
Parallel Assembly Synthesis

Jingmei Hu1[0000−0002−4434−5057], Stephen Chong1[0000−0002−6734−5383], and
Margo Seltzer2[0000−0002−2165−4658]

1 Harvard University, Cambridge MA 02138, USA
crystaljmhu@gmail.com, chong@seas.harvard.edu

2 University of British Columbia, Vancouver BC, Canada
mseltzer@cs.ubc.ca

Abstract. Program synthesis offers an attractive alternative to the
intricate and tedious process of writing assembly programs manually. As-
sembly program synthesis automatically generates implementations, given
a high-level formal specification and a machine description. However, its
limited scalability prevents widespread adoption. Automatic paralleliza-
tion improves program synthesis in general, but parallelizing assembly
synthesis is nontrivial as the realities that data are untyped and all state
is global lead to an enormous search space and prevent straightforward
decomposition into separable sub-problems that can be run in parallel.
We present PASSES, a Parallel Assembly Synthesis System Exploiting
Subspaces. PASSES uses five heuristics to transform an original assembly
synthesis problem into a set of sub-problems; it runs multiple synthesis
sub-problems in parallel and constructs the final result by combining
them. We evaluate PASSES on 26 general bit manipulation assembly
programming problems and 140 machine-dependent use cases from two
operating systems. Compared to an existing assembly synthesis tool and
a state-of-the-art parallel SMT solver, all five heuristics in PASSES
significantly improve assembly synthesis scalability.

Keywords: program synthesis, assembly programming, parallel comput-
ing.

1 Introduction

Assembly language is used in many mission-critical systems that require direct
manipulation of hardware, access to performance-critical instructions, or access to
special-purpose accelerators. Assembly language is also common in device drivers,
real-time systems, low-level embedded systems, and machine-dependent operating
system code. However, assembly language is fundamentally intricate and tedious
to write. Writing and debugging assembly programs tends to take more time than
debugging higher-level language programs, because each processor architecture
has its own assembly (so one might need to debug the same functionality multiple
times), and data in assembly programs are untyped and global.

Assembly program synthesis, as an alternative to manual implementation [23,
47, 18], is a promising approach for automated assembly programming. Existing

2 J. Hu et al.

assembly synthesis systems, in general, take a high-level formal specification,
which describes what a program should do, and a machine description, which
provides the executable model of an instruction set architecture (ISA) semantics,
and uses CounterExample Guided Inductive Synthesis (CEGIS) [45] to generate a
program, i.e., a sequence of assembly instructions that satisfies the specification.
However, the limited scalability of synthesis, especially assembly language synthe-
sis, prevents widespread adoption. Fundamentally, assembly synthesis is a search
problem: it searches for an assembly program that satisfies the specification from
the space of all instruction sequences. Compared to synthesis of higher-level
language programs, the search space of possible programs in assembly synthe-
sis is much larger, because data is untyped and global. The space is typically
combinatorial in the number of machine state components (including dozens of
registers and hundreds of memory locations) and exponential in the number of
instructions [24, 23, 21]. To synthesize a single three-operand instruction OPCODE
op1, op2, op3, the size of the search space is approximately n×x×y× z where
n is the number of possible OPCODEs and x, y, and z represent the number of
choices for op1, op2, and op3 respectively; for a program with N instructions,
the space size is (n × x × y × z)N . Current tools and approaches are unable
to synthesize assembly programs longer than a few instructions in reasonable
time [5, 23, 47, 48].

A natural step in improving the performance of program synthesis is par-
allelization. Parallel program synthesis has been proposed in recent work that
enables efficient parallelization of challenging synthesis problems [11, 26, 28].
There are two common approaches for parallelization: One method is to search
for a solution over a set of instances with different settings, e.g., running several
instances of a sequential solver with different parameters or several different
solvers in parallel. If any of the instances succeeds in finding a solution, all
the instances are terminated. Another method is to find solutions to subsets of
the original problem (i.e., sub-problems) and recombine them into a full correct
solution, e.g., using divide-and-conquer techniques [2, 3, 14]. Small sub-problems
typically have smaller search spaces to explore than does the original problem;
we call these smaller search spaces subspaces. However, unlike the general paral-
lelization problem, it is not obvious how to conduct parallel search in assembly
synthesis. Although the specifications used in assembly synthesis are simple pre-
and post-conditions, they lead to an enormous search space for SMT solvers [23,
47], and the SMT expressions generated for assembly synthesis are difficult to
decompose into separable conjunctions that can be solved in parallel, because
data are untyped and machine state is global in assembly languages.

We present a novel parallel system for assembly synthesis, PASSES (Parallel
Assembly Synthesis System Exploiting Subspaces), that uses domain knowledge
of assembly language to parallelize synthesis. PASSES exploits this domain
knowledge to identify multiple approaches to subspace creation. We first de-
scribe three general characteristics of subspaces in parallel synthesis problems:
1) whether the set of subspaces is exhaustive (i.e., collective exhaustivity), 2)
whether the subspaces overlap (i.e., mutual exclusivity), and 3) whether they

Parallel Assembly Synthesis 3

are of (approximately) equal size (i.e., subspace size equality). Based on those
categories, PASSES identifies five complementary and reusable heuristics for
creating subspaces, each of which represents a synthesis sub-problem. We deploy
the techniques by running multiple parallel synthesis tasks and collecting the
results from them. To evaluate the effectiveness of these heuristics and PASSES,
we collected 26 general bit manipulation assembly programming problems, used
in previous work [17], and 140 machine-dependent use cases from two pre-existing
OSes with four machine architectures as benchmark examples, also used in
previous work [23, 21]. Compared with the state-of-the-art assembly synthesis
approach [23, 25], evaluation results show that all of PASSES’s heuristics signifi-
cantly improve the scalability of assembly synthesis, while preserving solution
quality. In the best case, PASSES achieves a geometric mean speedup of more
than 10× for programs that take the baseline more than 10 seconds to synthesize.

We summarize our contributions as follows:

– We develop a novel parallel assembly synthesis system, PASSES, to improve
the scalability of assembly language synthesis.

– We design and implement five domain-specific heuristics, to transform an
assembly language synthesis problem into a set of sub-problems, synthesize
each sub-problem individually in parallel, and construct a solution from them.

– We evaluate the effectiveness of PASSES on general bit manipulation pro-
grams and use cases derived from the machine-dependent parts of two oper-
ating systems. Our evaluation demonstrates that PASSES greatly improves
assembly synthesis scalability.

2 Background and Related Work

Program synthesis is used to automatically generate target executable pro-
grams that satisfy a given high-level formal specification, which is typically
non-executable [6, 9, 15, 32, 36, 53]. Modern program synthesis techniques fall
into two main categories: deductive synthesis, which synthesizes programs by
constructively proving a theorem, employing logical inference and constraint
solving [29, 32], and inductive synthesis, which finds programs matching a set of
input-output examples and generalizes them to work for every input [12, 35, 51].
We focus more on the more relevant latter category of program synthesis.

In the area of inductive synthesis, there are two major directions: synthesis
from informal and typically incomplete descriptions, e.g., Programming by Ex-
ample [12, 16, 35, 52] and synthesis from formal specifications, which began in
2006 with the introduction of Sketch [46, 44], and Syntax Guided Synthesis
(SyGuS) [1]. Later, Solar-Lezama et al. introduced Counterexample Guided Induc-
tive Synthesis (CEGIS) [45], which uses an iterative process to perform inductive
generalization for all possible inputs. Our work lies in this area of synthesis, where
we take formal specifications and use CEGIS to generate assembly programs
satisfying the desired behaviors.

In the area of fully automated synthesis with parallelism, there are two main
topics: using divide-and-conquer to decompose a synthesis problem into simpler

4 J. Hu et al.

ones, such as Cypress [42, 43], FlashMeta [37], and EUSolver [4], and using
parallel Boolean-satisfiability/satisfiability-modulo-theories (SAT/SMT) solvers
to expedite synthesis solving [31], such as PaInleSS [30], PBoolector [39] (which
is the parallel implementation of Boolector [8] splits a bit-vector formula and
solves the subproblems in parallel; in Section 5, we compare it to our subspace
decomposition approach) and the parallel portfolio approach such as ManySat [19,
20, 50]. The traditional divide-and-conquer approaches for program synthesis
focus more on the division of the specification. However, assembly synthesis
typically takes a relatively straightforward specification that describes program
behavior and synthesizes instruction sequences with a complicated machine model.
The machine model contains all possible machine states, including registers and
memory locations, and all possible instructions that must be considered; it is
one of the key performance bottlenecks for assembly synthesis: it leads to an
enormous search space with these global states and untyped data. It is challenging
to separate or decompose them for parallelization, especially at the specification
level. Thus, applying divide-and-conquer only to specifications might not produce
as significant a performance improvement as we might like. Rather than dividing
the specification, we divide the search space into smaller sub-spaces, reducing the
impact of the exponential state space explosion. In contrast, parallel SAT/SMT
solvers directly incorporate parallel algorithms by modifying the state-of-the-
art solvers accordingly; in contrast, we propose and evaluate parallelism in the
synthesis procedure rather than in the solver implementation.

3 Preliminaries and Terminology

3.1 Baseline Assembly Synthesizer: Aquarium

We implement PASSES on top of a state-of-the-art assembly synthesis engine.
To the best of our knowledge, there are two main assembly synthesis related
tools: STOKE [41] and Aquarium [23, 25]. STOKE [41] is a stochastic super-
optimizer [33] that starts from an existing implementation, not an abstract
specification, and optimizes the code to improve performance or reduce size. As
such, it does not solve the problem we are trying to solve and is suitable neither
as a starting point nor as a baseline comparison. Aquarium is a CEGIS-based
assembly synthesis system designed to synthesize the machine-dependent parts of
operating systems [23, 25]. It takes as input a functional specification (pre- and
post-condition) and a machine model description, and produces a sequence of
satisfied assembly instructions. As such, it seems well-matched to our setting.

3.2 Assembly Instruction Types

Though different machine architectures have distinctive assembly syntax and
semantics, we can categorize assembly instructions into types. The following six
types are used throughout the rest of this paper; in the list below, we provide
examples of the types from ARMv73: 1) ARITH: arithmetic, such as addition
3 The conditional execution feature in ARM does not affect the corresponding types.

Parallel Assembly Synthesis 5

(add); 2) LOGIC: logical, such as shifts(lsl); 3) MEMOP: memory handling, such
as loads/stores (ldr/str); 4) DATAOP: register-to-register data transfer (mov);
5) JMP: conditional and unconditional branches (b); and 6) COPROC: coprocessor
handling (mcr/mrc).

3.3 Subspace Creation

We introduce the following notation to describe subspaces. Given a synthesis
problem Q, let M = SearchSpace(Q) be the entire search space of Q, i.e., the
set of all possible programs. Our goal is to produce a set of n subspaces P1 . . . Pn,
each representing a sub-problem, q1 . . . qn of Q, i.e., Pi = SearchSpace(qi). Note
that ∀i, Pi ⊆ M and a solution to qi is a solution to Q.

We describe three (generally desirable) characteristics of subspaces: collective
exhaustivity, mutual exclusivity, and subspace size equality.

Collective Exhaustivity. A set of n sub-problems are collectively exhaustive
if their subspaces Pi cover the entire search space M of the problem Q; that is,

M =
n⋃

i=1

Pi. We write σ ⊨ Q if a program σ satisfies Q, i.e., σ is a solution to Q.

Then the following two statements hold for collective exhaustivity : ∃ σ ⊨ Q =⇒
∃ i ∈ [1, n] σ ⊨ qi and ∀σ ⊭ Q =⇒ ∀i ∈ [1, n] σ ⊭ qi. Otherwise, non-exhaustivity
leaves unsearched portions in M that may contain possible solutions.

While collective exhaustivity is generally desirable, it is not required. A
subspace creation technique that is not collectively exhaustive means that failure
to find a solution in subspaces does not imply that the problem is unsatisfiable.

Mutual Exclusivity. A set of subspaces is mutually exclusive, or disjoint, if
they are non-intersecting, i.e., ∀i ∈ [1, n] ∀j ∈ [1, n] Pi ∩ Pj ̸= ∅ =⇒ i = j.

Mutual exclusivity is generally desirable as it means that searching the sub-
spaces does not duplicate work: any possible solution appears in at most one
subspace. Indeed, it could be that the restrictions required to make subspaces
disjoint (e.g., additional constraints) increases synthesis times, so it might be
more efficient to allow subspaces to overlap.

Subspace Size Equality. In general, synthesis time is positively correlated
to the size of the search space: the larger the search space, the longer it takes
to find a solution. Subspace size equality means that all created subspaces have
approximately the same size; in other words, ∀i ∈ [1, n], |Pi| ≈ |M |/n (|Pi| is
the number of possible programs in Pi). It equally divides M , which leads to
approximately the same synthesis time for each sub-problem.

Subspace size equality is generally desirable, but not required. Under some
conditions, such as some characteristics of the original synthesis problem, unequal
division may achieve better performance; we discuss this in Section 4.2.

4 PASSES: Parallel Assembly Synthesis System
Exploiting Subspaces

Using insight specific to assembly synthesis, we develop five complementary
and reusable heuristics to create subspaces. These heuristics are central to the

6 J. Hu et al.

design of PASSES, our novel parallel assembly synthesis system. PASSES uses
these heuristics to create sets of subspaces, tries to synthesize a solution in each
subspace in parallel, and collects a final solution from them. We refer to the
sub-problems that will be synthesized in parallel as instances. We built PASSES
on top of an existing CEGIS-based assembly synthesizer, Aquarium [23]. We
explain PASSES’s algorithm in Appendix A.1. Table 1 includes the subspace
creation categories for those five heuristics; we discuss more detail about each
heuristic in the following sections.

Constraint-SC RandSimpl-SC TypeSimpl-SC Inc-SC PriorInc-SC
Subspace Creation static static static incremental incremental

Collective Exhaustivity ✓ ✓ ✓

Mutual Exclusivity ✓ ✓ (✓) (✓) (✓)
Subspace Size Equality ✓ (✓)

Table 1: Five heuristics in PASSES. “(✓)” denotes that only some sub-problems
belong to the corresponding category.

4.1 Constraint-based Subspace Creation (Constraint-SC)

As the search space grows exponentially in the number of instructions in a program,
so too does synthesis time. Constraint-SC creates subspaces by introducing
constraints that require specific instructions to appear in specific locations in
the target program; for example, if there is a pre-condition on a value stored in
memory, perhaps it’s reasonable to try programs where the first instruction loads
a value from memory. The constraints applied to each instance determine not
only which instructions should be considered but also, where they should appear,
thus, there is no overlap among the subspaces and the sum of all subspaces
covers the entire search space of the original problem. In practice, rather than
select specific instructions, Constraint-SC constructs constraints using the six
instruction types mentioned in Section 3 (Algorithm explained in Appendix A.2).

4.2 Model-Simplified Subspace Creation (Simpl-SC)

A complete machine model includes descriptions of all instructions; it contains
more information than is strictly necessary to facilitate the synthesis of any single
program (i.e., practically no program uses every instruction in an ISA). Hence,
instead of considering the entire ISA, synthesizing with only a partial instruction
set should dramatically improve scalability. Simpl-SC simplifies the given machine
model and creates multiple subspaces, each representing a sub-problem with a
different machine model containing fewer instructions (Algorithm explained in
Appendix A.3). The main challenge is selecting appropriate partial instruction
sets. Removing the instructions from the machine model might end up with
something simple and convenient to consider, but the remaining machine model
might not be capable of producing a correct target program.

Randomized Model-Simplified Subspace Creation (RandSimpl-SC)
shuffles the whole instruction set and evenly divides them into groups as sub-
models, each containing the same number of instructions with various types.

Parallel Assembly Synthesis 7

The subspaces are mutually exclusive, but may not cover the space. We add
RandSimpl-SC to include the complete model to ensure that the entire space is
covered.

Type-based Model-Simplified Subspace Creation (TypeSimpl-SC)
uses the six instruction types mentioned in Section 3 to construct sub-models.
TypeSimpl-SC creates

(
6
2

)
= 15 sub-models with 2 different instruction types. Note

that programs with a single instruction type are rare in real-world situations,
thus, we do not create further detailed subspaces for brevity. Similarly, the
complete-model instance (i.e., the possible program should contain at least three
different types of instructions) explores the rest of the search space.

4.3 Incremental Subspace Creation (Inc-SC)

The previous heuristics create subspaces statically; they begin with a fixed number
of divided subspaces that exhaustively cover the search space with the complete-
model instance. In contrast, Inc-SC divides the search space dynamically without
considering the complete-model; it starts with a non-exhaustive division and
incrementally expands the search to the entire space. We implement Inc-SC on
top of TypeSimpl-SC, with algorithm explained in Appendix A.4.

4.4 Prioritized Incremental Subspace Creation (PriorInc-SC)

Sub-model w/ ARITH,MEMOP (Priority = 10)
Sub-model w/ LOGIC,MEMOP (Priority = 10)

…

To-Be-Synthesized Instance Queue

Stage 1

Sub-model w/ DATAOP,MEMOP (Priority = 7)

Sub-model w/ COPROC,JMP (Priority = 0)

Sub-model w/ ARITH,DATAOP,MEMOP (Priority = 8)
Sub-model w/ ARITH,LOGIC,MEMOP (Priority = 8)

To-Be-Synthesized Instance Queue

Stage 2

Sub-model w/ ARITH,COPROC,MEMOP (Priority = 6)
…

Sub-model w/ ARITH,DATAOP (Priority = 7)
Sub-model w/ ARITH,DATAOP (Priority = 7)

Sub-model w/ COPROC,JMP (Priority = 0)

Execution
Order

Fig. 1: Two stages in PriorInc-SC.

So far, all our heuristics select instructions with equal probability. However,
sometimes the specification suggests that some instructions are more likely
than others. Given this fact, PriorInc-SC extends Inc-SC with Instruction
Prioritization using the following two-stage approach (Figure 1).

First, it statically analyzes the specification, placing instructions into the
following three classes: must-class instructions, i.e., there is a high possibility
that the target program has them, may-class instructions, i.e., they may be used
in the target program, and not-class instructions, i.e., the possibility of their
usage is low. For example, if the postcondition uses data from memory locations
and calculates on the value, MEMOP is must-class, ARITH and LOGIC are may-class
(they can sometimes achieve equivalent behavior), and COPROC is not-class, since
no coprocessor handling involved. We leave the exploration of other prioritization
algorithms for future work. Figure 1 shows an instance initialization example
with PriorInc-SC, where ARITH, LOGIC, and MEMOP get higher priority, and the
top three instances get synthesized first (solid black lines).

8 J. Hu et al.

In Stage 2, PriorInc-SC generates 20 cases with initial states that satisfy the
precondition and presents the generated candidate in each CEGIS iteration with
a score, i.e., the number of cases for which it satisfies the postcondition. For each
failed instance, we record the highest score achieved so far and update the priority
of each instruction type involved. We always choose to execute instances with
the highest priority, i.e., the instructions involved are most likely to be present in
the target program. In Figure 1, after the instance with ARITH and MEMOP failed,
newly added instances (gray boxes) might get higher priorities than the previous,
not-executed ones (white boxes). Due to its dynamic enlargement, PriorInc-SC
does not preserve collective exhaustivity, and for each newly added instance, we
apply mutually exclusive constraints to avoid search space reconsideration.

5 Evaluation

We implemented PASSES in about 3500 lines of OCaml using Aquarium [21,
23], implementing each of the five subspace creation heuristics. To demonstrate
the effectiveness and efficacy of search space reduction and parallelization in
PASSES, we evaluate its performance on 26 bit manipulation programming tasks
and 140 machine-dependent operating system (OS) code examples, compared
to Aquarium [21, 23, 25], as a baseline. We also consider two different SMT
parallelization techniques. As mentioned in Section 2, we use PBoolector [39],
the parallel SMT solver algorithm for Boolector [8]. We also implemented a
synthesizer wrapper that runs multiple (sequential) Boolectors in parallel with
different random seeds (hereinafter referred to as RandomSeed).

5.1 Benchmarks

We select the following two different categories of benchmark programs.
Bit Manipulation Benchmarks Inspired by Gulwani et al. [17] and based

on the scalability of current assembly synthesis approaches, we select 26 examples
from the book Hacker’s Delight [49], more detailed appears in Appendix B. We
provided the specification of the desired behavior for each example in 32-bit MIPS,
by specifying the pre- and post-condition. We first ran unmodified Aquarium [23],
which is guaranteed to synthesize the shortest program satisfying the specification.
All examples can be implemented with between 2 and 5 assembly instructions.
Table 5 in Appendix B reports the number of instructions in each synthesized
implementation, indicating the minimum length requirement for each benchmark.

Operating System Related Benchmarks We obtained more complex
examples using the 140 use cases from Aquarium [23], including 35 individual pro-
cedures from two pre-existing OSes, Barrelfish [7] and OS/161 [22], implementing
machine-dependent OS functionality. They consist of machine-level system call
trap and kernel entry code in Barrelfish, C standard library function setjmp and
longjmp, user-level program startup code, system call stub, interrupt disable code,
and kernel-level thread switch in OS/161. Each procedure is implemented with
four different machine architectures: 32-bit ARM, 32-bit MIPS, 32-bit RISC-V,
and 64-bit x86_64. Their length varies from 1 to 14 instructions.

Parallel Assembly Synthesis 9

5.2 Experimental Setup

We ran all experiments on an m5.8xlarge AWS EC2 instance with 32 virtual CPUs
and 128 GB of memory; all benchmarks use eight processors for parallel synthesis.
We also ran PBoolector with the maximum of eight sub-problems generated
when splitting bit-vector formulas, and RandomSeed with eight different random
seeds for synthesis. For bit manipulation examples, the synthesis target is MIPS
programs that work on bitvectors of size 32 bits, while for OS-related examples,
we synthesize for all four architectures listed above.

5.3 Performance Results

We measured synthesis performance for all of the aforementioned heuristics in
PASSES. We ran each use case five times, varying the random number seed each
time. We also randomized the variable names used for solver communication by
prepending a random five-character alphabetical string, which produces significant
variance in solver performance.

We run each synthesis task with a half-hour timeout; several use cases timed
out under the baseline setting, denoted with “—” in the following tables.
Use
Case

Aquarium Constraint-SC RandSimpl-SC TypeSimpl-SC Inc-SC PriorInc-SC PBoolector
Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Speedup

P1b 0.86 (2) 0.73 (2) 1.18 1.73 (2) 0.50 1.72 (2) 0.50 0.83 (2) 1.04 0.68 (2) 1.26 1.97 (2) 0.44
P5a 1.28 (2) 0.54 (2) 2.37 1.12 (2) 1.14 2.86 (2) 0.45 1.91 (2) 0.67 1.82 (2) 0.70 1.88 (2) 0.68
P7b 2.05 (2) 0.60 (2) 3.42 1.77 (2) 1.16 2.99 (2) 0.69 1.99 (2) 1.03 1.97 (2) 1.04 2.12 (2) 0.97
P1a 2.21 (2) 0.83 (2) 2.66 1.34 (3) 1.65 1.75 (2) 1.26 0.82 (2) 2.70 0.77 (2) 2.87 1.51 (2) 1.46
P4a 2.78 (2) 0.52 (2) 5.35 1.87 (2) 1.49 2.17 (2) 1.28 0.97 (2) 2.87 1.01 (2) 2.75 2.69 (2) 1.03
P2a 2.81 (2) 0.69 (2) 4.07 1.62 (2) 1.73 2.11 (2) 1.33 1.52 (2) 1.85 1.45 (2) 1.94 1.03 (2) 2.73
P2b 3.48 (2) 0.93 (2) 3.74 2.13 (2) 1.63 2.02 (2) 1.72 0.82 (2) 4.24 0.66 (2) 5.27 2.45 (2) 1.42
P7a 3.69 (2) 0.69 (2) 5.35 2.08 (2) 1.77 2.90 (2) 1.27 1.58 (2) 2.34 1.47 (2) 2.51 3.93 (2) 0.94
P13a 3.91 (3) 3.01 (3) 1.30 0.96 (3) 4.07 0.82 (3) 4.77 0.75 (3) 5.21 0.79 (3) 4.95 2.97 (3) 1.32
P8a 6.56 (3) 6.04 (3) 1.09 12.27 (3) 0.53 1.49 (3) 4.40 1.45 (3) 4.52 1.53 (3) 4.29 8.66 (3) 0.76
P3a 9.04 (3) 3.62 (3) 2.50 4.88 (3) 1.85 6.35 (3) 1.42 5.48 (3) 1.65 5.46 (3) 1.66 7.97 (3) 1.13
P5b 10.28 (3) 3.92 (3) 2.62 9.56 (3) 1.08 4.60 (3) 2.23 3.80 (3) 2.71 3.67 (3) 2.80 8.93 (3) 1.15
P9 10.86 (3) 8.58 (3) 1.27 7.26 (4) 1.50 2.46 (3) 4.41 2.51 (3) 4.33 2.67 (3) 4.07 7.49 (3) 1.45
P8b 12.64 (3) 5.46 (3) 2.32 5.28 (3) 2.39 1.81 (3) 6.98 1.49 (3) 8.48 1.49 (3) 8.48 8.09 (3) 1.56
P3b 12.73 (3) 5.71 (3) 2.23 12.43 (4) 1.02 8.58 (3) 1.48 7.10 (3) 1.79 7.09 (3) 1.80 12.77 (3) 1.00
P4b 12.91 (3) 5.63 (3) 2.29 13.83 (3) 0.93 11.88 (3) 1.09 10.00 (3) 1.29 9.01 (3) 1.43 12.19 (3) 1.06
P10 32.56 (3) 24.52 (3) 1.33 25.67 (3) 1.27 5.26 (3) 6.19 5.19 (3) 6.27 5.27 (3) 6.18 26.47 (3) 1.23
P11b 39.01 (3) 10.38 (3) 3.76 13.10 (3) 2.98 12.73 (3) 3.06 5.67 (3) 6.88 5.65 (3) 6.90 38.29 (3) 1.02
P11a 63.36 (3) 11.27 (3) 5.62 23.86 (3) 2.66 8.03 (3) 7.89 4.79 (3) 13.23 4.79 (3) 13.23 52.62 (3) 1.20
P6 70.27 (4) 27.75 (4) 2.53 56.22 (4) 1.25 46.23 (4) 1.52 49.24 (4) 1.43 49.31 (4) 1.43 58.10 (4) 1.20
P11c 73.88 (3) 16.21 (3) 4.56 97.46 (3) 0.76 14.89 (3) 4.96 9.82 (3) 7.52 9.84 (3) 7.51 71.19 (3) 1.04
P14b 97.64 (3) 109.61 (3) 0.89 102.05 (4) 0.96 99.05 (3) 0.99 95.48 (3) 1.02 94.07 (3) 1.04 86.49 (3) 1.13
P13b 134.02 (4) 145.82 (4) 0.92 163.17 (4) 0.82 29.06 (4) 4.61 28.75 (4) 4.66 26.13 (4) 5.13 129.48 (4) 1.04
P12b 297.69 (4) 229.05 (4) 1.30 409.52 (4) 0.73 291.61 (4) 1.02 313.56 (4) 0.95 310.26 (4) 0.96 156.65 (4) 1.90
P12a 666.35 (4) 79.78 (4) 8.35 370.10 (4) 1.80 286.06 (4) 2.33 307.98 (4) 2.16 305.15 (4) 2.18 651.56 (4) 1.02
P14a — — — 1273.88 (5) >1.41 1281.60 (5) >1.40 1267.12 (5) >1.42 —

Table 2: Performance of all 26 bit manipulation benchmarks, sorted by Aquarium
baseline. For each benchmark, the table shows: (1) Aquarium baseline runtime,
PBoolector runtime, and PASSES with five heuristics (in seconds, averaged
across 5 trials), (2) number of instructions synthesized (in parentheses), and
(3) the speedup, i.e., the ratio of the baseline time to the time with parallelism.
“—” denotes cases where synthesis does not complete within the 1800-second
timeout. A light gray background shows cases where a heuristic sped up synthesis
(Speedup > 0); bold with a dark gray indicates large speedup (Speedup > 5).

Performance of Bit Manipulation Benchmarks Table 2 reports the syn-
thesis performance comparison between Aquarium and five heuristics for all 26

10 J. Hu et al.

14 16 18 20 22 24 26
Instances solved

0

500

1000

1500

2000

Sy
nt

he
sis

 ti
m

e
(s

)

Aquarium
RandomSeed
PBoolector
Constraint-SC
RandSimpl-SC
TypeSimpl-SC
Inc-SC
PriorInc-SC

(a) Bit manipulation benchmarks.

110 115 120 125 130 135 140

Instances solved

0

2000

4000

6000

8000

10000

12000

14000

S
yn

th
es

is
ti

m
e

(s
)

Aquarium

RandomSeed

PBoolector

Constraint-SC

RandSimpl-SC

TypeSimpl-SC

Inc-SC

PriorInc-SC

(b) OS-related benchmarks.

Fig. 2: Heuristics performanace relative to Aquarium baseline. Each plot shows
each benchmark’s average runtime across five trials that do not time out; we omit
benchmarks in which all trials timed out. We omit the first 13 bit manipulation
and 110 OS-related benchmark results to improve readability.

bit manipulation benchmark examples, sorted by the Aquarium runtime; Fig-
ure 2a adds comparison with the two other parallel implementations (PBoolector
and RandomSeed). All PASSES heuristics, except RandSimpl-SC, generate the
same length programs as Aquarium (reported in Table 5), although the actual
synthesized programs are not identical; RandSimpl-SC introduces randomness,
sometimes generating longer solution programs (with one more instruction) in 5
trials (in P1a, P3b, P6, P9, P14b). The synthesis times vary widely with different
use cases; occasionally the heuristics take longer than Aquarium. We include the
speedup information, i.e., the ratio of the baseline time to the synthesis time
with each heuristic in Table 2, and we examine the performance result closely in
the following.

Constraint-SC produces a geometric mean speedup of 2.43×. In the best case,
it makes the synthesis up to 8.35× faster; it speeds up the synthesis in 23 out
of 26 cases. However, it sometimes slows down synthesis due to the overhead
caused by parallelism, such as in P14b and P13b. In the worst case, we observe a
slowdown of 1.12×. Both Aquarium and Constraint-SC fail to synthesize P14a
within the half-hour time limit. Figure 2a shows that Constraint-SC expedites
assembly synthesis even though most programs are quite short.

When Aquarium is already quite fast, the overhead of PASSES can dominate
performance. For example, when Aquarium takes less than 10 seconds, RandSimpl-
SC frequently produces slowdown (up to 2.01×). However, for complicated
programs, it makes the synthesis up to 4.07× faster, with a geometric mean
speedup of 1.33×. RandSimpl-SC also fails to synthesize P14a within the half-hour
time limit. Since RandSimpl-SC first randomly shuffles the instruction sets for
later subspace creation, we also include the mean and standard deviation result
across 5 trials in Table 3. This randomness produces large standard deviations
on synthesis time for the complicated programs, especially for programs that
take more than 100 seconds to synthesize.

Parallel Assembly Synthesis 11

Use Case P1b P5a P7b P1a P4a P2a P2b P7a P13a P8a P3a P5b P9
Aquarium 0.86 1.28 2.05 2.21 2.78 2.81 3.48 3.69 3.91 6.56 9.04 10.28 10.86

RandSimpl-SC Mean 1.73 1.12 1.77 1.34 1.87 1.62 2.13 2.08 0.96 12.27 4.88 9.56 7.26
SD 0.12 0.22 0.25 0.81 0.48 0.44 0.49 0.05 0.16 2.18 1.65 4.67 4.27

Use Case P8b P3b P4b P10 P11b P11a P6 P11c P14b P13b P12b P12a P14a
Aquarium 12.64 12.73 12.91 32.56 39.01 63.36 70.27 73.88 97.64 134.02 297.69 666.35 —

RandSimpl-SC Mean 5.28 12.43 13.83 25.67 13.1 23.86 56.22 97.46 102.05 163.17 409.52 370.1 —
SD 5.58 7.36 3.05 16.58 10.19 23.51 11.57 26.47 29.25 45.77 219.5 100.89

Table 3: Means and standard deviation (SD) of RandSimpl-SC with all 26 bit
manipulation benchmarks, sorted by Aquarium baseline. “—” denotes cases where
synthesis does not complete within the 1800 second timeout.

TypeSimpl-SC produces more consistent results: 22 out of 26 cases achieve
synthesis speedup. We observe a maximum speedup of 7.89×, with a geometric
mean speedup of 1.99× (up to 2.23× slowdown due to the parallel overhead). For
the programs that take Aquarium more than 3 seconds to synthesize, TypeSimpl-
SC produces a significant and consistent speedup. It also synthesizes programs
that are not accessible to Aquarium: it successfully synthesizes an assembly
program for P14a in fewer than 1300 seconds; if we treat timeouts as taking 1800
seconds, this conservative speedup is 1.41×.

Inc-SC accelerates synthesis in most cases; it is beneficial even for small
programs. It makes the synthesis up to 13.23× faster, with a geometric mean
speedup of 2.69× (up to 1.49× slowdown). We also observe that Inc-SC induces
an overhead due to the dynamic instance launches. Table 2 shows that, Inc-
SC produces a slowdown for some complicated cases such as P12a and P14a,
compared with the original TypeSimpl-SC, while it still expedites the synthesis
compared with Aquarium. It slightly slows down synthesis for only two cases
(P5a and P12b), compared to Aquarium.

PriorInc-SC is more effective.We notice that the previous heuristics sometimes
generate unpromising instances that fail synthesis easily; due to our limited degree
of parallelism (i.e., we benchmark with eight threads), those instances waste
CPU resources during synthesis. PriorInc-SC prioritizes instances and executes
those most likely to succeed first. Thus, it eliminates the overhead caused by
unpromising instances. It produces a geometric mean speedup of 2.77× and
a maximum speedup of 13.23× (up to 1.42× slowdown). It also successfully
synthesizes the troublesome P14a. Compared to Inc-SC, it makes synthesis faster
in some cases, especially for complicated programs. Our high level observation is
that Figure 2a indicates that TypeSimpl-SC, Inc-SC, and PriorInc-SC outperform
Aquarium and solve all benchmarks within the time limit.

Comparison with Parallel SMT Solver and Different Random Seeds. Table 2
includes the detailed PBoolector synthesis runtime and speedup compared with
Aquarium baseline, for each bit manipulation benchmark. As shown in Fig-
ure 2a, for all 26 bit manipulation benchmarks, all five heuristics outperform
both PBoolector and RandomSeed. In the best case, PriorInc-SC outperforms
PBoolector and RandomSeed with a maximum speedup of 10.98× and 12.91×
for the program that takes Aquarium about 60s to synthesize, respectively.

12 J. Hu et al.

Search Space Comparison. We evaluate all bit manipulation benchmarks in 32-bit
MIPS; the complete machine model includes 37 assembly instructions which
covers all the basic operations. As a first-order approximation, the overall size of
the search spaces for n-instruction programs is 236.6n, while TypeSimpl-SC, for
example, prunes the subspaces for 2-type machine models into 226.7n with ARITH
and DATAOP, 227.7n with LOGIC and MEMOP, or even 219.8n with JMP and COPROC.

10−2 100 102

Aquarium (s)

10−2

100

102

C
on

st
ra

in
t-

S
C

(s
)

10
×

10
2 ×

10
3 ×

10
4 ×

(a) Constraint-SC.

10−2 100 102

Aquarium (s)

10−2

100

102

R
an

dS
im

pl
-S

C
(s

)

10
×

10
2 ×

10
3 ×

10
4 ×

(b) RandSimpl-SC.

10−2 100 102

Aquarium (s)

10−2

100

102

T
yp

eS
im

pl
-S

C
(s

)

10
×

10
2 ×

10
3 ×

10
4 ×

(c) TypeSimpl-SC.

10−2 100 102

Aquarium (s)

10−2

100

102

In
c-

S
C

(s
)

10
×

10
2 ×

10
3 ×

10
4 ×

(d) Inc-SC.

10−2 100 102

Aquarium (s)

10−2

100

102
P

ri
or

In
c-

S
C

(s
)

10
×

10
2 ×

10
3 ×

10
4 ×

(e) PriorInc-SC.

Fig. 3: Effect of PASSES with heuristics on synthesis runtimes, with all 140
OS-related benchmark examples. Each shows PASSES with heuristics against
Aquarium. Each data point represents the runtime under both conditions for
one OS-related benchmark, averaged over five trials (timeouts are counted as
1800 seconds). 1s− programs are colored in red, 10s− programs are colored in
green, and 10s+ programs are colored in pink. The blue diagonal line represents
equal time under both conditions, so that points below/right of the diagonal line
demonstrate better performance with the heuristic. Gray contours provide guide-
lines for visually estimating the speedup factor. The upper and right boundaries
of the plot represent an 1800-second timeout.

Performance of Operating System Related Benchmarks Figure 2b and
Figure 3 show the synthesis performance comparison between Aquarium and
PASSES with all five heuristics for the 140 OS-related benchmarks. We categorize
those benchmarks into three groups: (1) 1s− programs: they take Aquarium no
more than 1 second to complete, colored with red in Figure 3; (2) 10s− programs :
their Aquarium runtime is more than 1 second but no more than 10 seconds,
colored with green in Figure 3; (3) 10s+ programs: they take Aquarium more
than 10 seconds to synthesize, colored with pink in Figure 3. In general, PASSES
accelerates synthesis on the majority of the OS-related benchmark examples,
especially as the synthesis time increases. In particular, for those 10s+ programs,
the heuristics and PASSES’s ability to run them all in parallel reduces the

Parallel Assembly Synthesis 13

synthesis time. However, the overhead of subspace creation and parallelism can
cause a slowdown in synthesis for small programs, especially those 1s− programs.
In Figure 3, we observe a cluster of data points (red) above the diagonal line in
the lower left-hand corner in all figures, indicating that for those 1s− programs,
PASSES with heuristics slightly slows the synthesis. Similarly, all PASSES
heuristics produce programs of the same length as Aquarium, except RandSimpl-
SC, which may generate solutions with one additional instruction across 5 trials.

Constraint-SC RandSimpl-SC TypeSimpl-SC Inc-SC PriorInc-SC
1s− Programs 0.43 0.41 0.46 0.42 0.42
10s− Programs 2.15 1.16 2.27 2.46 2.75
10s+ Programs 1.49 3.42 9.21 10.71 11.30

Table 4: Geometric mean speedups of all the heuristics compared to Aquarium
with OS-related benchmarks.

Table 4 reports the geometric mean speedups of these three groups, evaluating
with five heuristics against Aquarium. This indicates an entirely acceptable trade-
off: a slowdown of 2.33× for 1s− programs on average is a small price to pay for
a speedup of 2.16× for 10s− programs and 7.23× for 10s+ programs on average.

Constraint-SC is often beneficial, although its benefit is not as outstanding
as other heuristics. Figure 2b shows that though it slows synthesis for small
programs with a maximum slowdown of 6.87×, if we assume a mix of large and
small jobs, the speedup on the 10s+ programs more than compensates for it. For
those 10s+ programs, it makes the synthesis faster with a geometric mean of
1.49×. In the best case, it produces a maximum speedup of 10.35×.

RandSimpl-SC and TypeSimpl-SC both outperform Aquarium, while, as
discussed before, TypeSimpl-SC produces more consistent results than does
RandSimpl-SC. They sometimes slow synthesis for small programs, but for those
10s+ programs, RandSimpl-SC and TypeSimpl-SC produce a geometric mean
speed up of 3.42× and 9.21×, respectively. In the best case, they synthesize
programs that are not accessible to Aquarium, such as the SJ-1 and LJ-1 cases;
counting timeouts as 1800 seconds, there is a speedup of 180.49× and 288.29×,
respectively. Due to the subspace creation and the parallel overhead, they some-
times slow down synthesis up to 6.59× and 5.23× for the programs that take
Aquarium less than 1 second to synthesize, respectively. For the 10s+ programs,
they produce a slowdown of 1.93× and 2.38×, respectively.

Inc-SC and PriorInc-SC are also effective, and they both perform better than
TypeSimpl-SC. They produces a geometric mean speedup of 1.45× and 1.51×
with all benchmarks, and 10.71×and 11.30× for the 10s+ programs, respectively.
Counting those timeouts as 1800 seconds, they make the synthesis for those
programs not accessible to Aquarium up to 282.84× and 284.99×, respectively.
In the worst case, they make our synthesis 6.88× and 6.44× slower for small
programs, respectively. For the 10s+ programs, they produces a slowdown of
1.64× and 1.56×, respectively.

Comparison with Parallel SMT Solver and Different Random Seeds. Compared
to PBoolector and RandomSeed, all five heuristics produce better synthesis

14 J. Hu et al.

performance for the 140 OS-related benchmarks, especially in larger cases as
shown in Figure 2b. In the best case, TypeSimpl-SC, Inc-SC and PriorInc-SC
all outperform PBoolector and RandomSeed with a maximum speedup of up to
about 200× and 280×, respectively, for the programs that are not accessible to
Aquarium (counting timeouts as 1800 seconds for comparison).

6 Discussion

6.1 Parallelism Trade-off

PASSES generates multiple sub-problems and synthesizes them simultaneously,
leveraging the fact that smaller search spaces make it easier, and therefore faster,
to find a solution or determine that one does not exist. However, Amdahl’s
law [40] also clearly delineates the scenarios in which this analysis holds. That
is, the overall performance speedup gained is limited by the fraction of time
that the improved part is actually used [38]. Each parallel algorithm comes with
its own overhead, particularly in terms of setup in apportioning the work to a
set of sub-problems and tear-down in collecting the aggregated results from the
sub-problems. Furthermore, multiple CPU and I/O resources are required for
parallel execution, and synthesis itself is a memory-consuming work; coordinating
multiple synthesis tasks, in general, leads to drastically high memory usage, which
in turn slows down the entire procedure.

The evaluation clearly showed that there is a trade-off between creating
sub-problems with small search spaces and reducing the parallel overhead for
synthesis. Sub-problems with smaller search spaces, in general, can be solved
more quickly, but to prevent missing some potential solutions, the number of
sub-problems increases. In the evaluation, we initialize with eight processors for
parallelism on the AWS instance to counteract memory consumption. Balancing
between the number of parallel tasks and memory consumption for each task
remains an important avenue of future investigation, to explore and identify the
threshold where the benefit of parallelism for synthesis is maximized.

6.2 Performance Trade-off

Another critical trade-off is between finding a solution quickly and synthesizing
optimal solutions. The nature of synthesis indicates that there can exist multiple
solutions that satisfy a given specification [13]. With multiple subspaces created,
those possible solutions are distributed over potentially many sub-problems. The
iterative procedure in CEGIS guarantees that for the original synthesis problem
Q, the synthesized program always has the minimum program length. However,
given a set of n sub-problems q1 . . . qn, derived from Q, for example, qi could
produce an a-instruction program in ti seconds, while qj generates a b-instruction
program in tj seconds, where a > b and ti < tj . Since PASSES always takes
the first returned result from any sub-problem as the solution, it returns with
an assembly program of a instructions instead of one with b instructions. It is
possible that the length of the program produced by PASSES is not minimized.

Parallel Assembly Synthesis 15

Furthermore, assembly programs are frequently optimized for many metrics:
code size, code density, execution speed, program latency, data throughput, or
even energy consumption [10]. To address this concern, we assume that techniques
such as superoptimization [33] can be performed after synthesis. Meanwhile,
PASSES also has the ability to collect multiple solutions from sub-problems and
evaluate them against different optimization or desirability metrics.

6.3 Generalizability of PASSES

Unlike prior work that used the divide-and-conquer methodology to expedite
synthesis, in PASSES, none of the presented heuristics manipulate the specifi-
cation: they directly decompose the search space by imposing instruction-level
constraints or simplifying the machine model; the specification remains intact.
Overall, assembly synthesis, as a special category in general program synthesis
problems, has features that facilitate parallel processing. The assembly syn-
thesizer, in general, uses symbolic execution to explore every execution path
based on the program semantics, while with instruction-level constraints and
machine model simplification, we instantiate symbolic values to prune impossible
execution paths, achieving smaller search space for each sub-problems. Those
symbolic values are highly related to the machine model and the target pro-
gram; instantiating them based on assembly features does not require low-level
operations, and it also benefits the following parallel computing. Morover, The
incremental heuristics in PASSES share the idea with Lazy Task Creation [34]
to explore parallel tasks dynamically at run-time. To generalize PASSES to
other synthesis problems, it is important to identify those highly problem-related
symbolic variables and concretize them with values. Though previous work on
adaptive concretization demonstrates that randomly concretizing influential un-
knowns helps synthesis performance [27], PASSES still shows the significance of
problem-related instantiation during symbolic execution in program synthesis.

7 Conclusion

To improve the scalability of assembly synthesis with parallelization, we present
a novel parallel assembly synthesis system, PASSES. PASSES uses domain
knowledge of assembly language to parallelize synthesis problems. It identifies
multiple approaches to subspace creation, using this domain knowledge. We
describe the PASSES subspace creation in terms of the three properties, collective
exhaustivity, mutual exclusivity, and subspace size equality, and introduce five
complementary and reusable heuristics to improve assembly synthesis performance
using parallelism. We evaluate the performance of PASSES with general bit
manipulation problems and machine-dependent code from pre-existing operating
systems, showing that, compared to the state-of-the-art automated assembly
synthesizer and SMT parallelization approaches, the heuristics in PASSES
significantly improve assembly synthesis scalability for various realistic assembly
programming problems.

16 J. Hu et al.

A PASSES Heuristic Algorithms

A.1 PASSES Algorithm

Algorithm 1 shows pseudo code for PASSES. It first initializes the list of instances
with different heuristics in line 4 and then parallelizes the synthesis for each
instance in line 5, by invoking multiple individual synthesizers. Given the specifi-
cation, a machine model, and a list of constraints, in function synth_instance
(lines 9 – 15), Synthesizer either successfully generates a target program prog in
line 12 or gets a synthesis failure in line 13. Depending on the heuristic, PASSES
handles the failure differently as shown in line 15. PASSES executes all running
instances in parallel, and if one of them successfully produces a program, it
returns the first result in line 7; otherwise, it waits until all instances finish with
a synthesis failure in line 8.

Algorithm 1: The system, PASSES
Input :A specification spec, and a machine model model.
Output :The synthesis result { SUCCESS(Program), FAILURE }.

1 begin
2 result← UNKNOWN
3 failed_counts← 0
4 initialize the list of instances to be synthesized

// instance: sub-problem with a machine model and a set of
constraints

5 foreach instance i ∈ instances do in parallel synth_instance(i)
6 wait until
7 if result = SUCCESS (prog) then return SUCCESS(prog)
8 if failed_counts = the total amount of synthesized instances then

return FAILURE
9 Function synth_instance (i: instance) is

10 remove i from the list of instances
// synthesize with specification, machine model and possible

constraints
11 switch Synthesizer(spec, i) do
12 case SUCCESS(prog) do result← SUCCESS(prog)
13 case FAILURE do
14 failed_counts← failed_counts + 1
15 (add new instance(s) to the list of instances with incremental

subspace creation)

A.2 Constraint-SC Algorithm

Algorithm 2 shows the pseudo code for the instance initialization in Constraint-
SC. In this code example, we initialize synthesis instances by forcing the first
instruction in the target program to be different types (lines 3 – 4); one could
imagine creating more detailed subspaces with constraints on other instruction
locations, which further prunes the search space, expediting synthesis. In Section 5,

Parallel Assembly Synthesis 17

we first apply instruction type constraints on the first instruction location. Since
different instruction types can contain different numbers of instructions, and
there are six categories of instruction types, to enable parallelism with more
synthesis sub-problems and encourage subspace size equality, we take the cross
product of the types of the first two instructions to produce 62 = 36 groups, and
merge parts of them to create groups with roughly equal sizes.

Algorithm 2: Instance Initialization in Constraint-SC
Input :A machine model model.
Output :A list of instances.

1 instances← []
2 foreach instruction type t ∈ model do
3 constraints← “the 1st instruction of the target program must belong to t”
4 append (model, constraints) to instances
5 return instances

A.3 Simpl-SC Basic Algorithm

Algorithm 3 shows the pseudo code for the instance initialization in Simpl-SC.
We first divide the given complete machine model, complete-model, into a list
of models with smaller instruction sets, sub-models, in line 2; each sub-model
represents a subspace of the search space of the original synthesis problem;.
We discuss model division in more detail later in this section. We refer to the
synthesis problems for these sub-models as sub-model instances in line 4.

Algorithm 3: Instance Initialization in Simpl-SC
Input :A machine model complete-model.
Output :A list of instances.

1 instances← []; constraints← []
2 divide complete-model into a list of sub-models // with RandSimpl-SC or

TypeSimpl-SC
3 foreach sub-model ∈ sub-models do
4 append (sub-model, []) to the list of instances // sub-model instances
5 append “∃ instruction i in the target program, s.t. i ∈ complete-model and

i /∈ sub-model” to the list of constraints // avoid duplicate searches
6 append (complete-model, constraints) to the list of instances

// complete-model instance
7 return instances

To preserve collective exhaustivity, Simpl-SC also adds a single synthesis
instance with the complete-model, referred to as the complete-model instance
(line 6), which allows the synthesizer to explore other available search spaces
in the original problem. In other words, this guarantees that all subspaces
explored by the complete-model and sub-model instances, exhaustively cover the
entire search space. To avoid duplicate searches, we generate a set of mutually

18 J. Hu et al.

exclusive constraints (line 5) and apply them to the complete-model instance;
those constraints force the synthesizer to produce a program with one or more
instructions outside all possible sub-models. With those constraints, the complete-
model instance precludes all subspaces searched by the sub-model instances and
minimizes overlaps in the search spaces. Note that the complete-model instance
preserves mutual exclusivity from all other sub-model instances, while those
sub-model instances may not be mutually exclusive from each other.

A.4 Inc-SC Algorithm

Algorithm 4 shows the pseudo code for the function synth_instance in Inc-SC with
synthesis failure handling shown in lines 5 – 10. Inc-SC first enlarges the machine
model used in the failed instance into a list of new models (line 7) and then
creates new instances with enlarged models and mutually exclusive constraints
(lines 8 – 10). The model enlargement extends the given model with at least
one more different instruction type from the complete machine model; in other
words, whenever there is an instance with a x-type (x ≥ 2) model failure, Inc-SC
enlarges this x-type model into several (x + 1)-type models and launches the
corresponding sub-model instances in parallel. The mutually exclusive constraints
(line 9) guarantee that the target program cannot be synthesized with only x
instruction types, i.e., the target program must include all (x+ 1) types in its
enlarged model; they utilize mutual exclusivity to assure that the search space
explored by previously failed instances will not be reconsidered. Compared with
the original complete-model, these enlarged models are still relatively smaller and
their sub-model instances are easier to be evaluated by the synthesizer. Note that
though Inc-SC does not preserve collective exhaustivity at the beginning, given
that there may exist multiple programs that satisfy the specification, incremental
model enlargement ensures that the solution will be eventually found.

Algorithm 4: synth_instance(·) in Inc-SC
1 Function synth_instance (i: instance) is
2 remove i from the list of instances
3 switch Synthesizer(spec, i) do
4 case SUCCESS(prog) do result← SUCCESS(prog)
5 case FAILURE do
6 failed_counts← failed_counts + 1
7 generate a list of enlarged-models, where each element

enlarged-models = model (the machine model in instance i) + { at
least one different instruction }

8 foreach enlarged_model ∈ enlarged_models do
9 constraints← “∃ instruction x in the target program, s.t.

x ∈ enlarged-model and x /∈ model” // avoid duplicate
searches

10 append (enlarged-model, constraints) to the list of instances

Parallel Assembly Synthesis 19

B Bit Manipulation Benchmark Examples

Figure 4 describes all the examples we used. The examples, numbered P1a – P14b,
are grouped by similarity. Some examples include signed or unsigned comparisons,
such as P11a and P14a, while others involve shifting with 0-fill (logical shift) or
sign-fill (arithmetic shift), such as P8a and P12a. We mark the type over each
comparison and shift symbol.

Table 5 reports the number of instructions in each synthesized implementation
by Aquarium, indicating the minimum length requirement for each benchmark.

P1a(x): Turn-off the right
most 1-bit in a word.

x & (x− 1)

P1b(x): Turn-on the right-
most 0-bit in a word.

x | (x+ 1)

P2a(x): Turn-off the trail-
ing 1’s in a word.

x & (x+ 1)

P2b(x): Turn-on the trail-
ing 0’s in a word.

x | (x− 1)

P3a(x): Create a word
with a single 1-bit at the
position of the rightmost
0-bit in x.

¬x & (x+ 1)

P3b(x): Create a word
with a single 0-bit at the
position of the rightmost
1-bit in x.

¬x | (x− 1)

P4a(x): Create a word
with 1’s at the position of
the trailing 0’s in x.
¬x & (x−1) or ¬(x | −x)

P4b(x): Create a word
with 0’s at the position of
the trailing 1’s in x.

¬x | (x+ 1)

P5a(x): Isolate the right-
most 1-bit.

¬x & x

P5b(x): Isolate the right-
most 0-bit.
¬(−x & (x+ 1))

P6(x): Turn-off the right-
most contiguous string of
1’s.
((x | (x− 1)) + 1) & x

P7a(x): Create a word
with 1’s at the position
of the rightmost 1-bit and
the trailing 0’s in x.

x ⊕ (x− 1)

P7b(x): Create a word
with 0’s at the position
of the rightmost 0-bit and
the trailing 1’s in x.

x ⊕ (x+ 1)

P8a(x): Absolute Value
Function.

y ← x
arithmetic
>> 31

(x ⊕ y)−y or (x+y) ⊕ y

P8b(x): Negative Abso-
lute Value Function.

y ← x
arithmetic
>> 31

y−(x ⊕ y) or (y−x) ⊕ y

P9(x): Sign Function.

(x
arithmetic
>> 31) | (−x

logical
>> 31)

P10(x, y): Three-Valued
Compare Function.

(x
signed
> y)− (x

signed
< y)

P11a(x, y): Max Func-
tion.
((x⊕ y) &−(x

signed
≥ y))⊕ y

P11b(x, y): Min Func-
tion.
((x⊕ y) &−(x

signed
≤ y))⊕ y

P11c(x, y): Doz Function
(difference or zero).

(x− y) & − (x
signed
≥ y)

P12a(x, y): Floor of aver-
age of two integers without
overflowing.
(x & y)+((x ⊕ y)

logical
>> 1)

P12b(x, y): Ceil of aver-
age of two integers with-
out overflowing.
(x | y)− ((x ⊕ y)

logical
>> 1)

P13a(x, y): Exchange two
registers without using a
third.

x← x ⊕ y

y ← y ⊕ x

x← x ⊕ y

P13b(x,m, k): Exchange
two fields A and B of the
same register x where m is
a mask with 1’s in field B
and k is the shift distance
(the number of bits from
end of A to end of B).
t1 = (x & m) << k

t2 = (x
logical
>> k) & m

x′ = (x & m′) | t1 | t2
(m’ is a mask that isolates
fields other than A and B
in register x.)
P14a(x, y): Test if nlz(x)
== nlz(y) where nlz is
the number of leading ze-
roes.
(x ⊕ y)

unsigned
≤ (x & y)

P14b(x, y): Test if nlz(x)
< nlz(y) where nlz is the
number of leading zeroes.

(¬y & x)
unsigned

> y

Fig. 4: Bit manipulation benchmark examples (26 in total).

20 J. Hu et al.

Benchmark P1a P1b P2a P2b P3a P3b P4a P4b P5a P5b P6 P7a P7b P8a
Length (loc) 2 2 2 2 3 3 2 3 2 3 4 2 2 3

Benchmark P8b P9 P10 P11a P11b P11c P12a P12b P13a P13b P14a P14b
Length (loc) 3 3 3 3 3 3 4 4 3 4 5 3
Table 5: Size of the bit manipulation benchmarks with MIPS implementations
(lines of code).

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Proceedings of the 2013 Formal Methods in Computer-Aided Design. pp. 1–8.
FMCAD ’13, IEEE, Portland, OR, USA (10 2013). https://doi.org/10.1109/
FMCAD.2013.6679385

2. Alur, R., Černý, P., Radhakrishna, A.: Synthesis through unification. In: Kroening,
D., Păsăreanu, C.S. (eds.) Computer Aided Verification. pp. 163–179. Springer
International Publishing, Cham (2015)

3. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 319–336. Springer Berlin Heidelberg
(2017)

4. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 319–336. Springer Berlin Heidelberg
(2017)

5. Barman, S., Bodik, R., Chandra, S., Torlak, E., Bhattacharya, A., Culler, D.: Toward
tool support for interactive synthesis. In: 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!). pp. 121–136. Onward! 2015, Association for Computing Machinery, New
York, NY, USA (2015). https://doi.org/10.1145/2814228.2814235

6. Basin, D., Deville, Y., Flener, P., Hamfelt, A., Nilsson, J.: Synthesis of programs in
computational logic. Program Development in Computational Logic 3049, 30–65
(01 2004). https://doi.org/10.1007/978-3-540-25951-0_2

7. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: A new OS architecture for scal-
able multicore systems. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles. pp. 29–44. SOSP ’09, Association for Computing Ma-
chinery, New York, NY, USA (2009). https://doi.org/10.1145/1629575.1629579

8. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 174–177. Springer Berlin Heidelberg
(2009)

9. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society 138, 295–311 (1969)

10. Cempron, J.P., Salinas, C.S., Uy, R.L.: Assembly program performance analysis
metrics: Instructions performed and program latency exemplified on loop unroll.
Philippine Journal of Science 147(3), 441–452 (2018)

Parallel Assembly Synthesis 21

11. Chennupati, G., Azad, R.M.A., Ryan, C., Eidenbenz, S., Santhi, N.: Synthesis of
parallel programs on multi-cores. In: Handbook of Grammatical Evolution, pp.
289–315. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-78717-6_12

12. Cypher, A.: Eager: Programming repetitive tasks by example. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. pp. 33–
39. CHI ’91, Association for Computing Machinery, New York, NY, USA (1991).
https://doi.org/10.1145/108844.108850

13. David, C., Kroening, D.: Program synthesis: challenges and opportunities. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 375(2104), 20150403 (2017)

14. Farzan, A., Nicolet, V.: Phased synthesis of divide and conquer programs. In:
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. pp. 974–986. PLDI ’21, Association for
Computing Machinery, New York, NY, USA (2021)

15. Flener, P., Partridge, D.: Inductive programming. Automated Software Engineering
(2), 131–137 (Apr 2001). https://doi.org/10.1023/A:1008797606116

16. Gulwani, S.: Programming by examples. Dependable Software Systems Engineering
45(137), 3–15 (2016)

17. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In:
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 62–73. PLDI ’11, Association for Computing Ma-
chinery, New York, NY, USA (2011). https://doi.org/10.1145/1993498.1993506

18. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. In: Foundations and Trends
in Programming Languages, vol. 4, pp. 1–119. NOW, Hanover, MA, USA (August
2017)

19. Hamadi, Y., Jabbour, S., Sais, L.: Manysat: solver description. Tech. Rep.
MSR-TR-2008-83 (May 2008), https://www.microsoft.com/en-us/research/
publication/manysat-solver-description/

20. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A parallel SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation 6(4), 245–262 (2010)

21. Holland, D.A., Hu, J., Kawaguchi, M., Lu, E., Chong, S., Seltzer, M.I.: Aquarium:
Cassiopea and Alewife languages (2022), https://arxiv.org/abs/1908.00093

22. Holland, D.A., Lim, A.T., Seltzer, M.I.: A new instructional operating system.
In: Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education. pp. 111–115. SIGCSE ’02, Association for Computing Machinery, New
York, NY, USA (2002). https://doi.org/10.1145/563340.563383

23. Hu, J., Lu, E., Holland, D.A., Kawaguchi, M., Chong, S., Seltzer, M.: Towards
porting operating systems with program synthesis. ACM Trans. Program. Lang.
Syst. 45(1) (mar 2023). https://doi.org/10.1145/3563943

24. Hu, J., Lu, E., Holland, D.A., Kawaguchi, M., Chong, S., Seltzer, M.I.: Trials
and tribulations in synthesizing operating systems. In: Proceedings of the 10th
Workshop on Programming Languages and Operating Systems. pp. 67–73. PLOS
’19, Association for Computing Machinery, New York, NY, USA (2019). https:
//doi.org/10.1145/3365137.3365401

25. Hu, J., Vaithilingam, P., Chong, S., Seltzer, M., Glassman, E.L.: Assuage: Assembly
synthesis using a guided exploration. In: The 34th Annual ACM Symposium on
User Interface Software and Technology. pp. 134–148. Association for Computing
Machinery, New York, NY, USA (2021)

22 J. Hu et al.

26. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: Adaptive concretization for
parallel program synthesis. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer
Aided Verification. pp. 377–394. Springer International Publishing, Cham (2015)

27. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: Adaptive concretization for parallel
program synthesis. In: Proceedings of the 2015 Computer Aided Verification. pp.
377–394. Springer International Publishing, Cham (2015)

28. Jeon, J., Qiu, X., Solar-Lezama, A., Foster, J.S.: An empirical study of adaptive
concretization for parallel program synthesis. Form. Methods Syst. Des. 50(1),
75–95 (mar 2017). https://doi.org/10.1007/s10703-017-0269-8

29. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta Inf.
54(7), 693–726 (nov 2017). https://doi.org/10.1007/s00236-017-0294-5

30. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: PaInleSS: A framework for parallel
SAT solving. In: The 20th International Conference on Theory and Applications of
Satisfiability Testing. Lecture Notes in Computer Science, vol. 10491, pp. 233–250.
Springer, Cham (Aug 2017). https://doi.org/10.1007/978-3-319-66263-3_15

31. Le Frioux, L., Baarir, S., Sopena, J., Kordon, F.: Modular and efficient divide-
and-conquer SAT solver on top of the painless framework. In: Vojnar, T., Zhang,
L. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
135–151. Springer International Publishing, Cham (2019)

32. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst. 2(1), 90–121 (jan 1980). https://doi.org/10.1145/357084.
357090

33. Massalin, H.: Superoptimizer: A look at the smallest program. In: Proceedings of
the Second International Conference on Architectual Support for Programming
Languages and Operating Systems. pp. 122–126. ASPLOS II, IEEE Computer
Society Press, Washington, DC, USA (1987). https://doi.org/10.1145/36206.
36194

34. Mohr, E., Kranz, D., Halstead, R.: Lazy task creation: A technique for increasing
the granularity of parallel programs. IEEE Transactions on Parallel and Distributed
Systems 2(3), 264–280 (1991). https://doi.org/10.1109/71.86103

35. Myers, B.A.: Creating user interfaces using programming by example, visual pro-
gramming, and constraints. ACM Trans. Program. Lang. Syst. 12(2), 143–177 (apr
1990). https://doi.org/10.1145/78942.78943

36. Partridge, D.: The case for inductive programming. Computer 30(1), 36–41 (jan
1997). https://doi.org/10.1109/2.562924

37. Polozov, O., Gulwani, S.: Flashmeta: A framework for inductive program syn-
thesis. In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. pp. 107–126.
OOPSLA ’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2814270.2814310

38. Reddy, M.: Chapter 7 - performance. In: Reddy, M. (ed.) API Design for
C++, pp. 209–240. Morgan Kaufmann, Boston (2011). https://doi.org/10.1016/
B978-0-12-385003-4.00007-5

39. Reisenberger, C.: PBoolector: a parallel SMT solver for QF_BV by combining bit-
blasting with look-ahead. Ph.D. thesis, Master’s thesis, Johannes Kepler Univesität
Linz, Linz, Austria (2014)

40. Rodgers, D.P.: Improvements in multiprocessor system design. In: Proceedings of
the 12th Annual International Symposium on Computer Architecture. pp. 225–231.
ISCA ’85, IEEE Computer Society Press, Washington, DC, USA (1985)

Parallel Assembly Synthesis 23

41. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Pro-
ceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems. pp. 305–316. ASPLOS
’13, Association for Computing Machinery, New York, NY, USA (2013). https:
//doi.org/10.1145/2451116.2451150

42. Smith, D.R.: The design of divide and conquer algorithms. Science of Computer
Programming 5, 37–58 (1985). https://doi.org/10.1016/0167-6423(85)90003-6

43. Smith, D.R.: Top-down synthesis of divide-and-conquer algorithms. Artif. Intell.
27(1), 43–96 (sep 1985). https://doi.org/10.1016/0004-3702(85)90083-9

44. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
Programming Languages and Systems. pp. 4–13. Springer Berlin Heidelberg (2009)

45. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures. In:
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 136–148. PLDI ’08, ACM, New York, NY, USA
(2008). https://doi.org/10.1145/1375581.1375599

46. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems. pp.
404–415. ASPLOS ’06, Association for Computing Machinery, New York, NY, USA
(2006). https://doi.org/10.1145/1168857.1168907

47. Srinivasan, V., Reps, T.: Synthesis of machine code from semantics. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 596–607. PLDI ’15, Association for Computing Machinery,
New York, NY, USA (2015). https://doi.org/10.1145/2737924.2737960

48. Srinivasan, V., Sharma, T., Reps, T.: Speeding up machine-code synthesis. In:
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. pp. 165–180. OOP-
SLA ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2983990.2984006

49. Warren, H.S.: Hacker’s Delight. Addison-Wesley Professional, Boston, MA, USA,
2nd edn. (2012)

50. Wintersteiger, C.M., Hamadi, Y., De Moura, L.: A concurrent portfolio approach
to SMT solving. In: Proceedings of the 21st International Conference on Computer
Aided Verification. pp. 715–720. CAV ’09, Springer-Verlag, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02658-4_60

51. Zhang, J., Cambronero, J.P., Gulwani, S., Le, V., Piskac, R., Soares, G., Ver-
bruggen, G.: Pydex: Repairing bugs in introductory python assignments using llms.
Proc. ACM Program. Lang. 8(OOPSLA1) (apr 2024). https://doi.org/10.1145/
3649850, https://doi.org/10.1145/3649850

52. Zhang, J., Li, D., Kolesar, J.C., Shi, H., Piskac, R.: Automated feedback generation
for competition-level code. In: Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. ASE ’22, Association for Comput-
ing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3551349.
3560425

53. Zhang, J., Piskac, R., Zhai, E., Xu, T.: Static detection of silent misconfigurations
with deep interaction analysis. Proc. ACM Program. Lang. 5(OOPSLA) (oct 2021).
https://doi.org/10.1145/3485517, https://doi.org/10.1145/3485517

