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Abstract
Recent advances in program synthesis convinced us that it
was the right time to transform the process of porting an
operating system into a program synthesis problem. We set
out to synthesize the needed machine dependent code for
an existing operating system. This undertaking proved far
more challenging than we anticipated. We summarize our
experience and lessons learned and propose next steps in
realizing such an undertaking.

1 Introduction
Porting operating systems is tedious. For much of the past
two decades, we’ve been able to ignore this problem: ev-
eryone ran x86 or x86-compatible hardware and the only
porting we did was upgrading to new versions of the x86
architecture. The end of Moore’s Law changed all this. Today
we have different kinds of CPUs (ARM, x86, RISC-V), spe-
cial purpose devices (GPUs, TPUs, DSPs), and customizable
devices, such as FPGAs and ASICs. Or, in the words of Hen-
nessy and Patterson, we’ve entered the “New Golden Age
for Computer Architecture” [11]. Many of these new devices
require systems software, returning us to the business of
porting operating systems.
In parallel, program synthesis and verification have be-

come more practical. The convergence of hardware diversity
and breakthroughs in program synthesis convinced us that
it was time to synthesize the machine dependent parts of
an operating system. We decided to start with an existing
operating system; this was our first mistake. In hindsight, we
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should have written something tiny on which to experiment.
We will discuss the ramifications of this choice in section 3.
We decided to use Barrelfish [2], because its decomposition
into a CPU driver and user-level monitor seemed ideal in its
separation of machine dependent and machine independent
code. Unfortunately, this meant that we were working with
completely unfamiliar system. (However, the Barrelfish team
was incredibly helpful and accessible.)

On the program synthesis side, we initially decided to
start with the Rosette [28] symbolic virtual machine to de-
velop our domain specific languages for specifying operating
system functionality and describing machine architectures.
Rosette is a metalanguage that allows a user to design solver-
aided DSLs. Implementing a DSL under Rosette allows quick
application of synthesis algorithms (such as CEGIS) by using
an SMT (Satisfiability Modulo Theories) solver under the cov-
ers (e.g. Z3 [6]), without requiring the DSL implementation
to formulate SMT queries or handle solver feedback such
as raw counterexamples. In particular, our initial implemen-
tation generated Rosette code from a machine description.
Then, it used Rosette to do symbolic execution of the as-
sembly language and find an assembly program satisfying a
specification.
Rosette worked well for small synthesis problems: those

doing only pure register manipulation with no memory ac-
cess and up to three or four instructions. As we increased
the scope of our synthesis targets, we ran into efficiency
problems: some of our doing and some inherent to assembly
synthesis. Pointer and memory handling turned out to be an
important source of slowness. We wanted to explore differ-
ent approaches to symbolic execution and memory handling,
but found that doing so with Rosette would need substantial
engineering across Rosette’s symbolic execution abstraction
layer. Ultimately, we chose to write our own symbolic exe-
cution engine in OCaml.
This engine is part of our synthesis engine, which is in

turn part of an ecosystem of languages and code generation
tools. For perspective, consider what might be involved in
creating a single kernel source file. Figure 1 shows a (simpli-
fied) diagram. We generate code as basic blocks in assembler;
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Figure 1. Sample synthesis data flow

require value wordsize: int
require value ret: wordsize reg
require value wordzero: wordsize bitvec
require function interrupts_are_on: () bool
block cpu_irqon {

pre: interrupts_are_on() == false

post: interrupts_are_on() == true }

block setret_zero {

pre: true

post: *ret == wordzero }

Figure 2. Two Alewife specifications: to enable interrupts,
and to set the return value register to zero.

we have multiple code generation tools. Grayling is a special-
purpose compiler for generating context switch code; Nau-
tilus generates calling sequences and function prologues and
epilogues. Synthesis proceeds from machine-independent
specifications written in our specification DSL Alewife and a
machine description written in our description language Cas-
siopea1 [12]. A block composition tool, Grouper, collects the
blocks and produces the final output. Our synthesis engine
can synthesize small components from preexisting operating
systems for multiple architecture platforms.
Figure 2 shows two small Alewife specification blocks,

which enable interrupts and assign zero to the return value
register, respectively. Alewife declares pre- and postcondi-
tions for a block of assembly code as well as abstract states
and functions which are then concretely defined in Cassiopea
for each machine.

Our goal in writing this paper is to expose the challenges
that arise in synthesizing operating system code, share our
experience, and propose future directions. Although our
undertaking was overly ambitious, we continue to believe
that the future of OS portability lies in program synthesis.
In the next section, we give brief overviews of modern

program synthesis and of synthesis in operating systems. In
section 3 we discuss our own blunders in a bit more detail
1Cassiopea is named after a jelly(fish), not the mythological queen, and is
spelled accordingly.

before moving to section 4, which outlines the fundamental
challenges in OS synthesis. Section 5 suggests ways forward,
and we conclude in section 6.

2 Background
2.1 Modern Program Synthesis
Modern synthesis dates from 2006 with SKETCH [26]. A
“sketch” is a partial program with textual “holes” in it that
must be replaced with program elements. SKETCH and its
descendents combine this partial program with a specifi-
cation of the missing functionality and search the space
of possible programs for an implementation, using auto-
mated verification to check for correctness. If a candidate
program satisfies the specification, synthesis is complete;
if not, the verification procedure produces a counterexam-
ple to factor into finding the next candidate. This approach
evolved into “counter-example guided inductive synthesis”
or CEGIS [25]. We adopted the CEGIS algorithm for synthe-
sizing small blocks of machine-dependent operating systems
code; we construct full kernel source files from collections
of code blocks using a technique resembling sketching.
We did not adopt iterative techniques that require user

interaction during synthesis, such as iterative refinement [3]
or input/output synthesis (e.g., programming-by-example),
as they seemed poorly matched for generating assembly
code [8, 10]. Although we are not currently using hybrid
techniques that combine multiple synthesis approaches, we
have begun experimenting with deductive synthesis and
have reason to believe that incorporating deductive syn-
thesis will be useful. However, existing techniques, such as
FlashMeta [19], which combine inductive synthesis with in-
put/output examples, do not seem to be quite appropriate.
Instead, we intend to use similar deductive techniques to
constrain CEGIS.

Other approaches to constraining and ordering the search
space, such as Feng et al.’s Neo [7], which combines sketching-
style CEGIS with deep learning, derived from Balog et al.’s
DEEPCODER [1], could prove helpful.

Another approach, reactive synthesis [16], allows for the
synthesis of code that responds to changes in a finite input
state by updating a derived output state according to a spec-
ification. This also does not fit our environment very well;
in particular the processor state we interact with is not an
independent automaton.

2.2 Synthesis in Operating Systems
Reactive synthesis is themethodology behind the Termite/Ter-
mite2 device driver synthesis project [22, 23], which is the
main prior application of synthesis to operating system code.
Device drivers pose a problem rather different from the one
we address. The synthesis problem for drivers is framed as
the driver code reacting to changes triggered by either the
OS or the hardware device. Most of our synthesis problems
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have one of two forms: either update the CPU state in a par-
ticular way when triggered by the OS or vice versa; in both
cases what needs to be synthesized is not the choice of up-
date but the specific way to get it done at the machine level,
which Termite2 does not handle. (Termite2 is thus almost
completely complementary to our work.)

There is a long history of generating code to marshal and
unmarshal messages [21, 24]. However, this form of code
generation bears little resemblance to modern synthesis; it is
more accurately described as compiling an interface descrip-
tion language. Similarly, Massalin’s Synthesis kernel [20]
and the Scout operating system [14] use runtime code gen-
eration to create specialized code for fast-path execution.
These efforts are also unlike modern synthesis in that they
specialize preexisting general purpose code into streamlined
versions of particular paths through the kernel or network
stack.

3 Our Mistakes
We divide the challenges that arose in this project into two
categories: those self-inflicted and those fundamental to the
task. We include the problems we brought onto ourselves to
help others avoid making the same mistakes.

As mentioned above, we chose to focus on porting a real,
fully-functional operating system. Our initial goal was to be
able to run a large, complex Java application on the synthe-
sized operating system. Thus, we selected our system based
on its ability to run a JVM. While courageous, this was fool-
ish.We greatly underestimated just how difficult it was going
to be to synthesize the tiniest pieces of an operating system,
let alone a sufficiently complete machine dependent layer to
run a JVM. We should have selected a few small pieces of
functionality from the complex application, developed them
as standalone C programs, and then selected a system that
could feasibly run them. The fallout from this mistake was
significant. We invested an enormous amount of time learn-
ing a large, new system. We wasted time researching JVMs
— which ones might run on Barrelfish, which ones were suf-
ficient to run the application, etc. None of this furthered our
real research goal.

More fundamentally, therewas evidence frompast projects
that undertaking such an audacious project would have been
significantly more feasible if using a system designed for the
task. Massalin’s Synthesis kernel [20], which used runtime
code generation (compilation, not synthesis in the modern
sense), to produce fast-path custom implementations of com-
mon behaviors, is a great example. They did not try to add
runtime code generation to an existing kernel, but instead
developed a kernel specifically designed for the task. In ret-
rospect, a kernel designed for synthesis would have a much
cleaner API between machine dependent and machine inde-
pendent code and it could be built to minimize the amount
of assembly code (see subsection 4.3).

Lesson 1: One miracle per program2. In other words, focus
on the core research contribution to avoid being seduced into
grandiose ambitions.

The second bigmistake wemadewas not modeling all data
as bitvectors. All machines use machine integers of some
fixed size, which in the SMT solver can be translated into
bitvectors. However, solvers also support reasoning about
mathematical integers. It seemed attractive to treat some
values as bitvectors, such as bits within registers (e.g., when
setting/clearing the interrupt bit in a status word), and other
values as integers, such as the memory offset index in a load
or store instruction. Although most SMT solvers provide con-
versions from integer to bitvector and back, reasoning about
the conversion is time-consuming. Mixing bitvectors and
integers during synthesis leads to poor performance in the
SMT solver. Furthermore, some SMT solvers, such as Boolec-
tor [5], do not provide integer arithmetic support. Early on,
we convinced ourselves to treat some values as integers; then
we encountered the overhead in conversion and the resulting
performance problems. We probably would have benefited
greatly from early experimentation that revealed how much
mixed representation cost us.

Lesson 2: Experiment early and often. When making funda-
mental design and/or modeling decisions, gather data on the
downstream effects.

The third mistake was trying to use assembly language for
everything. We felt that since we needed assembly language
for some things that we might as well use it for everything.
That way we would not have to develop two of everything.
We significantly underestimated the difficulties of handling
assembly language relative to imperative higher-level lan-
guages. This cost us when we were ready to move beyond
toy examples.
Lesson 3: It is good to keep things simple; but it is not so

good to put all your eggs in one basket in the process.

4 Fundamental Challenges
There are two aspects of OS synthesis that make the problem
more challenging than other synthesis tasks: some tasks are
fundamentally difficult to specify, and for others, the needed
output is large leading to scalability issues. Synthesizing
assembly, in particular, greatly exacerbates scalability chal-
lenges (subsection 4.3). Naturally, some parts of the operating
system exhibit both challenges.3

4.1 Specification Challenges
Conventional program synthesis tends to produce programs
that compute things, e.g., formulas, functions over data struc-
tures, or numerical methods. However, operating systems

2This idea is not original to us, but we failed to find an original citation for
it.
3 Thanks to James Bornholt for articulating this so clearly for us.
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do not compute things; the machine dependent parts es-
pecially do not compute things. Instead, they change state.
While some of these state changes are easy to specify, such
as turning interrupts on, some are difficult to specify in a
machine-independent manner, such as initializing the proces-
sor at boot time. And others are more challenging outright,
such as flushing the instruction cache. Meanwhile, the need
to model machines at the register level means our machine
description language is register transfer language (RTL) style,
which itself makes some of these problems more difficult.

The difficulty and complexity of initializing the processor
at boot time varies widely from architecture to architecture.
So does the amount and nature (and even the location) of
the machine state that must be adjusted. The worst case
is probably the x86, where the complete initialization se-
quence involves not only transiting through multiple proces-
sor modes that do not even use the same instruction sets, but
also initializing a variety of in-memory data structures used
by the processor at runtime for entirely machine-dependent
purposes. (This is in addition to other state that reflects
machine-independent concepts, e.g. caches and page tables.)
No single aspect of this initialization is overly hard to specify
as long as the specs are machine-dependent so they can refer
to the machine-dependent concepts. However, it is difficult
to write anything machine-independent about it.
However, it gets worse. While RAM caches are perhaps

less hands-on today than in the past, kernels must still manip-
ulate them at times, such as when reading code into memory.
This requires specifications for both the available cache con-
trol instructions and the kernel’s cache-control interface, so
that the correct cache lines are selected and the correct ac-
tions taken upon them. Unfortunately, cache state in modern
CPUs is complicated and varies even between models of the
same architecture. Often the details are not publicly avail-
able. Describing the exact cache hierarchy is not feasible;
and even if it were, the resulting model would be too large
for a synthesis engine to process in a reasonable length of
time. Meanwhile an RTL-style description gives little facility
for abstraction; existing work on modeling caches focuses
on timing behavior [29] and on coherence protocols [13],
not on management and control.

Specification of the behavior of timers and timer registers
is also difficult, especially in RTL. Today most CPUs have
on-chip timers and OSes want to use them for time-slicing.
Such a timer might work by having a register that decre-
ments at the CPU clock rate, generating an interrupt when
the register reaches zero. Alternately, some architectures im-
plement timers with one register that increments at the CPU
clock rate and another that specifies a value at which the
timer should generate an interrupt. A machine-independent
specification must account for both of these, and probably
various other idioms. This introduces myriad problems. First,
in RTL, it is difficult to handle registers that update sponta-
neously. Second, one must be able to relate the tick rate to

external time units. Third, one has to figure out how to spec-
ify that the value to be loaded into a register is a tick count
so that the synthesizer can select an appropriate register.
And fourth, one also has to be able to specify what it means
to trigger an interrupt, although this burden can perhaps
be shifted to machine-independent code. Is it necessary to
include temporal logic in the synthesis framework in order
to be able to handle timers? This remains unclear.
Lesson 4: There is a reason some things are in the machine

dependent layer; they are, sometimes, not only machine depen-
dent, but machine specific.

A second problem related to specification is that for some
things, the amount of effort required to specify and synthe-
size behavior far exceeds the amount of effort needed to write
the code by hand, leading to a truly awful power-to-weight
ratio. The clearest example of this is, perhaps, memory bar-
rier instructions. Concurrent memory models are difficult to
specify [4], and using those models to specify the behavior
desired by an OS is difficult as well. Code synthesis over
these models may also be problematic. But in all cases the
output of synthesis is a single instruction, one from a set of
at most a small handful offered by the architecture. Writing
down the instruction by hand is both easier and faster. One
saving grace is that the modeling gives some formal assur-
ance that the instruction selected is the correct one out of the
possible memory barriers; but even this is only as good as the
specification of the behavior expected by the OS. The cost
of the OS specification can be amortized over many ports,
but even then, each processor’s memory model must still be
converted to a compatible formalism.

Lesson 5: If you are going to write specifications that are far
longer and more difficult to write than the synthesized code,
you really need a lot of different implementations that can
leverage those specifications.

4.2 Scalability Challenges
While some things are difficult to specify, other are con-
ceptually easy to specify, but push the scalability limits of
synthesis tools. For example, a context switch is conceptually
simple: machine state is copied to some location in memory
and state in another location of memory is loaded into the
machine. Many architectures have 32 registers; generally on
a trap nearly all of these need to be saved, and usually some
additional special-purpose or control registers will need to
be saved too. On most architectures each one of these takes
at least one instruction and some will take two (or more), so
there will be on the order of 40 instructions just to do the save.
An assembly trap handler needs to do other things as well.
For example, MIPS has 32 registers, and on NetBSD 9 the
general trap handler4 varies considerably with kernel build
options but requires approximately 60 instructions for trap

4kern_gen_exception for mips3 and up.
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entry. This is close to an order of magnitude more instruc-
tions than we’ve been able to synthesize to date. We ended
up abandoning synthesis for context switches and instead
wrote a compiler (Grayling, mentioned above) specifically
for the bulk register moves found in context switch code.
It uses machine-independent register group specifications
and machine-dependent lists of registers to generate both
the load and save assembly blocks and the C data structures
(trap frames, jmp_buf, etc.) upon which they operate.

Lesson 6: Some components of the machine dependent operat-
ing system are not amenable to program synthesis techniques;
consider a hybrid approach before devoting significant time to
synthesizing them.

In section 1, we mentioned one reason that we ultimately
abandoned Rosette. Besides exploring other approaches to
symbolic execution, we also hoped to gain additional trans-
parency for the purposes of identifying scalability bottle-
necks. Mixing integer and bitvector arithmetic resulted in
poor performance on the part of the Z3 solver, which Rosette
uses under the covers to implement CEGIS. In particular,
Nelson-Oppen theory [15] combination, the algorithm used
by Z3 for combining theories, only allows equality constraint
propagation between theories, in this case linear arithmetic
and finite bitvectors. We gave the SMT solver queries that
combined the two theories in a way that required sharing
arithmetic constraints, which is algorithmically impossible
in current solvers. Instead, Z3 was forced to use an inefficient
implementation of bitwise integer arithmetic, often called
“bit-blasting”, that resulted in solver performance an order
of magnitude slower than expected. However, because Z3 is
used as a library by Rosette, we could not initially tell which
of Rosette, Z3, or both, was the source of our performance
bug, nor was it immediately clear how to fix the bug.
Lesson 7: Despite recent advances in efficient SMT solving,

tools that use solvers under the covers can still yield unpre-
dictable behavior, particularly when misused.
Corollary 7: Examine exactly what solver queries you are

generating and the performance of your solver on them. The
results may be surprising (and problematic).

4.3 Assembly Language is Hard to Synthesize
Synthesizing assembly code creates unique scalability chal-
lenges when using symbolic execution and CEGIS. In par-
ticular, assembly languages generally have the following
characteristics that differ from higher-level languages: First,
all state is global. Second, all data is untyped and unstruc-
tured. Third, some arguments are drawn from exceptionally
large spaces, such as bitvectors, which are exponential in the
number of bits. Finally, the space of programs is exception-
ally large, even when the program size is small. Even worse,
because all state is global and data untyped, the input state
to any instruction depends on all preceding instructions. In
contrast, higher-level languages typically limit accessible

state using scoping and data encapsulation (such as objects),
have strong datatypes that restrict the space of arguments to
an operator or function, and restrict the number of operators
syntactically within the language.

In combination, these characteristics of assembly languages
cause a combinatorial explosion in the number of possible
instructions that must be considered. That is, the space of
possible instructions is combinatorial in the number of differ-
ent instructions (i.e., opcodes), the number of registers, the
number of memory locations, and the full range of allowed
symbolic values (which is exponential in the number of bits
representing those values). Worse yet, the number of poten-
tial instruction sequences, that is, the size of the program
space, is exponential in the length of the sequence.

Because inductive synthesis must choose a program from
the space of all possible programs, this complexity is both
particular and fundamental to assembly program synthesis,
and not present in assembly program verification. In con-
trast to synthesis, verifying against a specification need only
consider the single concrete assembly program involved.
Correspondingly, we have observed that guessing a single
program candidate from a set of input/output counterexam-
ples is several orders of magnitude slower than verifying a
concrete program against a specification.
Efficient pointer and memory handling is troublesome

even for purpose-built symbolic execution engines. Rosette’s
generic symbolic execution engine worked well for our prob-
lem instances without memory, but with memory involved,
it became slow. In a real machine, pointers are bitvector
values. Reading from one in symbolic execution generates
an instant explosion: a 32-bit symbolic bitvector pointer ad-
dresses 232 different memory addresses and each must be
considered separately. Some other more abstract representa-
tion is needed.
Hence, we now use a purpose-built symbolic execution

engine and method for modeling memory. We model mem-
ory as a small set of problem-specific disjoint regions, and
represent pointers as a region paired with an integer off-
set. At synthesis time, the integer offset is represented as a
bitvector of appropriate width. This approach was inspired
by memory abstractions used in C and C-related tools, such
as Cyclone’s [27] explicitly declared memory regions. While
this change has improved our scalability in the presence of
memory, we continue to face fundamental challenges as we
advance our engine’s heuristics.
Lesson 8: Synthesizing assembly is fundamentally hard.

State is global and untyped, leading to a combinatorial ex-
plosion.

5 A Way Forward
Shouldwe give up onOS synthesis, or is there away forward?
We believe strongly that it is too early to give up; many
avenues of attack remain open.
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First, much can be done at the solver level. Bitvectors and
integers are fundamentally different from a logic perspective,
but they are nonetheless both representations of numbers
and interoperability is useful in many settings beyond just
ours. We have several suggested directions for applied solver
research.
One is new approaches and better support in general for

mixed theories, such as for integers and bitvectors where dif-
ferent SMT theories can refer to the same values and where
many operations and values map cleanly from one theory to
the other. Another is better support for machine integers, in
the sense that neither the theory of linear arithmetic on Z or
the theory of bitvectors is the best model; rather, machine
integers are Z/232 (or 264) in which linear arithmetic is still
decidable, and being able to reason about this directly would
be extremely helpful. Also, Boolector [5] is a domain-specific
solver for booleans and bitvectors and has been very helpful;
a domain-specific solver specifically for machine integers
and problems involving many machine integers would be
even more helpful.
Second, at the synthesis engine level, there are several

ways forward. One is to use a wider variety of target lan-
guages. Some kernel code must unavoidably be written in
assembler, but traditionally much machine-dependent kernel
code is written in machine-dependent C. C is semantically
complicated but a restricted DSL of a similar nature would
be a much less hostile environment than assembly language.
Another approach is to pursue deductive synthesis tech-

niques [17] [18] [19] that can break large synthesis problems
down into components small enough to use with CEGIS.
Similarly, investigating ways to identify appropriate inter-
mediate machine states and use those to subdivide synthesis
problems would also help.

At the specification level, the critical point is that the speci-
fication problem for synthesis is the same as the specification
problem for verification. Thus, we ought to be able to adopt
some of the techniques that have been tried in that domain,
such as layers of increasingly-detailed semi-executable spec-
ifications [9]. Specifying the behavior of machine-dependent
code requires a framework for reasoning about the machine-
independent abstractions that model the machine-dependent
code. Then one can create a sample executable specification
for an idealized machine and use it to extract predicates
about the abstract state before and after.

In the case of fundamentally machine-specific operations,
such as x86 segment table initialization, it will be necessary to
write additional specifications to define intermediate steps in
a larger machine-independent operation. This is not actually
horrible. It is still better than manually writing the code that
initializes the segment tables.

In the OS, it appears that the advent of synthesis changes
the design tradeoffs for the interface to machine-dependent
code. Traditionally, the primary consumers of the interface
definition are humans writing new ports, so the interface

has been designed to keep it accessible to humans: narrow
(relatively few elements), high level, and perhaps excessively
general with a comprehensible level of detail. A human can
extract further detail when needed by referring to other
existing ports and can cope with excessive generality by bor-
rowing their code. (In fact, the traditional method for porting
the BSD virtual memory system’s machine-dependent mod-
ule (“pmap”) is to copy an existing one for a similar machine
and edit it as needed.) It is less important that the interface
be precise and specific than that it be easy to follow.
However, if the machine-dependent code is going to be

synthesized, then the primary consumer is the code synthe-
sis engine, and the interface design should match: it should
be as low-level and specific as possible. It can be broad and
freely contain many, many things; synthesizing many small
things is much easier than synthesizing a few large things.
This seems to indicate that the interface should be lowered,
perhaps substantially, and all available excess generality
squeezed out.

This leads to the final point, which is that a kernel intended
to be ported by synthesis should be written for the purpose,
just as existing kernels that have been verified have been
written for the purpose. In particular, we intend to move for-
ward following three principles: 1) Focus on small, formally
specified OS components, 2) Target new, emerging hardware
that is most in need of system software support (e.g., ASICs,
FPGAs), and 3) Embrace a wide range of techniques for gen-
erating code that cover the spectrum from compilation to
modern synthesis. Stay tuned for further progress.

6 Conclusion
Trying to synthesize the entire machine dependent layer of a
real operating system was an audacious undertaking. We did
not succeed at that, but we have, in fact, built an ecosystem
of tools for synthesizing machine specific operating system
functionality. Although there were many obstacles, we con-
tinue to believe it was a worthwhile undertaking and intend
to take our own suggestions and undertake a slightly less
ambitious project in a much more methodical fashion. We
could not, however, have done so without going through
the experience discussed here. We hope we have not scared
potential collaborators away, but rather that others will join
us in this effort.
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