
Xanthus: Push-button Orchestration of Host Provenance Data
Collection

Xueyuan Han
Harvard University
Cambridge, MA, USA
hanx@g.harvard.edu

James Mickens
Harvard University
Cambridge, MA, USA

mickens@g.harvard.edu

Ashish Gehani
SRI International

Menlo Park, CA, USA
ashish.gehani@sri.com

Margo Seltzer
University of British Columbia

Vancouver, BC, Canada
mseltzer@cs.ubc.ca

Thomas Pasquier
University of Bristol

Bristol, UK
thomas.pasquier@bristol.ac.uk

ABSTRACT

Host-based anomaly detectors generate alarms by inspecting au-
dit logs for suspicious behavior. Unfortunately, evaluating these
anomaly detectors is hard. There are few high-quality, publicly-
available audit logs, and there are no pre-existing frameworks that
enable push-button creation of realistic system traces. To make
trace generation easier, we created Xanthus, an automated tool
that orchestrates virtual machines to generate realistic audit logs.
Using Xanthus’ simple management interface, administrators se-
lect a base VM image, configure a particular tracing framework to
use within that VM, and define post-launch scripts that collect and
save trace data. Once data collection is finished, Xanthus creates
a self-describing archive, which contains the VM, its configuration
parameters, and the collected trace data. We demonstrate that Xan-
thus hides many of the tedious (yet subtle) orchestration tasks that
humans often get wrong; Xanthus avoids mistakes that lead to
non-replicable experiments.

CCS CONCEPTS

• Security and privacy → Usability in security and privacy;
Intrusion detection systems; Penetration testing.

KEYWORDS

computer security, data provenance, data replicability

ACM Reference Format:

Xueyuan Han, James Mickens, Ashish Gehani, Margo Seltzer, and Thomas
Pasquier. 2020. Xanthus: Push-button Orchestration of Host Provenance
Data Collection. In 3rd International Workshop on Practical Reproducible
Evaluation of Computer Systems (P-RECS ’20), June 23, 2020, Stockholm,
Sweden. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3391800.
3398175

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
P-RECS ’20, June 23, 2020, Stockholm, Sweden
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7977-9/20/06. . . $15.00
https://doi.org/10.1145/3391800.3398175

1 INTRODUCTION

Host-based intrusion detectors sift through audit data for signs of at-
tack. Training and evaluating such detectors requires trace data. Un-
fortunately, the security community suffers from a lack of publicly-
available, high-quality datasets [49]. For example, DARPA’s IDEVAL
traces [28] are publicly available but suffer from well-known defi-
ciencies that hurt the realism of the traces [30, 31, 33]. However,
academics continue to use these traces [10, 21] (which are over 20
years old!) due to a lack of alternative public datasets.

The rise of provenance-based intrusion detection [16, 17, 19,
20, 34, 50] has emphasized the dearth of realistic, openly-available
traces. Data provenance [18] is a particular type of audit data that
uses a graph to describe the interaction histories of host objects such
as files, processes, and network connections. The typical workflow
to evaluate such detection systems consists of three steps: 1) trace
benign and attack workloads to construct a training dataset, 2) build
a model based on the training traces, and 3) trace new scenarios on
which to test the model. In theory, publicly released datasets are
the output of the first step.

While evaluating Unicorn, our own provenance-based intru-
sion detection system (IDS) [16], we repeatedly found that released
traces were insufficient for our purposes. For example, DARPA’s
Transparent Computing dataset [1] contains only attack scenario
traces; the StreamSpot dataset [32] was pre-processed, removing
key information. These are all symptoms of a fundamental prob-
lem: each IDS typically requires a specific kind of trace data, and
published traces are specific to the system for which they were
originally designed. Unlike conventional machine learning appli-
cations, where training data consists of a set of samples and their
labels, the “samples” in this case are large, complex, non-standard
traces. To address this mismatch we facilitate faithful replication
of both the training and test data. In other words, Xanthus en-
ables replicability [38] of both training and test workloads for the
evaluation of provenance-based IDSes.

Xanthus is a framework for collecting host-based provenance
datasets, which automates: (1) configuring a data collection frame-
work, (2) recording data using that framework, and (3) publishing
the results. During the configuration stage, Xanthus creates VMs
with a deterministic set of initial states defined by user-provided
scripts and a specific provenance tracking framework (e.g., SPADE [11]
or CamFlow [40, 41]). Xanthus saves these images for repeated

https://doi.org/10.1145/3391800.3398175
https://doi.org/10.1145/3391800.3398175
https://doi.org/10.1145/3391800.3398175

use. Then, in the recording phase, Xanthus runs a specified work-
load, which can include hooks for additional scripts that control
the monitoring infrastructure in real time. When execution com-
pletes, Xanthus bundles the data, the Xanthus scripts, and the
Xanthus configuration files into a single archive and publishes the
archive (e.g., on a configured data repository such as Dataverse
or on GitHub). Other researchers can download the archive to vali-
date correctness of the collected traces, replay the workloads with
different auditing systems and experimental settings (e.g., with or
without attacks), or replay the saved traces to an analysis tool. For
large-scale experiments, it works seamlessly with Amazon Elastic
Compute Cloud (EC2).

2 MOTIVATION

Intrusion detection introduces a number of challenges not encoun-
tered in other replicability scenarios. Provenance systems interop-
erate in specific ways with the host operating system, and each
attack scenario relies on operating system, library, and application
versions. We use our experience trying to evaluate Unicorn using
public datasets to motivate Xanthus’ key design features.

2.1 Provenance-Based Intrusion Detection

Provenance-based IDSes [16, 34, 50] often perform graph analy-
sis on provenance graphs, in which vertices represent processes,
users, or kernel resources (e.g., inodes) and edges represent system-
call-induced interactions. However, depending on factors such as
security end goals, analysis scope, and runtime performance con-
cerns, detection systems adopt different capture mechanisms and
assume distinct graph semantics; those that use the same capture
infrastructure might focus on different subsets of data that they
deem relevant to their analysis. Meanwhile, security researchers are
still developing new graph models [1] describing abstract execution
semantics, hoping to facilitate future analysis with better system
visibility. Consequently, effectively sharing data and enabling data
reuse becomes challenging, which is why Xanthus facilitates repli-
cation of the workload that generates the data instead.
Unicorn. Unicorn [16] is a host IDS that uses provenance graphs
as input. It leverages the state-of-the-art system-level provenance
tracing frameworks [11, 40, 43] to model data flows across an en-
tire system via kernel resources such as inodes and sockets. These
frameworks not only interpose on system call invocations, but
also understand the semantics of system calls. For example, Cam-
Flow [40] can trace how the contents of an incoming network
packet flow into a process via recv() and out of the process via
a subsequent write() to a disk file. Unicorn summarizes benign
system execution through efficient graph compression to model
normal host behavior and defines a similarity metric that quantifies
the deviation of the host’s current execution from its model. It de-
tects anomalies when the system behaves significantly differently
from its norm. We use Unicorn as an example throughout § 3.

2.2 404: Data Not Found

Provenance-based intrusion detection has been studied for a decade.
However, we were surprised by the scarcity of publicly-available
provenance traces; even compiling and running prior tracing frame-
works was challenging.

Provenance
Tool

Open
Source

Actively
Maintained

Tagged
Release

Binary
Release

Documentation
Support

Xanthus
Supported

PASS [36] × × × × × ×

Story Book [48] × × × × × ×

Burrito [13] ✓ × × × × ×

Hi-Fi [43] ✓ × ✓ × ✓ ×

LPM [5] ✓ × × × ✓ ×

SPADE [11] ✓ ✓ ✓ × ✓ ✓
PVM [4] (w/ DTrace [12]) × ✓ × × × ✓
CamFlow [40] ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The provenance tools we examined and selected (be-

low the middle bar) that are supported by Xanthus

2.2.1 DARPA’s Transparent Computing Dataset. DARPA’s Trans-
parent Computing program sponsors a wide variety of provenance
research. A primary goal is to use provenance to detect and analyze
advanced persistent threats (APT), i.e., attacks that spread their
activity across a long period of time, hiding malicious behavior
amid normal system events. DARPA conducted simulated attacks
on realistic servers to generate public datasets for researchers. For
example, in 2018, DARPA ran a two-week-long engagement [1] in
which red teams launched APT attacks on victim machines running
five different provenance tracking frameworks. Prior to the engage-
ment, DARPA deployed scripts to generate innocuous background
activity (e.g., simulated user logins to ssh daemons). Although the
collected provenance traces are publicly accessible, DARPA did not
release the data captured from the innocuous background activity,
which makes it difficult to evaluate anomaly-based intrusion detec-
tors, since anomalies are defined relative to normal behavior. We
petitioned DARPA for details about the background activity but
were unable to obtain the scripts that generated the activity.

2.2.2 StreamSpot’s Dataset. StreamSpot [32] is an academic project
that introduced a fast streaming analysis on provenance graphs.
The authors made their evaluation dataset public. However, like the
DARPA dataset, it lacks a description of non-anomalous behavior.
The dataset is also pre-processed: it contains only the provenance
information useful to StreamSpot’s algorithm. Hiding raw trace in-
formation diminishes the value of a dataset, since different analytics
systems might examine different kinds of provenance states.

2.2.3 Other Datasets. We surveyed other academic frameworks
for tracking and analyzing provenance [19, 20, 22, 29, 47], but none
were accompanied with public datasets. The associated papers did
make sincere attempts to describe attack scenarios evaluated by
the authors; however, our attempts to replicate even well-described
attacks were time-consuming, labor-intensive, and often ended in
failure. For example, Jiang et al. [22] used a virtualization envi-
ronment called vGround [23] to isolate worms in a realistic but
confined environment. Unfortunately, neither vGround nor the
experimental setup scripts are publicly available.

2.3 An Ideal Framework

We struggled to locate a high-quality, public dataset to evaluate
Unicorn, while our subsequent manual efforts to create our own
datasets were equally frustrating. Often times, we were unable to
repeat the same experiment using a different tracing framework
due to, e.g., unexpected environmental changes, missing packages
that existed in prior runs, or even lost references to the experiment
due to our own carelessness. Based on our experience, we designed
Xanthus with the following properties in mind:

• Replicability: The framework must collect enough information
to allow a third party to recreate an experiment so that different
graph semantic models can be adopted to describe identical system
execution (§ 2.1). For example, it must capture the discrete events
or generative models associated with both malicious behavior and
innocuous background activity. It also needs to capture environmen-
tal features such as version information for the operating system
and user-level binaries that were running during an experiment.

• Flexibility: The framework should not make assumptions about
the downstream data consumers. When possible, it should emit
raw, unprocessed data. Storage is cheap; thus, it should err on the
side of collecting too much data, not too little.

• Longevity: The framework must collect and publish data in a way
that is not dependent on a particular hosting server or distribution
technology. An ideal dataset is self-hosting in the sense that, once
a researcher has downloaded the bytes in the dataset, minimal
additional infrastructure should be necessary to analyze the data
or recreate the experiments that generated the data.

• Usability: The framework should provide explicit interfaces that
allow easy scripting to generate host behavior, collect trace data,
and so on. To the greatest extent possible, configuring the software
inside the system to trace should be automated. Creating a self-
hosting archive should also be automated.

• Shareability: Researchers should be able to exchange entire ex-
perimental environments. Shareability is enabled by flexibility,
longevity, and usability.

3 XANTHUS FRAMEWORK

Xanthus assumes that the downstream analytics system requires as
input host audit data, but it is agnostic to the specific tracing system
used. Currently, we focus on capturing system-level provenance
data (for Unicorn). Table 1 outlines a set of criteria we used to
compare and select provenance tools supported by Xanthus.

Xanthus is written in Ruby and can be easily installed through
Ruby’s packagemanager RubyGems. Fig. 1 shows the three high-level
stages that comprise Xanthus. In the remainder of this section, we
elaborate on each stage with simple code snippets to demonstrate
concepts and design decisions.

Xanthus Framework

Virtual(Environment(Setup Experimentation Package(&(Data(Preservation
Figure 1: Xanthus framework

3.1 Virtual Environment Setup

It is tempting to believe that the script that executes an experiment
is a long-lived artifact. While a script may provide detailed speci-
fications about a particular environment, software versions used,
and instructions that automate the experimental setup, its correct
execution depends on the availability of those artifacts. If some
version becomes unavailable, replication becomes impossible.

One solution is to provide virtual machine (VM) images encapsu-
lating the correct environment and software dependencies. Those
materialized images enable immediate replication of an identical
working environment.

1 config.vm :server do |vm|

2 vm.box = 'ubuntu/trusty64 '

3 vm.ip = '192.168.33.3 '

4 vm.boxing = [: box_config]

5 end

6 config.script :box_config do

7 %q{%{

8 sudo apt -get install vim apache2

9 gem install json rgl mqtt rake bundler

10 }}

11 end

Listing 1: Set up a user-configured VM in Xanthus

Xanthus leverages Vagrant to manage VMs. Before running
an experiment, it creates the necessary VM image(s), which can
be stored locally or shared on VagrantCloud [3], an online box
repository where users share public boxes. Xanthus also supports
pre-existing images hosted on VagrantCloud, which can be further
customized through scripts. For example, in Listing 1, we use the
ubuntu/trusty64 image and customize it with the box_config
script. vm.ip defines the virtual IP address used during the exper-
iment. Xanthus boxes the VM once in the first run and uses the
materialized VM afterwards; this also provides a more efficient
out-of-box experience for those wishing to use the artifact since
they do not have to configure the machine for each experiment.
Users can upload the resulting Vagrant box to VagrantCloud.

1 config.vm :aws do |vm|

2 vm.on_aws = true

3 vm.aws_env_key_id = 'AWS_ACCESS_KEY_ID '

4 vm.aws_env_key_secret = 'AWS_SECRET '

5 vm.aws_key_pair_name = 'AWS_KEY_PAIR '

6 vm.aws_region = 'eu-west -2'

7 vm.aws_ami = 'ami -xxxxxxxxxxxxx '

8 vm.aws_instance_type = 'i3.large '

9 vm.aws_security_group = 'AWS_SG_1 '

10 end

Listing 2: Set up VMs on AWS

To enable large-scale, multi-host experiments, Xanthus works
seamlessly on Amazon EC2 (Listing 2); users simply need to switch
to the AWS mode (Line 2) and provide their EC2 credentials in the
configuration file to set up VMs in the cloud.

3.2 Specifying an Experiment

Each experiment is called a job, which consists of instantiation(s) of
VM image(s), execution of user-defined tasks assigned to particular
instances, and management of outputs (e.g., to retrieve audit logs).
A Xanthus workflow is composed of one or more jobs that can be
executed multiple times.

1 config.job :attack do |job|

2 job.iterations = 2

3 job.tasks = {server: [: server], client: [:pre , :camflow_start ,

:attack , :camflow_stop , :post]} # VM tasks

4 job.inputs = {server: ['ipscan_3 .5.5 _amd64.deb', 'exploit.py'

]} # VM inputs

5 job.outputs = {client: {config: '/etc/camflow.ini', trace: '/

tmp/audit.log'}} # VM outputs

6 end

Listing 3: Configure a job in Xanthus

Listing 3 is an example of a job configuration, in which a job
called attack is configured to run twice. During each iteration,
two VMs, server and client, are instantiated and run their re-
spective task(s). In Line 3, server runs a single task, defined in

config.script :server (similar syntax as in Listing 5), while
client has multiple tasks that run sequentially. A Xanthus task
allows users to logically encapsulate a single step in the experiment.
Line 4 defines two inputs to server, a Debian package and a Python
script, while Line 5 shows that we expect two outputs from client,
a configuration file and trace data.

Xanthus is a framework for cybersecurity experiments, so it is
important to ensure easy integration with popular security tools.
We show how users can readily use Xanthus to retrieve traces
during penetration testing using Metasploit, Armitage, and Cortana.
WithoutXanthus, a researcher would have tomanually 1) set up an
attacker and a victim machine, 2) log onto the attacker machine to
configure Metasploit and Armitage, 3) log onto the victim machine
to configure its audit system, 4) execute the attack, and 5) extract
audit data from the victim machine.

Security Example. Metasploit [25] is a well-known penetration test-
ing framework that helps security experts verify vulnerabilities,
manage security assessments, and improve security awareness. Ar-
mitage [25] is a scriptable cyberattack management tool for Metas-
ploit and a force multiplier (i.e., creates synergy) for red team op-
erations. Cortana is the scripting language behind Armitage that
automates the Metasploit framework and creates long running bots.

1 config.vm :victim do |vm|

2 vm.box = 'e314c/Metasploitable2 '

3 vm.version = '0.0.1 '

4 vm.ip = '192.168.33.8 '

5 end

6 config.vm :attacker do |vm|

7 vm.box = 'Sliim/kali -2018.1 - amd64 '

8 vm.version = '1'

9 vm.ip = '192.168.33.10 '

10 end

Listing 4: Configure attacker and victim VMs

In Listing 4, we configure an intentionally vulnerable version of
Ubuntu Linux VM called Metasploitable [35]. The Metasploitable
VM is designed specifically for testing security tools and demon-
strating vulnerabilities. We then configure a Kali Linux machine, a
security-oriented Linux distribution that pre-installs many useful
penetration testing tools, including Metasploit and Armitage. As
we are using existing images from the VagrantCloud, setting them
up is trivial, as illustrated in the listing.

1 config.job :cortana do |job|

2 job.iterations = 1

3 job.tasks = {victim: [: actions], attacker: [: attack]}

4 job.inputs = {attacker: ['local.prop', 'demo.cna']}

5 end

6 config.script :attack do

7 %q{%{

8 teamserver 192.168.33.10 password &

9 java -jar cortana.jar local.prop demo.cna

10 }}

11 end

Listing 5: Configure the adversarial scenario

Now, let’s assume that we wish to simulate an adversarial sce-
nario where the attacker exploits the FTP vulnerability in Metas-
ploitable and uses the vsftpd_234_backdoormodule in Metasploit
to install a backdoor and create a reverse shell payload to remotely
control Metasploitable. Listing 5 describes the experiment in Xan-
thus. The attacker consists of a single task, attack that launches

the attack with a Cortana script. To run Cortana as a stand-alone
script, the attacker needs to set up an Armitage teamserver locally
on the VM. The user then specifies properties of the team server
by placing them in the file local.prop. The file demo.cna is the
Cortana script that runs the attack (Listing 6). It creates a virtual
Metasploit console that prepares the exploit and configures the pay-
load (e.g., setting up the remote host IP address through RHOST). To
show that our attack succeeds, the script registers two listeners, one
for when a reverse shell session is open and one for when the shell
responds to the whoami command. When the session_open event
triggers the listener, the attacker automatically sends a whoami
command to the victim and prints victim’s response on its console.

1 on shell_whoami {

2 println("[$+ $1 $+] I am: $3");

3 }

4 on session_open {

5 if (!-isshell $1)

6 return;

7 s_cmd($1, "whoami");

8 }

9 $console = console ();

10 cmd($console ,"use exploit/unix/ftp/vsftpd_234_backdoor");

11 cmd_set($console , %(RHOST => "192.168.33.8", RPORT => "21", TARGET

=> "0",PAYLOAD => "cmd/unix/interact"));

12 cmd($console , "exploit -j");

Listing 6: The Cortana script

Xanthus allows a researcher to easily run similar experiments
multiple times with different capture mechanisms and share precise
configurations with others. Xanthus’ modularized design allows
researchers to reuse their experimental setup, simply changing
e.g., Metasploit’s exploit module to create new experiments.

3.3 Package and Data Preservation

Xanthus enables push-button execution of the framework. The arti-
facts of the workflow, including user-supplied scripts and packages
(as defined in job.inputs) and experimental results and datasets
(as defined in job.outputs), are all bundled and archived locally.

1 config.github do |github|

2 github.repo = '<ADD GITHUB REPO >'

3 github.token = '<ADD GITHUB TOKEN >'

4 end

5 config.dataverse do |dataverse|

6 dataverse.server = '<ADD DATAVERSE BASE URL >'

7 dataverse.repo = '<ADD DATAVERSE NAME >'

8 dataverse.token = '<ADD DATAVERSE TOKEN >'

9 dataverse.subject = '<ADD DATAVERSE SUBJECT >'

10 end

Listing 7: Configure GitHub and Dataverse

Xanthus allows users to automatically share the collected exper-
imental data. For example, if the user provides a GitHub repository
address and an access token, it pushes the archive to GitHub au-
tomatically using Git Large File Storage (Listing 7). Xanthus also
supports automatic sharing via Dataverse [26], and we are working
on providing more archiving options. We have made an example
archive available at https://github.com/margoseltzer/wget-apt. The
archive contains a .xanthus file for push-button replicability. The
.xanthus file is the central orchestration file that controls the entire
pipeline described in this section. It contains metadata describing
the experiments and actionable instructions to 1) generate VM
images, 2) schedule tasks, 3) setup experiments, and 4) store and
upload data.

https://github.com/margoseltzer/wget-apt

4 RELATEDWORK

We are not the first to observe that cybersecurity research is threat-
ened by a lack of high-quality, easily-accessible datasets. For ex-
ample, Ghorbani et al. [45] evaluated 11 publicly-available traces
used by intrusion detection researchers and concluded that none
of the traces were comprehensive or reliable. Ghorbani et al. intro-
duced their own dataset (CICIDS2017) that leveraged their prior
work on systematic generation of IDS traces [46]. However, the
collection of the CICIDS2017 trace was manually orchestrated (and
thus non-replicable).

Despite the power of host-based intrusion detection, the security
community has traditionally paid more attention to network traces
than host ones. This bias may reflect the fact that host-based IDSes
are more recent inventions. DARPA IDEVAL is a well-known host
trace, but it has various deficiencies, such as poor diversity of exe-
cuted programs [30]. We know of only one more host-based dataset
that is widely used—the University of New Mexico dataset [2].
However, this dataset suffers from similar problems that hurt the
realism of the trace [42]. Other publicly-available host traces are ei-
ther application-specific [37] or suffer from low attack diversity and
coarse-grained trace information [7]; these datasets are studied by
only a few papers [14, 15]. Due to the lack of high-quality datasets,
many evaluations of host-based IDSes use private datasets [6, 27, 47]
or a mixture of public and private datasets [8, 30].

Prior critiques of network traces are equally applicable to host
traces. For example, several papers bemoan how a lack of documen-
tation prevents replicable generation of traces [39, 44, 49]. Deelman
et al. [9] discuss how best-practices in cybersecurity, e.g., applying
patches to address vulnerabilities, can change system functionality
in ways that might affect replicability, e.g., by changing the code
paths in the kernel that execute. From their discussion, we can
conclude that a replicable experiment must record not only the
software that was used, but also the set of patches and updates
that were applied to that software. Xanthus neatly sidesteps these
problems by implicitly recording them by packaging the entire
environment into a virtual machine.

Other practical frameworks [24] exist, but these systems focus on
re-running a computation to produce an identical output. Xanthus’
power lies in replicating a computation (i.e., the training and test
workloads) specifically not to produce an identical output, but to
produce a different trace of the same computation. To the best
of our knowledge, Xanthus is the first general framework that
enables replication of workloads that interact in complex ways
with host operating systems. While we focus here on its use for
evaluating IDSes, Xanthus can also be used to replicate results
from experimental computer systems.

5 DISCUSSION

Our Xanthus prototype is fully functional, and we have already
used it to evaluate Unicorn. For example, we used Xanthus to
generate an APT trace (§ 2.2.1). The traced APT attack exploited
a wget vulnerability (CVE-2016-4971) to install a corrupt Debian
package; once installed, the package contacted a command-and-
control server, and slowly exfiltrated data. We were able to evaluate
Unicorn’s operation with three different provenance collection
infrastructures by changing only a few lines of code in the configu-
ration script. Xanthus achieved the desired goals from Section 2.3:

• Replicability: Xanthus archives all of the information needed to
recreate a trace. For example, Xanthus records the environmental
scripts provided by the user, and the contents of the corrupt Debian
package. The Vagrant boxes that Xanthus outputs are sufficient
for a third party to replicate the original tracing conditions.

• Flexibility: In Xanthus, the selection of an audit framework is
orthogonal to the selection of the environmental conditions that
drive the system behavior in the trace. This flexibility makes it easy
to generate multiple datasets that use different logging mechanisms
to observe the same environmental setup. This is the feature that
allowed us to use different provenance systems in our evaluation.

• Longevity: Currently, VMs are considered best practice for long-
term digital preservation as the only requirement for running them
is a compatible hypervisor. Xanthus captures all necessary infor-
mation inside a VM.

• Usability: Xanthus’ script-based interface encourages the de-
sign of incremental, modular experiments. For example, as shown
in § 3.1, Xanthus scripts enable a user to directly configure a VM
and its applications. Xanthus also directly integrates with popular
penetration testing tools such as Metasploit (§ 3.2), allowing off-
the-shelf attacks to easily be added to a trace. Xanthus re-runs an
experiment using a single command.

• Shareability: Xanthus automatically pushes VM images to Va-
grantCloud and the rest of a dataset archive to GitHub.
The interested reader can find our APT dataset at https://github.
com/tfjmp/xanthus.

Xanthus improves dataset replicability, but does not automati-
cally improve dataset realism. Xanthus users are responsible for
ensuring that environmental scripts and VM configurations reflect
plausible real-life scenarios. Prior work on dataset fidelity [33, 45]
can help Xanthus users to create high-quality traces.

6 CONCLUSION

Xanthus is a practical tool for generating and sharing provenance
traces. By automating the minutiae of trace collection and bundling,
Xanthus enables the replicable evaluation of host-based intrusion
detectors.

AVAILABILITY

Xanthus is an open-source project, available at https://github.com/
tfjmp/xanthus under an MIT license. Xanthus’s Ruby gem is freely
distributed at https://rubygems.org/gems/xanthus. The CamFlow
provenance capture system is available at http://camflow.org (GPL
v2 license). The SPADE provenance capture system is available at
https://github.com/ashish-gehani/SPADE (GPL v3 license).

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). Cette recherche a
été financée par le Conseil de recherches en sciences naturelles et
en génie du Canada (CRSNG). This material is based upon work
supported by the National Science Foundation under Grants ACI-
1440800, ACI-1450277 and ACI-1547467. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

https://github.com/tfjmp/xanthus
https://github.com/tfjmp/xanthus
https://github.com/tfjmp/xanthus
https://github.com/tfjmp/xanthus
https://rubygems.org/gems/xanthus
http://camflow.org
https://github.com/ashish-gehani/SPADE

REFERENCES

[1] Transparent computing engagement 3 data release, accessed May 12, 2020. https:
//github.com/darpa-i2o/Transparent-Computing.

[2] University of New Mexico system call dataset, accessed May 12, 2020. https:
//www.cs.unm.edu/~immsec/systemcalls.html.

[3] VagrantCloud, accessed May 12, 2020. https://app.vagrantup.com/boxes/search.
[4] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, and Andy Hopper.

Opus: A lightweight system for observational provenance in user space. In
Workshop on the Theory and Practice of Provenance. USENIX, 2013.

[5] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. Trustworthy
whole-system provenance for the linux kernel. In Security Symposium, pages
319–334. USENIX, 2015.

[6] Suresh N Chari and Pau-Chen Cheng. Bluebox: A policy-driven, host-based
intrusion detection system. Transactions on Information and System Security,
6(2):173–200, 2003.

[7] Gideon Creech and Jiankun Hu. Generation of a new ids test dataset: Time to
retire the kdd collection. InWireless Communications and Networking Conference
(WCNC), pages 4487–4492. IEEE, 2013.

[8] Gideon Creech and Jiankun Hu. A semantic approach to host-based intru-
sion detection systems using contiguous and discontiguous system call patterns.
Transactions on Computers, 63(4):807–819, 2014.

[9] Ewa Deelman, Victoria Stodden, Michela Taufer, and Von Welch. Initial thoughts
on cybersecurity and reproducibility. In International Workshop on Practical
Reproducible Evaluation of Computer Systems, pages 13–15, 2019.

[10] Hussein M Elshafie, Tarek M Mahmoud, and Abdelmgeid A Ali. Improving
the performance of the snort intrusion detection using clonal selection. In
International Conference on Innovative Trends in Computer Engineering (ITCE),
pages 104–110. IEEE, 2019.

[11] Ashish Gehani and Dawood Tariq. Spade: Support for provenance auditing in
distributed environments. In International Middleware Conference, pages 101–120.
ACM/IFIP/USENIX, 2012.

[12] Brendan Gregg and Jim Mauro. DTrace: Dynamic tracing in Oracle Solaris, Mac
OS X, and FreeBSD. Prentice Hall Professional, 2011.

[13] Philip J Guo and Margo Seltzer. Burrito: Wrapping your lab notebook in com-
putational infrastructure. In Workshop on the Theory and Practice of Provenance.
USENIX, 2012.

[14] Waqas Haider, Gideon Creech, Yi Xie, and Jiankun Hu. Windows based data sets
for evaluation of robustness of host based intrusion detection systems (ids) to
zero-day and stealth attacks. Future Internet, 8(3):29, 2016.

[15] Waqas Haider, Jiankun Hu, Jill Slay, Benjamin P Turnbull, and Yi Xie. Generating
realistic intrusion detection system dataset based on fuzzy qualitative modeling.
Journal of Network and Computer Applications, 87:185–192, 2017.

[16] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
Unicorn: Runtime provenance-based detector for advanced persistent threats. In
Symposium on Network and Distributed System Security (NDSS), 2020.

[17] Xueyuan Han, Thomas Pasquier, Tanvi Ranjan, Mark Goldstein, and Margo
Seltzer. Frappuccino: Fault-detection through runtime analysis of provenance.
In Workshop on Hot Topics in Cloud Computing (HotCloud). USENIX, 2017.

[18] Xueyuan Han, Thomas Pasquier, and Margo Seltzer. Provenance-based intrusion
detection: opportunities and challenges. In Workshop on the Theory and Practice
of Provenance. USENIX, 2018.

[19] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. Nodoze: Combatting threat alert fatigue with
automated provenance triage. In Symposium on Network and Distributed System
Security (NDSS), 2019.

[20] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
Towards scalable cluster auditing through grammatical inference over prove-
nance graphs. In Symposium on Network and Distributed System Security (NDSS),
2018.

[21] Poulmanogo Illy, Georges Kaddoum, Christian Miranda Moreira, Kuljeet Kaur,
and Sahil Garg. Securing fog-to-things environment using intrusion detection
system based on ensemble learning. InWireless Communications and Networking
Conference (WCNC), pages 1–7. IEEE, 2019.

[22] Xuxian Jiang, AAronWalters, Dongyan Xu, Eugene H Spafford, Florian Buchholz,
and Yi-Min Wang. Provenance-aware tracing of worm break-in and contamina-
tions: A process coloring approach. In International Conference on Distributed
Computing Systems (ICDCS), pages 38–38. IEEE, 2006.

[23] Xuxian Jiang, Dongyan Xu, Helen J Wang, and Eugene H Spafford. Virtual
playgrounds for worm behavior investigation. In International Workshop on
Recent Advances in Intrusion Detection, pages 1–21. Springer, 2005.

[24] Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead,
Kathryn Mohror, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. The
popper convention: Making reproducible systems evaluation practical. In Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 1561–1570.
IEEE, 2017.

[25] David Kennedy, Jim O’gorman, Devon Kearns, and Mati Aharoni. Metasploit:
The penetration tester’s guide. No Starch Press, 2011.

[26] Gary King. An introduction to the dataverse network as an infrastructure for
data sharing, 2007.

[27] Peter Lichodzijewski, A Nur Zincir-Heywood, and Malcolm I Heywood. Host-
based intrusion detection using self-organizing maps. In International Joint
Conference on Neural Networks, volume 2, pages 1714–1719. IEEE, 2002.

[28] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Korba, and Kumar
Das. The 1999 darpa off-line intrusion detection evaluation. Computer Networks,
34(4):579–595, 2000.

[29] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. Towards a timely causality analysis for enterprise
security. In Symposium on Network and Distributed System Security (NDSS), 2018.

[30] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting intrusions
through system call sequence and argument analysis. Transactions on Dependable
and Secure Computing, 7(4):381–395, 2010.

[31] Matthew V Mahoney and Philip K Chan. An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection. In International
Workshop on Recent Advances in Intrusion Detection, pages 220–237. Springer,
2003.

[32] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. Fast memory-efficient
anomaly detection in streaming heterogeneous graphs. In SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1035–1044. ACM,
2016.

[33] JohnMcHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM Transactions on Information and System Security, 3(4):262–294, 2000.

[34] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, R Sekar, and VN Venkatakr-
ishnan. Holmes: real-time apt detection through correlation of suspicious infor-
mation flows. In Symposium on Security and Privacy (SP), pages 1137–1152. IEEE,
2019.

[35] HD Moore. Metasploitable 2 exploitability guide. Retrieved June, 27:2013, 2012.
[36] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I

Seltzer. Provenance-aware storage systems. In Annual Technical Conference,
pages 43–56. USENIX, 2006.

[37] Syed Shariyar Murtaza, Wael Khreich, Abdelwahab Hamou-Lhadj, and Mario
Couture. A host-based anomaly detection approach by representing system calls
as states of kernel modules. In International Symposium on Software Reliability
Engineering (ISSRE), pages 431–440. IEEE, 2013.

[38] National Academies of Sciences, Engineering, and Medicine et al. Reproducibility
and replicability in science. National Academies Press, 2019.

[39] Joshua Ojo Nehinbe. A critical evaluation of datasets for investigating idss and
ipss researches. In International Conference on Cybernetic Intelligent Systems (CIS),
pages 92–97. IEEE, 2011.

[40] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. Practical whole-system provenance capture. In
Symposium on Cloud Computing, pages 405–418. ACM, 2017.

[41] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant,
David Eyers, Jean Bacon, and Margo Seltzer. Runtime analysis of whole-system
provenance. In Conference on Computer and Communications Security (CCS).
ACM, 2018.

[42] Marcus Pendleton and Shouhuai Xu. A dataset generator for next generation sys-
tem call host intrusion detection systems. InMilitary Communications Conference
(MILCOM), pages 231–236. IEEE, 2017.

[43] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. Hi-Fi:
Collecting high-fidelity whole-system provenance. In Annual Computer Security
Applications Conference, pages 259–268. ACM, 2012.

[44] Haakon Ringberg, Matthew Roughan, and Jennifer Rexford. The need for sim-
ulation in evaluating anomaly detectors. SIGCOMM Computer Communication
Review, 38(1):55–59, 2008.

[45] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization. In
International Conference on Information Systems Security and Privacy (ICISSP),
pages 108–116, 2018.

[46] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward de-
veloping a systematic approach to generate benchmark datasets for intrusion
detection. Computers & Security, 31(3):357–374, 2012.

[47] Xiaokui Shu, Danfeng Daphne Yao, Naren Ramakrishnan, and Trent Jaeger. Long-
span program behavior modeling and attack detection. Transactions on Privacy
and Security (TOPS), 20(4):12, 2017.

[48] Richard P Spillane, Russell Sears, Chaitanya Yalamanchili, Sachin Gaikwad, Man-
junath Chinni, and Erez Zadok. Story book: An efficient extensible provenance
framework. In Workshop on the Theory and Practice of Provenance. USENIX, 2009.

[49] Mahbod Tavallaee, Natalia Stakhanova, and Ali Akbar Ghorbani. Toward credi-
ble evaluation of anomaly-based intrusion-detection methods. Transactions on
Systems, Man, and Cybernetics, 40(5):516–524, 2010.

[50] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, C Gunter, et al. You are what you
do: Hunting stealthy malware via data provenance analysis. In Symposium on
Network and Distributed System Security (NDSS), 2020.

https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://www.cs.unm.edu/~immsec/systemcalls.html
https://www.cs.unm.edu/~immsec/systemcalls.html
https://app.vagrantup.com/boxes/search

	Abstract
	1 Introduction
	2 Motivation
	2.1 Provenance-Based Intrusion Detection
	2.2 404: Data Not Found
	2.3 An Ideal Framework

	3 Xanthus Framework
	3.1 Virtual Environment Setup
	3.2 Specifying an Experiment
	3.3 Package and Data Preservation

	4 Related Work
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

