 
backing file. We began with three different interfaces and concepts, 
but quickly unified them into the single concept of  the space. The 
Pilot space is the unit of allocation, mapping, and swapping; spaces 
can be declared within other spaces, so that the set of  all spaces 
forms a hierarchy according to the containment relation. This was a 
remarkably simple generalization, but it was hard to implement and 
is not used by clients. Clients have evoh, ed a style in which almost 
all mapped spaces are subspaces of  the primordial space (all of 
virtual memory) and only a few of  these are further partitioned into 
subspaces for swapping control. The implementation requires such 
large data structures for each space that they have to be swappable, 
and only the very active items are cached in real memory. In the 
end, several caches were needed and a lot of resident code was 
written to manage them. 

An assumption of  the virtual memory implementation is that 
disk accesses are expensive. Thus, we set up a lot of  queues and 
expected a lot of multiprogramming to overlap computing with disk 
operation. In fact, disk accesses are cheap on both the Dandelion 
and Dolphin configurations. If no arm movement is required (this 
appears to be true most of the time), the computation required to 
field a page fault, locate the disk address, set up a disk command, 
receive the disk interrupt, and dispatch the faulted process takes 
about the same time as the average latency to read a sector. We 
found that the system could not accept back-to-back requests for 
adjacent sectors and read them on the same revolution, and thus we 

had to rewrite the file system to submit single disk requests for runs 
of pages whenever it could. Even so, it would almost be cheaper to 
treat the disk as a synchronous device and simply wait until each 
operation completes without trying to do anything else. 

In view of this experience, we are currently reexamining the 
basic design of the Pilot kernel virtual memory system and will 
probably make major revisions in both the strategy and the 
implementation. 

Pipes, filters, and streams. One of  the strong features of  the UNIX 
system [Ritchie and Thompson] is the uniform facility for input and 
output which allows separate programs to be connected together by 
'pipes.' The UNIx programmer's toolkit includes a large number of  
simple programs (called 'filters') which perform simple 
transfonna:ions o~ str~'amf of data, and it is commor practice :o 
concatenate a number of  these together for a desired result. We 
thought that Pilot should have a similar facility but consistent with 
and implementable in Mesa, and so we designed Pilot streams (see 
[Redell et all for an overview). 

Unfortunately, although the Pilot stream facility works 
satisfactorily, it was not very well received and is not widely used by 
us or by our clients. One reason probably lies in the Mesa model of  
program modularity. The type-safety and interface language of Mesa 
make it convenient to design programs with clearly specified 
procedural interfaces and bind them together with a little bit of  
control code for a desired result. Thus the Mesa programmer's 
toolkit consists of a large number of  modules of  varying complexity 
and different kinds of control structures. For example, a module 
which produces a sequence of objects of some abstract type will 
export a procedure for its clients to access these one at a time. This 
can be easily bound to another module that expects to get objects of  
that type, and it is often more flexible than parsing a stream of 
characters. Thus, Pilot streams are used almost exclusively at the 
interface with terminals and other systems over industry standard 
communication lines and protocols. Procedural interfaces are 
preferred, both within Pilot-based programs and between system 
elements over the Ethernet. 

Comparing Pilot ~vith other operating systems 

From the success of  the April 1981 release, it is evident that Pilot 
will take its place among the ranks of  mature, evolving operating 
systems and have a useful life long after its original designers have 
moved on to other pursuits. However, it did not happen as planned 
and its development was very different from that of the Alto system. 
In reflecting upon this. I found it useful to enumerate some of the 
other operating systems I have known, either from direct contact or 
from study of the literature or from contact with others. These 
systems seem to fall into five categories, which I shall first enumerate 
and then describe. 

1. The Alto system. UNIx, 
2. IBM's OS/360, MULTICS, Pilot, etc. 
3. MTS (the Michigan Terminal System), TEXEX, CP-67 
4. CAL-TSS, Project SUE, HYDRA, etc. 
5. DOS/360, RS-11, etc. 

These categories are the result of my personal observations, not of a 
systematic study, and hence many systems are not listed because I 
don't know enough about them to classify them. The ordering of 
the categories is not significant. An important part of the 
classification is the maturity or success of a system--i.e., acceptance 
by its clients as a useful, economic tool for helping to get work done, 
for "supporting applications, or for fulfilling other goals. A 
characteristic of a successful system is that it is accepted by a non- 
trivial community of  users outside its developing organization as a 
matter of  choice and that this community contributes, directly or 
indirectly, to its further development and growth. 

Systems of the first kind. These are everyone's favourite systems. 
They are successful by our measure and by most other measures 
(sometimes too successful for their developers). Tl'.ey beg~n life as 
small, simple, unambitious systems meant to serve only their authors 
and perhaps their immediate colleagues. They have limited 
requirements, usually in the research area. But their excellence and 
simplicity attract others who are willing to contribute to the further 
development, additional features, or maintenance responsiblities in 
exchange for being able to use such systems in their own work. 
They become successful partly because potential users find it simple 
and easy to adapt them when needed facilities are missing or ill- 
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conceived. Systems of  the first kind rarely evolve according to any 
coherent plan agreed to between the implementors and clients, but 
rather by the willingness to contribute facilities and features as 
needed. Thus it is not surprising that these systems sometimes 
appear a little haphazard. 

Systems of the second kind. These the planned systems. They are 
cut "from whole cloth," designed and implemented as major projects, 
directed toward objectives defined by negotiation, often (but not 
always) aimed at new architectures, meant to satisfy major clients. 
and built according to schedules and budget constraints imposed for 
business, contract, or other external reasons. 

Some. but not all, of  the major operating systems sold by 
computer manufacturers fall into this category. For example, IBM's 
OS/360 was conceived as a whole system to satisfy a new, broad 
marketplace and to incorporate many of the technological 
achievements of the previous five years, and thus it is a system of the 
second kind. So is MULTICS, which was built primarily at MIT as a 
'real' system based on the previous experimental system CTSS. Pilot 
is a system of the second kind: it was conceived as a successor to the 
Alto system and intended to support a range of product, 
development, and research applications within Xerox over a specified 
number of years on a new machine architecture. 

Not all systems of the second kind are successes. Some notable 
failures include IBM's TSS/360, the Berkeley Computer Corporation 
system [Lampson], and the Elliot 503 Mark II system [Hoare]. Each 
of these was conceived as a major system and a fairly ambitious 
project, but none survived the patience of its sponsors or clients to 
reach maturity. 

Systems of the third kind. These systems borrow much of  their 
supporting software from an existing system but represent a 
fundamental change in the way of life. The Michigan Terminal 
System, for example, provides a paging, terminal-oriented, time- 
sharing system especially suited for university use on the IBM 360/67 
and IBM 370 systems, Most of  its compilers, run-time support, 
subroutine libraries, program development tools, etc., were taken and 
converted directly from OS/360, but its operating system kernel is 
dramatically different from OS/360 and it supports new applications 
that OS/360 never could. (Of course, there are also many OS/360 
applications that MTS cannot support.) The obvious motiviation for 
building a system of this kind is to avoid the time and expense of 
designing, implementing, and maintaining all new supporting 
software for the operating system when it is desired only to 
implement an operating system kernel and some basic functions. 

Systems of the fourth kind. While the population of systems of the 
first three kinds is relatively small, there are many systems, of  the 
eourth kind. They make major contributions to the art ~nd science 
of operating systems but either never reach maturity or never gain 
acceptance outside the developing organization. For many of them, 
there is never any serious intent to promote them for widespread use, 
to support a variety of  applications, or to be 'complete.' They are 
primarily laboratory exercises to support research and to teach about 
operating system structures, or to support other laboratory work. 
Note that systems of the first kind begin life as systems of  the fourth 
kind but suffer the calamity of success. 

Systems of the fifth kind. Finally, the world is full of  small, 
uninteresting systems which do little to enhance the machines they 
support and which contribute little to the technology or have little 
impact on the computing community. These systems come in all 
sizes, shapes, colors, and prices, and I have nothing interesting to say 
about them. 

This taxonomy is helpful in comparing like with like when we 
talk about operating systems in a context of  which work and which 
do not. For example, it does not make sense to berate the excessive 
generality of OS/360, which did succeed, in comparison with the 
more limited objectives and elegant structures of, say, CAL-TSS or 
Project StE, both of which failed to become generally usable. It was 
observed in [kampson and Sturgis] that there is much more work 
involved in making an operating system usable by general 
programmers than just providing a nice kei'nel. Similarly, when we 
ask why the Pilot development was so different from that of  the Alto 
system, it is important to bear in mind the fundamental difference in 
objectives and ground rules for the two systems. The following were 
explicitly not objectives of the Alto system: 

"This system must satisfy the corporate needs for the next 
10-15 years in specific areas." 

"A (nearly) complete list and specification of the functions 
and facilities required of the system over the next five years 
must he provided before design starts." 

"This system must incorporate all of the wonderful lessons 
of operating system technology from the past five years." 

"This system is expected to have more than one hundred 
users or to be installed in more than one hundred 
locations.'" 

These or similar objectives did apply, however, to Pilot and to 
most other systems of the second kind. The developers of the Alto 
system are chagrined to find that they now have to spend 
considerable time and energy supporting a system which has several 
thousand users and supports a wide variety of  corporate needs. By 
contrast, in the Pilot development, we were chagrined to discover 
thai in striving to meet these objectives or our schedule, we often 
found ourselves unable to apply what we felt was the best technical 
solution to a problem. 

The five-to-seven-year rule 

The above classification identifies operating systems in terms of  
how they were developed and their impact. It separates systems of 
the second kind, which are willed into existence and operation, from 
those of the first, third, and fourth kinds, which evolve in a less 
deliberate manner or as part of  some other research or project. 
While I have no recipe for producing successful systems of the latter 
kinds, I can offer an hypothesis which, if true, will be useful to 
anyone setting out to build a system of the second kind: it takes 
from five to seven )'ears for a system of the second kind to grow from 
birth to maturity, For example, in the systems I enumerated above: 

OS/360 was begun in 1963-1964, Despite early availability 
and vigourous promotion by its manufacturer, it was not 
until 1968-1969 that it really gained wide acceptance by its 
users as a valuable, economic tool. 

MLLTICS development began in about 1965. After an 
initial flurry of publications about the system, its design, 
and its goals, the outside world heard very little from 
Mt:LTICS-land until the early 1970's, when it started to 
acquire a following outside MIT and was subsequently 
adopted by Honeywell, the manufacturer of  MULTICS 
hardware. 

The first five years of the life of Pilot were chronicled 
above. Although the previous skepticism by its users is now 
changing to enthusiasm, there is still much to be done 
before Pilot fulfills their expectations. 

It also appears that it takes from five to seven years for other 
operating systems produced by major manufacturers or as major 
system projects to mature. Let us consider what happens during 
those years. 

First, there is the period of planning and design. This is a time 
of exceptional optimism, of desire to incorporate the past successes 
and avoid past mistakes, of a determination to 'do it right.' In the 
Pilot project, for example, an attitude that prevailed was "'the Alto 
system demonstrated a lot about personal computing: now let's build 
one for real, to support the company's business. And incidentally, 
we should build it in Mesa, and build it with virtual memory, and 
re-engineer the Ethernet, and unify the protocols, improve the file 
system, etc., etc., etc." 

Next comes the initial implementation and first release. There 
are no operational client programs against which to validate it, so it 
gets little testing. Anyway. some of the promised function was 
deferred in the interests of  meeting the delivery schedule. 

Then comes a period of trying to make the system work at all. 
Those first hardy users have had to pick their way through 
minefields of  bugs and problems, and some may have become 
discouraged and turned to other alternatives. However, through 
perseverance, the problems are solved one by one, and eventually the 
system seems to work passably, at least for its few active users. 

But now it is important to make it work well. It is too slow or 
too big; it supports too few users/clients; or it fails to match the 
performance of. its predecessors. Promised enhancements and/or 
deferred functions are abandoned and development is concentrated 
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on very simple matters. During these two phases, client or user 
participation is essential, although painful. Without the appropriate 
feedback from others who are trying to use the system tbr non-trivial 
reasons (other than its own development), the implementors do not 
have enough information to guide their work and identify problems 
in performance, style, or function. 

Finally, if the sponsor has not lost patience, there is a period of 
eyolving expectations about the new system. Clients realize that it is 
not the same as a previous one and that their old models of 
performance, behaviour, and usage need to be modified to take 
advantage of the new facilities and the new constraints. Some 
functions or facilities of the new system may never work as well or 
as fast as the corresponding ones of the old, and programs converted 
from the old may appear sluggish in the new environment. This is 
the beginning of the period of 'community involvement' with the 
operating system, during which clients learn how to live within the 
framework defined by that system and how to contribute to its 
further success and growth. 

The five-to-seven-year rule for systems of the second kind is a 
strong generalization from weak evidence. I know of no analysis 
which might lead to it as a conclusion. I would even like to see it 
disproved (and to learn how to disprove it at will). Nevertheless, 
from my own experience and from observations of the experience of 
others, it seems to be true. at least most of the time. It seems to 
apply both to the professional system designers and programmers 
who populate the industry and to the elite corps of computer 
scientists from the academic/research community. Even people with 
impressive credentials fail in their attempts to build systems in less 
time, and very few succeed. We believed from the beginning that 
we could do better in the development of Pilot. 

Both in casual conversations and detailed analyses of the 
successes and failures of systems of the second kind, the same terms 
keep recurring: that the systems are "too ambitious" and/or "too 
general." Hoare used these terms in his Turing Lecture [Hoare]. I 
can remember as a graduate student that my colleagues and I would 
sneer at the manufacturer-supplied operating systems (IBM's OS/360, 
Univac's Exec VIII, Burroughs' MCP, and all the rest) in exactly the 
same terms. In almost any cocktail conversation about a system in 
trouble or one which the users find unsatisfactory, criticism is 
focused on the generality or amibitousness of the project goals. In 
my discussions with the original implementors of the kernel of the 
Alto system, the same terms were used again: "if only we had set 
more limited goals for Pilot by concentrating on, say, real memory 
requirements rather than on features, we would have produced a 
nice, well-performing system in two or three years, just the way they 
did." However, that begs the question: we did concentrate on real 
memory, usage, execution speed, simple structure, and all of the other 
things that are important in making a successful design. We made 
task lists of things to do, problems to solve, features to support; we 
assigned priorities and worked on first things first; we parried 
reqt~ests for yet more features or complexity; we ignored 
unreasonable constraints imposed externally and let our computer 
science wisdom prevail. It still took us five years, and our critics at 
the time still worried about the grandiosity of our system. 

I suspect that there is something about the ground rules of 
projects like Pilot, the Berkeley Computer Corporation system, 
MULTICS, and other systems of the second kind that makes it 
difficult or impossible to plan or carry out projects the way we do 
for systems of the other kinds. (Note that by definition, systems of 
the other kinds cannot be too ambitious or general: either they 
succeed on their merits, meaning that they have exactly the right 
blend of generality and simplicity, or they were never meant to fulfill 
the kinds of goals that a system of the second kind is.) Part of it is, 
no doubt, in the way that projects are sponsored. Systems of the 
first, third, and fourth kinds are usually financed as part of some 
other project or research. 

But systems of the second kind are investments. As such they 
are subject to the kinds of review of planning, budgeting, scheduling, 
and scrutiny that the sponsor needs to confirm continuing support 
(neither the Alto system, MTS, or HYDRA, for example, were ever 
subject to this kind of review). Furthermore, investments in system 
development are still so risky these days that most sponsors would 
rather purchase a satisfactory system, if available, than build one. 

Thus, by definition, the new system has to be more ambitious and/or 
more general than its predecessors. If it is necessary to finance a 
new system, then the sponsors and/or their clients feel entitled to 
some voice in the facilities, features, style, character, or other 
attributes of the system. I.e., the system designers do not get to go 
off alone to build the system of their dreams, and the five-to-seven- 
year rule prevails. 

Summary 

I have been a member of the Pilot project since early 1977 and 
have managed it in its later years. Coming from an academic and 
research background, I have been somewhat surprised at what it has 
been possible for us to do and also at what we have not been able to 
do. I think it is important for people to write about these things 
occasionally because we too often concentrate on the objects we are 
creating and not enough on the process of creating them. The world 
of programming methodology and structured programming is 
devoted to helping us achieve perfection in the systems we 
design--an important goal but somewhat at odds with the need to 
get something done. Pilot had to be delivered and work well 
enough, despite the fact that we never had time to make it perfect or 
even as small and as simple as we would have liked. It is helpful to 
treat the major system as an organism itself, with a life cycle and a 
personality and characteristics derived from the organizations that 
build, use, and sponsor it. The successful ones usually outlive the 
interests and participation of their implementors, and they captivate 
or even dominate the professional lives and interests of many other 
people. 

I have believed in the five-to-seven-year rule for at least a 
decade and have not found much evidence against it, Yet this is not 
proper science, so I challenge graduate students and researchers in 
the operating system field to conduct systematic studies about how 
systems are conceived and born and which ones grow, mature, and 
lead productive.lives. This would be a study partly of technology 
but partly of the sociology and dynamics of system development, and 
it would teach us how to build better, simpler, less ambitious systems 
more predictably. 

The classification of operating systems into five kmos came about 
as I tried to compare Pilot with other systems and see where the five- 
to-seven-year rule applied and where it did not. There is definitely a 
qualitative difference between the kind of development we carried 
out and the kind that I have watched or been associated with in 
universities and research laboratories. Thus it is not surprising that 
there is a difference in character between the kinds of systems that 
emerge from these activities, I do not know whether this 
classification is 'right.' so again I challenge research students to 
explore the field of operating systems from this point of view, 
making systematic studies to help us understand how we do better at 
building them. 

Finally. a word of advice to designers, implementors, sponsors, 
and users: if you are involved with a new, challenging system 
planned and cut out of whole cloth and meant as a service, not as an 
experiment, but intended to stretch our horizons and 
expectations--i.e., a system of the second kind--then have patience. 
I have not yet seen anyone who has been able to build one as 
quickly and as well as he thought he could. 
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