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ABSTRACT
Address translation hardware is at the cornerstone of mod-
ern computer systems. It provides a wide range of security-
relevant features and abstractions such as memory parti-
tioning, address space isolation, and virtual memory. Hard-
ware designers have developed different memory protection
schemes with varying features and means of configuration.

Correct configuration is mission-critical for a system’s in-
tegrity. It is the operating system’s task to safely and securely
manage and configure the memory hardware of a compute
platform – a task that operating systems developers must
repeat for every new memory hardware unit.

We present a new approach that frees the OS programmer
from writing system code to set up and configure translation
hardware. We leverage software synthesis to automatically
generate correct systems code that interfaces with transla-
tion hardware to create or modify memory mappings from a
high-level, behavioral specification.
By synthesizing correct, low-level systems code from a

high-level specification we make it easier to port operating
systems and facilitate incorporating accelerators into exist-
ing systems. Moreover, we believe that our system can gen-
erate actual and simulated hardware components enabling
research in new memory translation and protection schemes.
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1 INTRODUCTION
Enforcing isolation between two tenants, e.g., virtual ma-
chines, processes, even threads, is a critical function of oper-
ating systems and hypervisors. Each process or virtual ma-
chine runs in its own address space, which provides isolation
and abstracts the underlying physical memory. Virtualizing
memory not only provides isolation but also enables system
software to optimize memory usage, oversubscribe memory
through demand-paging or swapping, and support features
such as memory-mapped files or relocation.
These features of memory virtualization and protection

are enabled and enforced by specific hardware components,
such as memory protection units (MPUs), memory manage-
ment units (MMUs), and other address translation hardware.
The features provided by those hardware components can
be classified into two categories: translation and protection.

Translation defines how the address of a memory request
(e.g., load or store) is transformed. The translation fails if
the address is not valid (i.e., the translation is undefined).
This translation can be configurable (e.g., the virtual-to-
physical address translation of the MMU) or static (e.g., bus-
remappings on a system-on-chip (SoC)).
Protection checks whether a given memory access is al-

lowed, but it does not change the address. This includes check-
ing if the protection attributes match the access mode (e.g.,
read/write), privilege level (e.g., user/supervisor mode), or
the source (e.g., a certain device) of the memory access. For
example, hardware firewallsmight allowmemory access only
from certain devices. Similarly to translation, protection can
be configurable (e.g., the permission bits of a page-table) or
fixed (e.g., KSeg0 of the MIPS TLB [12]).
Contemporary address translation hardware combines

address translation and protection. We call this combination
remapping. For example, the x86 MMU translates a virtual
address to the corresponding physical address using the page
table, and then, if there is a matching valid entry, it checks
the permission bits and matches them against the mode of
the memory access. Moreover, hardware extensions might
perform further permission checks (e.g., Intel’s MPK).
Today, there exists a wide variety of MMUs and MPUs

providing a heterogeneous set of features and capabilities and
offering configurable protection and translation of memory
accesses. To ensure system integrity and correct operation,
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the OS must correctly configure all MMUs and MPUs of
the system. Thus, the system software developer needs to
understand the features offered by the translation hardware
then manually write correct software that interfaces with
the address translation hardware of the compute platform.
This tedious and error-prone task is not a one-off effort:

different systems use a variety of MMUs andMPUs providing
a distinct set of features and different ways to configure them.
System software developers spend time and effort repeating
this similar task for each MMU and MPU. Any mistake in
the code can lead to severe consequences in terms of system
security and correct operation, ranging from incorrect pro-
tection enforcement to data corruption. For example, bugs
in the IOMMU/System MMU configuration code [14–17] or
the Linux memory subsystem [11] (ignoring holes in huge
pages (CVE-2017-16994), miscalculation of the number of
affected pages (CVE-2014-3601), and too permissive access
rights to data pages (CVE-2014-9888)) have led to security
vulnerabilities.

We propose to free OS developers from writing low-level
system code interfacing with translation hardware. Instead,
developers or hardware vendors write a specification of the
translation hardware that describes how an MMU or MPU
performs address translation and protection. Our synthesis
toolchain then automatically converts the specification into
correct low-level system code for configuring the memory
hardware of a platform using software synthesis. Specifically,
we synthesize functions to set up new mappings (map), mod-
ify permissions (protect), and remove mappings (unmap).
The focus on MMUs and MPUs is important, as they are

used to isolate memory from processors and devices. More-
over, translation hardware, as opposed to devices in general,
has a well-defined scope and is amenable to breaking down
the problem into small, composable pieces that make MMUs
and MPUs a well-suited target for software synthesis. We
believe that the insights from this work can be applied to
device drivers in general, but we consider that a separate
area of investigation.

We present a methodology that makes the synthesis of the
low-level system code tractable by decomposing translation
hardware into a combination of basic building blocks lever-
aging the divide-and-conquer principle. We further describe
techniques to reduce the search space of candidate programs
making the software synthesis approach applicable in the
development of correct operating systems. Finally, we pro-
pose a new specification language that allows developers
to write specifications of MMUs and MPUs, or even have
hardware vendors provide them as part of their technical
manuals as Arm did with their system level architecture
specification [18, 19].
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Figure 1: Illustration of the translation unit model.

2 METHODOLOGY: ABSTRACTING
MEMORY TRANSLATION HARDWARE

The landscape of MMUs andMPUs is heterogeneous in terms
of features and means of configuration. One of the insights
of this work is that we can decompose complex memory
translation and protection hardware into a small number of
basic building blocks we call units, each with well-defined
semantics. We can even reuse the same unit specifications
to express another MMU or MPU by combining and instan-
tiating them in different ways. We begin by describing the
methodology behind this decomposition.

2.1 Translation Unit Model
We use the term translation unit to refer to any hardware
component that can translate or filter memory accesses. Ab-
stractly, the translation unit operates similarly to a network
switch: it receives a memory access request (e.g., the proces-
sor executes a load or store instruction), then it transforms
the request by translating its address based on the state (e.g.,
page table walk or TLB lookup), and finally it forwards the
request with the translated address to the next hardware
component (e.g., the memory controller, or the system bus),
or raises an exception if the remapping fails due to a permis-
sion violation or an invalid address.

The translation unit model consists of three main compo-
nents (dark boxes in Figure 1) that can be further categorized
into data plane and control plane components.
Remap Function. The data plane of the translation units
remaps memory requests (e.g., loads and stores issued by the
processor or devices of a system) or it raises an exception
if remap fails. Recall, remapping consist of two steps: per-
forming address translation and checking of access permission.
This division becomes important later when we formulate
the synthesis problem of finding the correct system software
code that configures the unit. Thus, the remap function suc-
ceeds only if the translation produces a valid address and
the access mode of the memory access is allowed by the
permission check, otherwise remapping fails.
Configuration State. The way a translation unit remaps
memory accesses depends on its state. Thus, the state in-
cludes all relevant bits that define the remapping behavior,
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including any registers and in-memory data structures. Ab-
stractly, the state of a unit is a collection of bits and, to some
extent, can be viewed as the private data members of a class.
For example, when using MPK on x86_64 platforms, remap-
ping succeeds only if both the page table entries and the
memory protection key registers are set up correctly.
Control Plane Interface. The control interface defines the
OS-visible interface that changes the state of the transla-
tion unit and thus its remapping behavior. System software
changes the state of the unit by reading or writing memory
locations or registers or executing special instructions. The
interface corresponds to the public API of the translation
unit and therefore the grammar of the possible configuration
programs (see Section 4.2).

2.2 Unit (de)composition
Directly expressing translation hardware using the unitmodel
above can be challenging. Instead, we logically decompose
complex translation hardware into a combination of simpler
units that we call basic building blocks. We use the x86 page
directory (PDir) as our running example.
Three kinds of units. In our investigation of existing
MMUs and MPUs, we found that there are parts where the
translation behavior is fixed and other parts where it is con-
figurable. In addition, some MMUs and MPUs offer alterna-
tive translation behavior depending on their state. This has
led us to the insight that translation hardware can be ex-
pressed as combinations of three basic building block types:

1. Configurable units have state, so their remapping behav-
ior can be changed by the OS (e.g., a single PDir entry).

2. StaticMap units have a defined, static remapping behav-
ior (e.g., the static selection of the PDir entry depending on
the virtual address).
3. Enum units enumerate a list of configurable units that

can translate the virtual address (e.g., a PDir entry that either
references a page table or maps a large page).
Decomposition. Figure 2 shows the decomposition of the
page directory level of the x86_64 linear-address translation
using 4-level paging into a combination of static and con-
figurable units. The PDir has 512 entries, each of which can
either reference a page table or a large page. The virtual ad-
dress of the memory access directly identifies the entry used
for translation, i.e., there is a static mapping from virtual
address to the PDir entry. The PDir entry itself is configured
by writing a certain bit pattern to it.

2.3 Type Hierarchy
Each defined unit corresponds to a type like a class or struct
definition in a programming language. Using the type refer-
ences of the unit, we can extract a type hierarchy. This lets

x86 page
directory

PDir PDirEntry

PDirEntryTable

PDirEntryPage

......

511

0

large
page

page
table

conf. segment

static map PDirEntryTable

PDirEntryPageenum

page table

page table

page table

page table

page table

page table

PDirEntryTable -> PTable // defined elsewhere
PDirEntryPage -> Frame // defined elsewhere
PDirEntry = [ PDirEntryTable | PDirEntryPage ]
PDir = [ PDirEntry, 512 ]

Figure 2: Decomposition of the page directory level of
the x86 linear address translation with 4-level paging.

us construct hierarchical translation structures such as the
multi-level radix trees used by page tables.

3 SPECIFICATION LANGUAGE
Developers specify translation units using a rust-like domain-
specific language (DSL) that closely follows the concepts
outlined in the previous section. The core of the language is
the syntax to express each of the three unit kinds, each with
its state and control interface as outlined in Section 2. We
use methods to define behavior and specify constraints.

Listing 1 shows the simplified specification of the example
of Figure 2. For brevity, we left out the protect and unmap

operations and parts of the state and control interface. The
page directory (PDir , line 44) is a fixed-sized array of 512
entries specified as a staticmap using the list comprehen-
sion notation. A page directory entry (PDirEntry , 39) is an
enum listing the two alternative interpretations that either
reference a page table or a large page. The two segment

units PDirEntryTable line 2 and PDirEntryPage line 7
specify the configurable entries. Note that the definition of
PDirEntryTable reuses the common PTableDescriptor

specification through unit derivation.
State Definition. Conceptually, the state of a unit is a se-
quence of bits. The state definition assigns names to groups
of these bits by separating the state into one or more fields
that either reside in memory (mem) or in registers (reg). Each
field can be further divided into bit slices allowing the devel-
oper to refer to specific bits. Line 8 shows the state definition
of a page directory entry as an 8-byte memory location with
three bit-slices. One can view the state definition as declaring
private data members of a class.
Control Interface Definition. Similar to the state defi-
nition, the control interface definition has fields with op-
tional bit slices. Each field can be written to or read from
atomically, which triggers the state updates as specified in
the WriteActions (18) and ReadActions (19). The action
blocks contain one or more assignments to state or control
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1 // derive from the PTableDescriptor

2 segment PDirEntryTable(base: addr) : PTableDescriptor {

3 synth fn map(va:vaddr , sz:size , flgs:flags , pa: PTable)

4 requires // removed for space

5 }

6
7 segment PDirEntryPage(base: addr) {

8 state = StateDef(base: addr) {

9 mem entry [ base , 0, 8 ] {

10 0 .. 1 present ,

11 1 .. 2 rw, // bits 2..21 removed for space

12 21 .. 48 address , // bits 49..64 removed for space

13 } };

14
15 interface = InterfaceDef(base: addr) {

16 mem entry [ base , 0, 8 ] {

17 Layout { /* same as state */ }

18 WriteActions { interface.entry -> state.entry; }

19 ReadActions { state.entry -> interface.entry; }

20 } };

21
22 fn matchflags(flgs : flags) -> bool

23 requires state.entry.present ==1 && state.entry.ps==1

24 {

25 flags.writable ==> state.entry.rw

26 }

27
28 fn translate(va: vaddr) -> paddr

29 requires state.entry.present ==1 && state.entry.ps==1

30 {

31 va + (state.entry.address << LARGE_PAGE_BITS)

32 }

33
34 synth fn map(va:vaddr , sz:size , flgs:flags , pa:paddr)

35 requires va == 0 && sz == LARGE_PAGE_SIZE

36 requires pa & (LARGE_PAGE_SIZE - 1) == 0

37 } // end of PDirEntryPage

38
39 enum PDirEntry(base: addr) {

40 PDirEntryTable(base),

41 PDirEntryPage(base)

42 }

43
44 staticmap PDir(base : addr) {

45 mapdef = [ PDirEntry(base + i * 8) for i in 0..512 ];

46 }

Listing 1: Simplified x86 Page Directory Specification

interface fields or their bit slices. In the example, writing the
interface field entry copies its values into the entry field of
the state. The control interface can be seen as a public API
consisting of getter/setter methods for the interface fields.
Methods. The specification uses methods to define trans-
lation behavior. The method remap() is separated into the
methods translate () and matchflags (). Methods may
have requires clauses that define pre-conditions that must
be satisfied. The translate () method on line 28 requires
the present-bit and the PS-bit to be 1. Method body and
pre-conditions may refer to state, parameters or constants.
SynthMethods. Three special methods map(), protect ()
and unmap() (the latter two are omitted for brevity) provide
the synthesis targets for which we want to find a low-level

parser

synthesis

sat?
sat

next()

smt model

Z3 Program

Program Generator Interface Bindings
uses

Rust/C Code

Map/Unmap/Protect

Hardware Modulespecification Unit Model

handles

Figure 3: High-level Synthesis Overview

implementation. They are marked with the synth keyword
and do not have a body. In the example, map() requires the
physical address to be page aligned, the virtual address to be
zero, and the size to match the page size.

4 SYNTHESIZING CONFIGURATION
PROGRAMS

The synthesis procedure (Figure 3) takes the unit specifica-
tions as input and searches for an implementation for each of
the synthesis targets (i.e., map(), protect () and unmap())
that satisfies the operation’s post-condition that are implic-
itly defined by the model.
We present the synthesis procedure in three parts: 1) de-

fine the synthesis problem we need to solve, 2) present the
semantics of synthesis targets we need to implement, and 3)
describe the search space reduction techniques we employ.

4.1 The Synthesis Problem
With the model described above, we can now formulate the
problem of synthesizing the sequence of state transitions
that achieve a certain remapping behavior as follows:
“Given a unit model with a state (S), interface (I) and remap
function (R), what is the sequence of interface invocations
such that remap produces the desired outcome.”

The desired outcome is defined as the post-condition of the
synthesis targets map(), protect () or unmap() respec-
tively. In the case of map(), we ensure that the unit remaps
addresses within the given input address range [𝑣𝑎, 𝑣𝑎+𝑠𝑖𝑧𝑒)
that match the permission flags to the corresponding out-
put address range [𝑝𝑎, 𝑝𝑎 + 𝑠𝑖𝑧𝑒), expressed as the following
predicate as its post-condition:

∀𝑎 :: 0 ≤ 𝑎 < size ⇒ remap (𝑣𝑎 + 𝑎) flags == 𝑝𝑎 + 𝑎

4.2 Constructing Candidate Programs
The interface definition of the unit defines the grammar of
the configuration programwe want to synthesize. Intuitively,
the fields of the interface define the possible API calls and
the values of their bit slices define its arguments. We draw
possible values for the bit slices from the parameters to the
synthesized function, constant values, or expressions such
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as bitwise operations (e.g., shift, and, or, ...) or arithmetic
operations (e.g., +, -, ...).

4.3 Synthesis Step
During the synthesis step, the toolchain constructs candi-
date programs and asks the Z3 SMT solver [9] whether the
program satisfies the post-condition of the synthesis targets
(e.g., map()) that we want to synthesize. The toolchain trans-
forms the state and interface definitions and the program to
verify into SMT formulas. For each program, the solver needs
to check whether the post-condition holds for all possible
input values and translation unit states.

4.4 Search Space Reductions
The space of candidate programs grows exponentially in the
size of the state and interface of the unit. We need to find the
correct value for each bit in the state. Each field of the inter-
face conceptually corresponds to an API call that can change
many bits in the state (ReadActions , WriteActions). For
each bit slice we have to consider many possible expressions
(Section 4.2). This quickly results in a search space in the
order of billions of programs even for a simple unit. We re-
duce the search space by dividing the synthesis problem into
many, much smaller sub-problems and then find a global
solution by combining the results from the synthesis step of
the sub-problems. This divide-and-conquer approach also
allows us to synthesize the sub-problems in parallel.
1. Reduction through Program Construction. We lever-
age the atomicity of interface invocations to reduce the
search space by constructing programs that have a "read-
modify-write" structure, i.e., reading a value from the inter-
face, updating it, and then writing it back, Thus, the program
for which we are searching is one-or-more RMW sequences
each operating on a single interface field. An RMW sequence
is an optional read of the current value, construction of the
updated value, followed by a write-back of the updated value
to the field.
2. Reduction through Unit Decomposition. By design,
the unit decomposition methodology reduces the search
space by breaking down a more complex unit (e.g., a full
PDir of 32k bits) into much smaller units (e.g., one PDir en-
try of 64 bits). Moreover, only configurable units have state
and thus require synthesis.
3. Reduction through Remap Decomposition. We lever-
age the distinction between the memory address translation
and checking of the access permissions to reduce the search
space even further. For example, the RW-bit is irrelevant for
address translation, and the address field is irrelevant for
checking the access mode. Thus we can find programs for
the two functions independently and then combine them
into a single program that satisfies both functions.

4.5 Implementation and Evaluation
We implement a prototype of the toolchain in Rust and use
the Z3 SMT solver v4.8.12 for checking the satisfiability of
the synthesized programs. The toolchain leverages the inde-
pendence of the goals by running the synthesis in parallel
and combining the results. We have completely independent
synthesis tasks and therefore we can run as many as we
have cores in parallel. The prototype supports emitting the
synthesized programs in C and Rust. We are working on
making the code generation more flexible by using an OS
environment specification.
Currently, we have specifications for existing memory

hardware (e.g., 32-bit and 64-bit x86 page tables and ARMv8
translation tables), the Xeon Phi system memory page ta-
bles, and x86 segmentation. Moreover, we have descriptions
of hypothetical memory translation hardware (e.g., direct
segments). While not yet feature complete, the prototype
is capable of synthesizing configuration programs for the
page table of Listing 1 in 540ms and all four levels in 2400ms
on an Intel Xeon W-2275. The full specification is roughly
370 lines. In comparison, verifying the x86_64 paging code
consisted of 600 lines of specification and 5000 lines of proof
with a verification time of 48 seconds [7]. Note, this is just
for the x86_64 page tables, and the efforts would need to be
repeated for other translation hardware.

5 USE CASES
The availability of the specification language and the syn-
thesis tool enables a variety of use cases in system software
that makes the life of systems programmers easier.
Machine-Readable Specification. Conventionally, the
semantics of translation hardware are described in prose that
often leads to ambiguity. We can use a machine-readable
description of the translation semantics as ground truth,
especially when the specification is provided by the hardware
vendor as part of their documentation.
System Software Verification. The specification language
and its conversion into SMT queries can provide the foun-
dation for system software verification by emitting a model
for tools such as Isabelle/HOL.
Porting. Our toolchain makes porting operating systems to
new hardware platforms easier. We envision that operating
systems developers write a small OS-specific spec or abstrac-
tion layer that describes the environment the OS provides.
This frees OS developers from writing the low-level systems
code interfacing with memory translation hardware. As a
bonus, developers can simply reuse their OS specifications
and the translation specifications written by other users or
hardware vendors.
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6 THE ROAD AHEAD
Our prototype shows promising results. However, there are
still many open questions and challenges.
Cache operations and Barriers. Interfacing with hard-
ware, especially memory translation hardware, is always a
bit of a challenge to get right, especially on platforms with
weak memory models such as Arm or Power [5]. Memory ac-
cesses can be re-ordered, making a later write visible before
an earlier one. Moreover, writes end up in write buffers or
caches and are not visible to the translation hardware until
the cache is written back. We are currently working on in-
tegrating support to express caches and cache management
operations and barriers into the model.
Hardware Generation. Finally, we imagine that the speci-
fication can also be used for generating the hardware itself,
because our specification language includes the full address
translation semantics. Our prototype is already capable of
generating a component for the Arm FastModels simulator,
and we are looking into generating code for FPGAs. This
enables us to experiment with new translation schemes that
have precisely the features we desire.
Customizable Remap Behavior. Translation hardware is
complex offering many additional security features beyond
simple address translation with read, write and execute per-
missions. Features such as Arm’s pointer authentication or
Intel MPK allow additional checks before a remap succeeds.
We are working on extending our prototype to support a
customizable remap specification that allows developers to
express more complex behaviors.
TLB Management. To speed up the translation process,
frequently translated memory addresses are cached in TLBs.
The operating system needs to ensure consistency of the TLB
when updating the translation configuration. This is a non-
trivial, security-relevant task, as it may involve a distributed
shootdown protocol. While we can specify a TLB, we do not
have support for specifying distributed TLB management
protocols yet.
Applicability to other OS components. By using the
divide-and-conquer strategy, we managed to break down the
search space into small, tractable sub-problems that enabled
efficient synthesis. While this has worked well for the prob-
lem at hand, it may also apply to other parts of the operating
system such as general device drivers, memory allocators,
or schedulers. We see this to be relevant for customizable
embedded operating systems with resource constraints.

7 RELATEDWORK
Generating translation configuration has been done before [1].
However, the focus of prior work was handling complex
memory hierarchies by leveraging the decoding net model [3,
4] and the MMU configuration was static and generated at

compile time. Termite [22, 23] used a game-theoretic ap-
proach to generate device drivers, but they do not support
in-memory data structures. The Dingo framework [21] pro-
vides a language for specifying driver protocols to reduce
protocol violations and concurrency-related bugs when inter-
facing with hardware. Neither Termite nor Dingo supports
the generation of the device itself.

Aquarium’s hardware description language, Cassiopeia [10],
and its corresponding toolchain operates on the operational
semantics of assembly instructions requiring a partial ma-
chinemodel to be implemented. This approach is not amenable
t our divide-and-conquer approach and thus synthesis is sig-
nificantly slower.

Chen et al. [8] support device driver generation for multi-
ple operating systems and driver architectures. They show
that by using their tool they can drastically reduce devel-
opment time by achieving around 70% generation based on
device classes and features. However, their approach requires
defining register programming sequences, whereas our ap-
proach synthesizes this sequence.
Capability-based operating systems, e.g., Barrelfish [6]

and seL4 [13] and academic proposals such as as mmapx [2],
provide user-space with more control over address space
management by effectively separating writing the bits in
a page table from constructing the multi-level page table.
Our work ties into this by generating code for the capability
invocation handlers and the user-space library managing the
page tables.
The Arm Specification Language (ASL) [18] provides a

machine-readable description of the Arm architecture with
its description providing the basis for documentation gener-
ation, simulators and test suites [19]. Reid further wrote an
Arm instruction interpreter [20] based on ASL. This shows
the applicability of a specification-based hardware model.

8 CONCLUSION
We presented a methodology that breaks down translation
hardware into a composition of small building blocks that de-
scribe its translation behavior. We then outlined how we can
efficiently synthesize low-level systems code for these build-
ing blocks independently and then combine the synthesized
programs to obtain the final operating system implementa-
tion of the translation hardware driver.
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