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Abstract. Identifying unusual brain activity is a crucial task in neuro-
science research, as it aids in the early detection of brain disorders. It
is common to represent brain networks as graphs, and researchers have
developed various graph-based machine learning methods for analyzing
them. However, the majority of existing graph learning tools for the brain
face a combination of the following three key limitations. First, they focus
only on pairwise correlations between regions of the brain, limiting their
ability to capture synchronized activity among larger groups of regions.
Second, they model the brain network as a static network, overlooking
the temporal changes in the brain. Third, most are designed only for
classifying brain networks as healthy or disordered, lacking the ability
to identify abnormal brain activity patterns linked to biomarkers asso-
ciated with disorders. To address these issues, we present HyperBrain,
an unsupervised anomaly detection framework for temporal hypergraph
brain networks. HyperBrain models fMRI time series data as temporal
hypergraphs capturing dynamic higher-order interactions. It then uses
a novel customized temporal walk (BrainWalk) and neural encodings
to detect abnormal co-activations among brain regions. We evaluate the
performance of HyperBrain in both synthetic and real-world settings
for Autism Spectrum Disorder and Attention Deficit Hyperactivity Dis-
order(ADHD).HyperBrain outperforms all other baselines on detecting
abnormal co-activations in brain networks. Furthermore, results obtained
from HyperBrain are consistent with clinical research on these brain
disorders. Our findings suggest that learning temporal and higher-order
connections in the brain provides a promising approach to uncover intri-
cate connectivity patterns in brain networks, offering improved diagnosis.
Our code is available at: https://github.com/ubc-systopia/HyperBrain.

1 Introduction

The brain is an intricate system, and functional magnetic resonance imaging
(fMRI) is a widely-used neuroimaging technique for studying brain activity.
Researchers often interpret fMRI data as a simple graph with nodes repre-
senting regions of interest (ROI) and edges indicating functional connectivity
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through pairwise correlations of Blood-Oxygen-Level Dependent (BOLD) time
series signals. Recent advances in machine learning methods for analyzing graph-
structured data have led to the development of effective approaches for studying
human brain networks, particularly in tasks such as disease detection [13, 19].
These approaches classify brain states as healthy or indicative of a disorder.
However, a crucial step in understanding symptoms and improving early detec-
tion of neurobiological disorders is identifying abnormal patterns in the brain.
To address this gap, some studies [19, 1] focus on brain network classification.
They employ statistical tests or significant scores to pinpoint the most crucial
regions or pairwise brain connections linked to identifying disorders. However,
these approaches have drawbacks, such as depending heavily on classification
accuracy, requiring a well-balanced dataset, which is rare in neuroimaging field
and overlooking more complex patterns and structural features.

Anomaly detection in the human brain is a promising solution for abnormal
brain pattern discovery [7, 31, 14], but it is a challenging task due to the lack
of ground truth labeled anomalies and the need for a powerful brain modeling
and analysis approach capable of capturing different patterns in the brain. Many
existing anomaly detection methods are not designed for brain networks [33, 31,
3]. These methods can typically analyze only a single brain in isolation, making
them inappropriate for fMRI due to the noisy data and the need of analyzing
a group of brains to properly comprehend the disorder and capture depend-
able group-level biomarkers. Some other methods designed for brain anomaly
detection use non-learnable and fixed rules as anomalies, which are not powerful
and generalizable enough for the complex nature of brain activity and capturing
patterns outside of the defined rules [7]. Furthermore, most of these modeling
approaches are limited in two different ways.

A limitation in previous fMRI based brain-modeling studies is that they often
assumed that brain networks are static. However, recent research demonstrates
dynamic changes in the brain[6], both in task-based fMRI [15] and resting-state
fMRI [16], revealing the dynamic nature and biologically meaningful evolution of
brain activity. Consequently, researchers have developed methods to track brain
activity over time, including extracting dynamic functional connectivity or a
temporal graph from fMRI time series [16, 12] and using recurrent networks on
the fMRI time series [30]. By analyzing dynamic information, they can improve
detection accuracy of brain disorder. However, leveraging dynamic information
and temporal brain patterns in anomaly detection is under-explored.

Another modeling limitation in many previous brain analysis methods is
their predominant focus on simple graphs [19, 14, 4], ignoring the group activa-
tion of ROIs. Clinical research indicates that cognitive mechanisms in the brain
involve interactions among multiple co-activated brain regions, not just among
pairs [18]. Although others have improved brain classification accuracy using
hypergraphs to capture the complex relationships among ROIs by introducing
hyperedges that connect multiple nodes simultaneously [32, 20, 27], they often
neglect temporal patterns [32, 27, 36] or limit the sizes of higher-order interac-
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Fig. 1. Schematic of HyperBrain. HyperBrain consists of four stages: (1) Mod-
elling both temporal and higher-order interactions among brain regions [§2.1], (2) Ex-
tracting temporal, higher-order patterns of brain activity [§2.2] , (3) Neural encoding
to merge information from the sequence of hyperedges and their timestamps in the
extracted brain patterns [§2.3], and (4) Calculating anomaly scores for each brain co-
activation [§2.3]. In training HyperBrain, we only rely on healthy control data to
detect anomalous co-activations in the brain [§2.4] .

tions, e.g., considering only interactions among three regions [36]. Moreover, the
crucial task of identifying abnormal patterns remains unaddressed [20, 27, 36].

We present HyperBrain, a specialized framework for detecting abnormal
co-activations in brain networks. HyperBrain represents fMRI data as tempo-
ral hypergraphs, effectively capturing dynamic higher-order interactions in the
brain. It then uses a novel temporal walk customized for brain networks, Brain-
Walk, to extract higher-order temporal motifs. Then, it learns the structural
and temporal properties of brain networks through neural encodings for higher-
order walks. Finally, HyperBrain uses these encodings to calculate an anomaly
score for each co-activation. By leveraging a training approach on diverse healthy
brain networks, HyperBrain enhances robust learning and mitigates noise, en-
abling it to identify anomalous hyperedges in the brains of individuals with
disorders. Remarkably, HyperBrain only relies on the neuroimaging data from
healthy control group for training, eliminating the need for a balanced dataset
of healthy and disordered subjects.

Our experiments highlight HyperBrain’s outstanding performance in de-
tecting abnormal brain co-activation associated with Attention Deficit Hyperac-
tivity Disorder (ADHD) and Autism, outperforming all other baseline methods.
Furthermore, our real-world experiments show HyperBrain’s ability to detect
abnormal brain activity. Figure 1 illustrates the components of HyperBrain.

2 The Proposed Framework

Definition 1 (Temporal Hypergraph) A temporal hypergraph is defined as
G = (V, E), where V denotes the set of nodes, and E represents hyperedges oc-
curring in the hypergraph over time. Specifically, E is defined as the set E =
{(e1, t1), (e2, t2), . . . }, where ei ∈ 2V represents a hyperedge, and ti denotes the
timestamp when ei occurs.
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Our task is to detect anomalous hyperedges in the brain network. For each hy-
peredge in the brain temporal hypergraph (ek, tk) ∈ E , we compute an anomaly
score φ(e) which indicates the level of abnormality of the co-activation repre-
sented by ek at time tk.

2.1 Modeling fMRI Data as Temporal Hypergraph Brain Network

To capture both temporal and higher-order interactions among brain regions,
we represent fMRI data as temporal hypergraphs. The set of Regions of Interest
(ROIs), denoted by V = {v1, . . . vR}, is defined using brain parcellation atlases,
withR indicating the number of ROIs based on the atlas. Using the same atlas for
all the subjects’ fMRI data, the set of ROIs remains identical across individuals;
Gi = (V, EGi

) represents the temporal hypergraph of the ith subject.
To capture the dynamic patterns in brain activity, we model the temporal

properties of brain networks using the sliding window technique [25]. For the
BOLD signals of the ith subject Si ∈ RR×T , with T denoting the total fMRI
time interval and Si[vm] as the BOLD signal for the mth ROI, we divide Si into
windows {S1

i , . . . , S
M
i }, where M = ⌊T−L

s ⌋ + 1, L is the window length, and s
is the stride between windows.

To capture higher-order connections and generate the hypergraph Gi, a sub-
set of ROIs {u1, . . . , uk} ∈ V form a hyperedge if the similarities between their
corresponding BOLD signals within a windows exceed a threshold. With a sim-
ilarity measure function, ζ, and e = {u1, . . . , uk}, we have:

(e, tp) ∈ EGi if ζ(Sp
i [u1], . . . , S

p
i [uk]) ≥ Threshold

We calculate signal similarity using the Pearson correlation coefficient and form
a hyperedge between a set of ROIs where each ROI is in the top 90th percentile
of positive correlations of all the other ROIs in the hyperedge.

2.2 Brain Walk Sampling

As a walk-based graph learning approach, we sample a set of random walks over
our brain network to automatically extract temporal, higher-order patterns of
brain activity. To accommodate the unique characteristics of brain networks, we
introduce BrainWalk. Inspired by SetWalk [3], each BrainWalk consists of
a random sequence of hyperedges, allowing us to effectively capture the dynamics
of higher-order brain networks. In contrast to many temporal networks, where
timestamps represent discrete moments, in our representation, a timestamp rep-
resents a continuous interval (window) of BOLD signals, capturing distinct brain
states. Considering this property, BrainWalk uses backward, timestamp-based
traversal to capture historical information and intra-timestamp traversal to cap-
ture patterns that co-occur within a span of time corresponding to brain activity.

A BrainWalk with length ℓ on G = (V, E) is defined as:

BrainWalk : (e1, te1) → (e2, te2) → · · · → (eℓ−1, teℓ−1
) → (eℓ, teℓ),
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where ei ∈ E , and consecutive pairs of ei and ei+1 represent neighboring hyper-
edges, satisfying the condition tei ≥ tei+1

. The notation BW [i] represents the
i-th pair in the walk, where BW [i][0] = ei and BW [i][1] = tei .

In our sampling approach, we take into account the temporal proximity of
timestamps. This consideration is crucial for understanding the transitions be-
tween different states and the lasting effects of the previous task or state of
the brain. Therefore, a closer timestamp is likely to be more relevant. To cap-
ture this temporal relevance, we use a biased sampling walk. We sample (e, t),
a neighboring hyperedge of a previously sampled hyperedge (eprev, tprev) with
a probability that scales according to exp (θ(t− tprev)). Here, θ represents the
hyperparameter for the sampling time bias.

2.3 Neural Hyperedge Anomaly Detection

Neural Walk Encoding Research in graph learning has shown that anonymiz-
ing node identities enables models to perform well in an inductive setting and
generalizing to unseen patterns by learning general rules unconstrained by spe-
cific node identities [31, 3]. Following them, to ensure model performance on
unseen patterns, we use a two-step anonymization process to conceal hyperedge
identities [3]. Initially, we anonymize node identities by replacing them with posi-
tional encodings, capturing the occurrence of nodes in different positions across a
set of sampled BrainWalks. Subsequently, to compute the anonymized encod-
ing of a hyperedge, we aggregate the anonymized node identities corresponding
to the nodes it connects. This aggregation is performed using SetMixer [3], a
permutation-invariant pooling strategy based on MLP-Mixer [29]. Finally, we
encode each BrainWalk. Specifically, during the encoding of a BrainWalk,
b̂w, we use MLP-Mixer [29] to merge information from the sequence of hy-
peredge encodings and their corresponding timestamp encodings, resulting in
the calculation of ENC(b̂w). For encoding the hyperedge timestamps, we follow
previous work on random Fourier features [17] to obtain a vector representation
for each timestamp assigned to a hyperedge in the BrainWalk.

Anomaly Score To calculate anomaly scores for each hyperedge e = {u1, . . . , uk},
we use a neural encoding module. This module processes a set of sampled Brain-
Walks starting from each node within the hyperedge. The anomaly score, φ(e),
is computed as follows:

φ(e) = MLP

(
Ψ ({ENCu1 , . . . ,ENCuk

})

)
(1)

where ENCui
= 1

N

∑
b̂w∈Bwui

ENC
(
b̂w
)
. Here MLP is a 2-layer perceptron, Ψ is

SetMixer [3] and Bwui
is the set of N sampled BrainWalks. For each walk

b̂w ∈ Bwui
, it holds that ui ∈ b̂w[0][0] ∩ b̂w[1][0].
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2.4 Training

In the training phase, to be able to learn individual-level as well as group-level
patterns common among all subjects, we work with a set of healthy brains. From
each brain’s fMRI data, we generate the corresponding hypergraph. Adopting
the widely employed negative sampling approach [8], we generate a negative
sample for every hyperedge e ∈ E within the brain hypergraph. This involves
keeping 50% of the nodes from e and substituting the remainder with nodes from
V−e, resulting in a negative sample. This approach could inadvertently produce
a hyperedge, ej , that is already present in the hypergraph while generating a
negative sample for another hyperedge, ei. To overcome the limitation and ensure
the reliability of these negative samples, we introduce a new step not found in
prior work [3, 31]. We verify that any generated negative hyperedge does not
appear in any timestamp of the healthy brain and has never been considered
as a normal co-activation in the brain network. Subsequently, we calculate the
anomaly score, as defined in equation 1, for every hyperedge in the training set,
including both normal hyperedges and negative samples. The framework is then
trained using a contrastive learning approach. A key advantage of HyperBrain
is that it relies solely on data from the healthy control group for training, taking
advantage of the abundance of healthy data.

To enhance learning across all subjects’ brains in the training data and mit-
igate the impact of noise inherent to individual networks, we use a two-step
approach: pre-training on a subset of healthy brain networks designated for
training, followed by fine-tuning on the remaining brain datasets in the training
data. This ensures that the model learns from all available brain networks in the
training data, promoting a more comprehensive understanding of normal and
anomalous patterns across diverse subjects.

3 Evaluation

Our evaluation addresses two questions about the performance of HyperBrain:

1. How effectively does HyperBrain perform in the task of anomalous hyper-
edge (abnormal co-activation) detection compared to the baselines? (Sec. 3.2)

2. Are the abnormal activities detected by HyperBrain in the brains of people
with disorders meaningful and consistent with established research on the
disorder’s impact on the brain? (Sec. 3.3)

3.1 Datasets and Baselines

We conducted experiments using two real-world fMRI datasets: 1 ADHD data
[5] includes neuroimaging data from 50 subjects diagnosed with ADHD and 50
typically developing (TD) controls. 2 ASD data [10] contains fMRI data from
45 individuals with Autism and 45 subjects in healthy control group. For brain
parcellation, we used the CC200 [11] atlas.
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Table 1. Performance in Anomalous Hyperedge Detection: Mean AUC (%). The best
result is indicated in boldface.

Structured-based Embedding-based

Datasets \ Methods CN[23] JC[24] AA[35] PMNE[22] NHP[33] CAW-N[21] HyperBrain

ADHD 75.21 78.00 75.47 75.53 72.12 86.26 92.33

ASD 86.47 86.35 86.66 72.54 82.42 83.56 93.78

For baselines, we compare HyperBrain with six state-of-the-art approaches
in two group of methods: structured-based methods and embedding-based meth-
ods. Structured-based Methods are: 1 Common Neighbor (CN) [23]: one of the
most widely used metrics in anomaly detection based on graph structure. It
quantifies overlap or similarity between sets of connections in a network, as-
suming more normal connections between nodes with a higher number of com-
mon neighbors. 2 Jaccard Coefficient (JC) [24]: a normalized version of CN. 3
Adamic/Adar (AA) [35]: a weighted version of JC that assigns higher importance
to less connected common neighbors. Embedding-based Methods are: 4 Princi-
pled Multilayer Network Embedding (PMNE) [22]: a multiplex graph learning
method that analyzes functional connectivity by considering each subject as a
different type of edge. 5 Neural Hypergraph Link Prediction (NHP) [33]: a deep
hypergraph learning method that analyzes static brain hypergraphs. 6 Causal
Anonymous Walks (CAW-N) [21]: a deep learning walk-based temporal graph
learning method that analyzes dynamic functional connectivity.

3.2 Quantitative Evaluation on Synthetic Anomalous Hyperedges

To assess HyperBrain’s effectiveness in detecting anomalous hyperedges in the
brain, we evaluate it on a set of control brain networks belonging to healthy
subjects not used in the training phase. Synthetic anomalous hyperedges are
injected into these networks following techniques from prior work [8], with further
enhancements explained in Sec. 2.4. Subsequently, we deploy HyperBrain to
detect these synthetically injected anomalies, assessing performance using the
Area Under the ROC Curve (AUC).

The results presented in Table 1 demonstrate thatHyperBrain outperforms
the baselines by a large margin. Three key factors contribute to HyperBrain’s
superior performance: 1 capturing higher-order patterns, 2 incorporating tem-
poral changes in the brain, and 3 the exclusive design and training approach of
HyperBrain for brain network considering its unique properties.
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Fig. 2. ADHD-Related Brain Regions
Identified by HyperBrain
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Fig. 3. ASD-Related Brain Regions
Identified by HyperBrain

3.3 Clinical Relevance and Consistency on Real Datasets

To answer the second question, mirroring real-world scenarios, we investigate
anomalies detected by HyperBrain in individuals with specific disorders. Our
analysis focuses on assessing whether these detected anomalous hyperedges align
with existing research findings related to these disorders. We train HyperBrain
on neuroimaging data from healthy brains and subsequently test the trained
model on brains of individuals diagnosed with disorders. After detecting anoma-
lous hyperedges using HyperBrain, we record the occurrence of each region.
Subsequently, we identify and report regions exhibiting statistically significant
occurrences in the detected anomalous hyperedges. In the subsequent sections,
we analyze identified regions linked to ADHD and ASD.

ADHD Brain regions with statistically significant occurrences in detected anoma-
lous hyperedges include: Frontal Pole, Right Frontal Gyrus, Lateral Occipital
Cortex, and Left Temporal Gyrus (refer to Figure 2). Notably, the Frontal Pole
and Right Frontal Gyrus, both located in the Prefrontal Cortex, exhibit the
highest occurrence rates. The Prefrontal Cortex is known for its crucial role in
attention regulation and has been associated with impaired function in individ-
uals with ADHD [2]. The other anomalous regions identified in our study are
also consistent with prior studies on ADHD [28, 34]. Studies reported abnormally
low activity in response to a stimulus in the Left Temporal Gyrus[34], as well
as increased cortical thickness in the Occipital Cortex [28], among individuals
diagnosed with ADHD.

ASD Brain regions statistically linked to these anomalous hyperedges include
the Cerebellum and Right Cingulate Gyrus (refer to Figure 3). Notably, the Cere-
bellum, the most frequently occurring region in detected abnormal hyperedges
has been recognized as a key brain area affected in autism [26]. Additionally, the
other detected region, the Right Cingulate Gyrus, has been reported to exhibit
atypical structure and activity in autistic brains [9].
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4 Conclusion

We introduce HyperBrain, a novel method to identify biomarkers associated
with neuro disorders via identifying anomaly patterns of high-order interactions
among brain regions. To this end, we model fMRI data as temporal hyper-
graphs to effectively capture dynamic higher-order interactions. HyperBrain
uses higher-order random walks and a neural encoding to learn intricate pat-
terns in the network. Trained on a set of healthy brain networks, it identifies
anomalous patterns in the brain of individuals with disorders. Our evaluation
shows that 1 HyperBrain outperforms other baselines in hyperedge anomaly
detection, and 2 the detected abnormal brain activities align consistently with
clinical research on disorders. These results suggest several promising directions
for future research, including deeper exploration of brain networks, enhanced
understanding of symptoms, and early disorder detection. Additionally, as com-
putational cost is a common challenge in hypergraph analysis, another direction
for future work is improving the computational efficiency of our method, where
the cost is O(#subjects×#temporal hyperedges).
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