
Manuscript received April 07, 2022; revised June 11, 2022; accepted July 05, 2022. This article was presented at the International

Conference on Embedded Software (EMSOFT) 2022 and appeared as part of the ESWEEK-TCAD special issue.

Tinkertoy: Build your own operating systems

for IoT devices

Bingyao Wang

University of British Columbia

Vancouver, Canada

bingyao@cs.ubc.ca

Margo Seltzer

University of British Columbia

Vancouver, Canada

mseltzer@cs.ubc.ca

Abstract—The Internet of Things (IoT) makes it possible for

tiny devices with sensing and communication capabilities to be

interconnected and interact with the cyber physical world.

However, these tiny devices have limited computing power and

memory, so they often cannot run commodity operating systems,

such as Windows® and Linux. IoT devices are deployed

everywhere, from smart home appliances to self-driving vehicles,

and their applications impose ever-increasing and more

heterogeneous demands on software architecture. There are many

special-purpose and embedded operating systems built to satisfy

these wildly different requirements, from early sensor network

operating systems, such as TinyOS and Contiki, to more modern

robot and real-time control systems, such as FreeRTOS and

Zephyr. However, the rapid evolution and heterogeneity of IoT

applications calls for a different solution. Specifically, this work

introduces Tinkertoy, a collection of standard operating system

modules from which developers can easily assemble customized

operating systems. A customized operating system provides

precisely the functionality needed by an application and consumes

up to four times less memory than other IoT operating systems

without sacrificing performance.

Keywords—IoT, Operating System, Design and Implementation

I. INTRODUCTION

At the dawn of the 21st century, it had become possible to
assemble small, lower-powered devices that combined
computing and sensing. These early sensor network systems
supported applications that ranged from wildlife tracking [19] to
monitoring of the world’s infrastructure [18].

A. From Wireless Sensor Networks to Internet of Things

Early wireless sensor networks (WSNs) were composed of
tiny sensor devices with wireless communication capabilities.
Applications running on these devices were simple, because
their sole purpose was to take measurements of the physical
world and transmit data back to a server [13]. However, due to
limited computing power and memory, these devices could not
run commodity operating systems, such as Windows® and
Linux, so researchers created embedded systems, such as
TinyOS [8] and Contiki [2], on which developers could deploy
sensor applications on these first-generation devices.

These devices used non-commodity communication
protocols, such as ZigBee and Z-Wave, tailored to their
communication hardware. As devices’ capabilities increased,
they became able to make use of more general-purpose
protocols, such as 6LoWPAN, thus increasing device
interoperability [16]. For example, today, a light sensor device
can ask lamp controllers to make a room brighter or darker,

based on the brightness level it measures. These more capable
devices are interconnected and jointly create the network of
physical objects, called the Internet of Things (IoT) [10].

The IoT has attracted a lot of attention, because tiny devices
play an important role in smart city management [1], healthcare
[12], home automation [15], etc. Their applications are more
sophisticated than previous sensor ones, demanding efficient
memory management, multitasking, and real-time operations.
For example, when a wearable electrocardiogram device detects
an irregular heart rhythm, it is vital to alert both the patient and
the physician in a timely fashion [17]. These second-generation
devices frequently run newer, real-time operating systems, such
as FreeRTOS [22] and Zephyr [23], to address those demands.

B. Key Challenge

To date, the IoT has had a tremendous impact in applications
ranging from healthcare to home appliances, but there remains
much potential. As the class of applications for IoT devices
expands, each generation is likely to impose ever-increasing
demands on the software infrastructure, so how should we build
system software to deal with these wildly different application
requirements on resource-constrained devices?

Building a unified general-purpose operating system is one
solution but not necessarily the best one, because such a system
will always have features that particular applications do not
need. Further, they might not provide precisely the right
behavior that an application expects. For example, there are two
common execution models, thread-based and event-driven.
Controller devices that wait for commands and trigger actuators
are easier to express in an event-driven model (§11.3.1, §11.3.2),
while gateway devices that translate messages from one protocol
to another concurrently are better implemented using a thread-
based model (§11.3.3). However, operating system designers
typically make the choice on behalf of developers, thus exposing
abstractions that may not be suitable for particular applications.

C. Our approach and motivation

We claim that the solution lies in making it easy to develop
application-specific IoT operating systems to meet these rapidly
increasing and diverging demands. However, building a special-
purpose system from scratch is overwhelmingly burdensome, so
we introduce Tinkertoy, a collection of standard modules from
which one can assemble a custom operating system in only a few
lines of code. We are inspired by the success of the Unikernel
[14] and the design concept of library operating systems [3]. In
the same way that Unikernels let developers select only those
libraries needed by an application, Tinkertoy lets developers

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

select a set of modules from which to assemble a custom system
that provides precisely the functionality needed by an
application. As such, we answer the following three questions:

• What are the common modules needed in IoT system
software?

• How does one construct standard operating system
modules so that applications can easily mix and match?

• How do we build such modules so that the assembled
systems do not suffer high runtime overhead?

D. Odyssey to Tinkertoy

While Unikernels are motivated largely by application-level
resource management and removal of protection boundaries, our
goal is to assemble customized operating systems that have a
small memory footprint and runtime performance comparable to
that of other IoT operating systems. Overall, this work makes
the following contributions:

• We present Tinkertoy, a set of standard modules that
can be assembled into a custom IoT operating system
(Sections IV through IX).

• We exploit recent C++ language features that make
each module as flexible as possible while still allowing
for their efficient implementation (Section III).

• We show that the effort of assembling a custom kernel
is insignificant in terms of the number of lines of source
code (Section XI.C).

• We show through an empirical case-based study that
assembled kernels have a smaller memory footprint
and better runtime performance than other popular IoT
operating systems (Section XI.D).

II. ARCHITECTURE OVERVIEW

A. Target Devices

Tinkertoy is composed of the 10 modules, shown in Table 1,
from which developers assemble kernels for low-end devices, as
classified by IETF [21]. Such devices have a single-core ARM
Cortex-M processor without an MMU, limited memory, sensors
and/or actuators, and communication hardware to interact with
other devices. However, Tinkertoy is not restricted to support
only this kind of device, because most modules are, in fact,
general-purpose. As more modules become available, we
imagine that developers can assemble kernels for devices, for
example, that have multiple symmetric cores.

B. Overview of Module Interactions

Before digging into the details of each module, we illustrate
how they interact with each other to provide services to user
applications. Consider a system consisting of two tasks in which
a watchdog task monitors a worker task and restarts it upon
abnormal termination. Fig. 1 depicts the watchdog task making
a system call to wait and turn control over to the worker task.

When the system boots, the kernel initializes itself and lets
the watchdog task run (1). The watchdog task invokes a system
call to wait until the worker task finishes (2). The system call
raises an exception, causing the processor to switch to privileged

mode and jump to a predefined kernel entry point in the context
switcher (3). The context switcher preserves machine execution
state on the watchdog task stack and restores the kernel state
from the kernel stack (4), after which it returns to the dispatcher.
The dispatcher relies on two companion components to process
the request (5); it calls the service identifier finder to retrieve a
unique service identifier (6) that is subsequently needed by the
service routine mapper to select the kernel service routine (7)
that implements the system call wait(). The routine receives a
reference to the watchdog task (8) and finds that the task should
be blocked, so it asks the scheduler to dequeue the worker task
(9) which is then returned to the dispatcher (10). The dispatcher
knows the next task to run, so it asks the context switcher to exit
from the kernel, switch back to the unprivileged mode (11) and
resume the worker task (12). Although not used in this example,
there are multiple memory allocators that provide dynamically
allocated memory for the kernel and user applications as needed.

Fig. 1. Illustration of interactions between modules to service user requests.

TABLE I. TINKERTOY MODULES

Modules
Component Availabilitya Related

Sections Prebuilt Building Blocks

Constraints Provided by Tinkertoy III

Scheduler ✓ ✓ IV

Memory Allocator ✓ ✓ V

Context Switcher ✓ VI

Execution State ✓ VI

System Call ✓ VI

Dispatcher ✓ VII

Kernel Service Routines ✓ ✓ VIII

Execution Models ✓ ✓ IX

Task Control Block ✓ IX

a. A component can be a prebuilt one, assembled from building blocks or implemented by developers.

C. Overview of Module Decomposition

Most of the above modules can be found in a conventional
operating system, but Tinkertoy provides them as configurable
building blocks. Specifically, some modules (e.g., the scheduler)
are divided into components, allowing developers to customize
the behavior of a module by switching one of its components for
another prebuilt one, assembling a component from our building
blocks, or using their own implementation. For example, one
could replace the FIFO queue with a priority queue to make a
scheduler prioritized. Fig. 2 depicts the relationship between a
customized kernel, modules, components and building blocks.

Tinkertoy provides building blocks for both thread-based
and event-driven models, so developers can customize the
contents of the task control block, define kernel service routines
that implement system calls and service hardware interrupts, and

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

expose related system calls to assemble an execution model that
best suits their applications. While offering great flexibility to
developers, Tinkertoy uses constraints (details in §3.1) to ensure
that other kernel modules are independent of the execution
model and that developer-specified modules can be reasonably
assembled into a kernel. Currently, Tinkertoy limits such kernels
to being single-threaded and non-reentrant, so it does not yet
support nested hardware interrupts and multiple kernel stacks.
Nevertheless, our building blocks are not designed under these
assumptions and can be combined with multithreading-specific
ones, e.g., to protect data structures used by a memory allocator.

Fig. 2. Illustration of decomposing a kernel into primitive building blocks that

can have multiple implementations to suit different applications’ needs.

Developers assemble a kernel by reversing the decomposition process.

III. METHODOLOGY

Our goal is to create flexible building blocks for kernel
modules without sacrificing runtime performance. We introduce
the following three key design principles and the corresponding
set of C++ language features we use to support them.

A. Constrained Flexibility

We use templates to capture the genericity of kernel modules
whose mechanisms are, in fact, independent of other modules.
For example, on some systems, a scheduler schedules processes,
while on others, it schedules threads, so its design should be
agnostic to the object to schedule, but a specific instance of a
scheduler should be constrained to schedule objects of a specific
type. For example, a priority-based scheduler must know how to
reorder tasks by their priority level, so we express constraints on
the task type using concepts standardized in C++20 [25].

Fig. 3. Definition of a concept that requires a type to overload the less than

operator. MyPriorityScheduler can be specialized only if Task is comparable.

A concept allows one to define a set of requirements on a
type, such as which member functions the type must implement,
which operators the type must overload, and which member
types the type must define. A template can be associated with
one or more concepts, jointly imposing constraints on the
template parameter. When specializing a template, developers
must provide a concrete type that satisfies all the requirements
specified by those concepts, otherwise the compiler will not
compile the code. Tinkertoy’s constraints are designed to be as
concise and tight as possible but admit a large space of potential
instances that satisfy the type requirements. For example, a

priority-based scheduler can accept any task type that overloads
the comparison operators. Fig. 3 shows an example concept
definition and its usage.

B. Code Reusability

Developers should be able to use existing building blocks to
assemble different instances of a particular kernel module, so it
is imperative to make building blocks highly reusable. For
example, any preemptive scheduler preempts a running task by
placing it on the ready queue and resuming the next ready task.
As such, we encapsulate the functionality of a building block as
a functor, which is a C++ class that overloads the function call
operator. In comparison to a C-style function pointer, a functor
has all the benefits of class; it can be stateful, generic, and
constrained by concepts, but more importantly, the compiler can
inline calls to the functor, providing better performance than
making an indirect function call at runtime. Fig. 4 shows an
example functor that takes no arguments and returns void.

C. Code Composability

Tinkertoy provides a collection of standard building blocks
for each kernel module, but developers might need to extend the
functionality of an existing building block or combine multiple
ones to satisfy their needs. For example, a multilevel feedback
queue scheduler needs to allocate a quantum to a task before
placing it on the ready queue. Subclassing and delegation are
two common approaches, but they both incur runtime overhead,
for example, by using virtual functions.

Since building blocks are encapsulated as functors, we use
fold expression from C++17 to create a new building block from
existing ones at compile time. A fold expression is used with a
template parameter pack, so Tinkertoy provides builder classes,
covered in the remaining sections, taking building blocks as
their template parameters and producing a new block. Fig. 4
shows an example of creating a new functor from existing ones.

Fig. 4. Implementation of a builder class that uses a fold expression to invoke,

in the specified order, an arbitrary number of stateless functors, each of which

is assumed to return void (for simplicity). Note that the builder class itself, when

specialized, is a functor. Each FunctorX prints the digit “X”, so the assembled

functor, MyFunctor, prints “132”.

D. Summary of Methodology

Tinkertoy leverages recent C++ language features to ensure
that building blocks are reasonably flexible, highly reusable, and
easily composable. These features allow us to write concise and
efficient code. While we use C++, other languages have similar
features, e.g., Rust’s type traits mechanism allows one to
enforce constraints on a type at compile time, providing
functionality similar to that of C++ concepts. We leave
exploration of designing and implementing building blocks in
other languages for future work.

IV. SCHEDULER

A scheduler decides which task should run and for how long
it should execute. Its policy can be classified along different
dimensions, such as preemptive vs. cooperative or prioritized vs.

template <typename T>
concept Comparable = requires(const T& lhs, const T& rhs)
{ { lhs < rhs } -> std::same_as<bool>; };
template <typename Task> requires Comparable<Task>
struct MyPriorityScheduler {};

template <typename... Functor>
struct FunctorBuilder
{ void operator()() { (Functor{}(), ...); } };
using MyFunctor = FunctorBuilder<Functor1, Functor3, Functor2>;
MyFunctor{}(); // Print "132"

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

non-prioritized. Tinkertoy’s scheduler is composed of three
components: Policy, Event Handlers, and Task Control Block
Constraints. We analyze popular scheduling algorithms and
model their commonalities as a set of building blocks shown in
Table 2. After explaining this decomposition, we illustrate how
to assemble a scheduler to meet application needs.

TABLE II. SCHEDULER BUILDING BLOCKS

Scheduling Policies Event Handlers

First In First Out Queue Timer Interrupt

Prioritized Single Queue Task Creation

Prioritized Multi Queue Task Termination

Task Control Block Constraints Task Yielded

Schedulable Task Blocked

Implicitly Prioritizable Task Unblocked

Prioritizable By Priority Task Killed

Prioritizable By Mutable Priority Task Priority Changed

Prioritizable By Auto Mutable Priority Task Self Priority Changed

Quantizable Task Quantum Used Up

A. Module Decomposition

A scheduler maintains one or more queues to keep track of
ready tasks (1) and decides which task to run in response to
external events (2), such as a new task arriving in the system (3).
Fig. 5 depicts the interactions between the scheduler and other
kernel modules.

Fig. 5. Illustration of interactions between scheduler components.

1) Policy Component

The policy component manages the ready queue reflecting
whether a scheduler is prioritized. It exposes two primitives,
ready and next, to enqueue and dequeue a task respectively. The
queue accepts tasks only if they are schedulable, so we define
the class Schedulable, from which all schedulable tasks must
inherit.

Tinkertoy provides three types of queues: FIFO, Prioritized
Single, and Prioritized Multi. A scheduler that adopts a priority
queue must assign priorities, so we define constraints, Implicitly
Prioritizable, which requires a task to overload the comparison
operators if it wants to keep its priority level private to the
scheduler, and Prioritizable by Priority, which requires a task to
reveal its priority level via a getter function. The actual type and
the meaning of a priority level is determined by developers. For
example, one can treat a task’s deadline or periodicity as its
priority level and assemble an Earliest Deadline First or Rate
Monotonic scheduler for a real-time operating system. The
Prioritized Multi Queue component allows developers to specify
a potentially different policy for each priority level. A multilevel
queue scheduler needs a developer-provided mapper (a functor)
to initialize each queue. For example, one can build a Prioritized
Round Robin scheduler by providing a mapper that returns a
FIFO queue for each level.

Developers can build a new policy component from an
existing one and a list of functors, as shown in Fig. 6, to
customize enqueue and dequeue behaviors, such as updating the
amount of time the task has been running. In general, the policy
component makes it possible to materialize the queue for all
common scheduling algorithms.

2) Event Handler Component

The event handler component reacts to scheduling events
that can occur on a system and reflects characteristics such as
whether a scheduler is preemptive. For example, when a new
task is created, a cooperative scheduler might keep the current
task running, while a preemptive one might run the task with the
higher priority. These two different reactions are reflected in the
implementation of the task creation handler.

Tinkertoy provides ten types of event handlers, listed in
Table 2, allowing developers to specify to which types of events
a scheduler can respond and how it should respond. Each of
them defines the interface through which other kernel modules
interact with the scheduler and uses primitives provided by the
policy component to manipulate the ready queue. For example,
if a task can change its priority at run time, the kernel service
routine invokes the Priority Changed handler to inform the
scheduler that the priority level of a task has been changed; it is
then up to the scheduler to reschedule if necessary. Our design
has no limit on the number of handler types, so developers are
free to declare and implement new types of handlers.

B. Building Custom Schedulers

Tinkertoy provides a builder class to assemble a scheduler
from a policy component and a collection of event handlers. We
illustrate this process to assemble a simple FIFO scheduler.

1) System Requirements

Let’s say that we want to build a scheduler for a kernel that
allows a process to create another process, relinquish the
processor voluntarily and wait for that process to finish. We
assume the existence of a user process that never terminates
(e.g., Unix’s init process). The kernel expects all processes to
run in arrival time order and wants to track the number of times
a task is preempted. The system does not have a hardware timer.

2) Assembling Schedulers

The above requirements suggest that we need five event
handlers: Creation, Termination, Yielded, Blocked and
Unblocked. Since the system has a never-terminating user
process, there is always a runnable process, so we do not need
an idle task. We build a new policy component on top of FIFO
that increments the preemption counter of a task to be enqueued.
We assemble the FIFO scheduler as shown in Fig. 6.

Fig. 6. Composition of a FIFO scheduler using existing components.

V. MEMORY ALLOCATOR

Physical memory is a scarce resource on tiny devices without
MMUs. Tinkertoy provides four prebuilt memory allocators, a

using Policy = PolicyWithEnqueueExtensions<FIFO, Counter>;
class MyFIFOScheduler : public SchedulerAssembler<Policy,
 TaskCreation::Cooperative::KeepRunningCurrent<Task>,
 TaskTermination::Common::RunNext<Task>,
 TaskBlocked::Common::RunNext<Task>,
 TaskUnblocked::Cooperative::KeepRunningCurrent<Task>,
 TaskYielded::Common::RunNext<Task>> {}

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

free list allocator, a fixed-size resource allocator, a fast pool
allocator, and a binary buddy allocator, as well as building
blocks for developers to assemble custom allocators. We discuss
how we decompose an allocator into components and show that
our binary buddy allocator assembled for memory-constrained
devices outperforms the Linux one in memory efficiency.

A. Module Decomposition

Dynamic memory allocation involves two major operations,
allocate and free. We decompose a memory allocator into four
components: Memory Block, Static Aligner, Primitive Steps,
and Account Book. Fig. 7 depicts the interactions between them.

Fig. 7. Illustration of interactions between memory allocator components.

1) Memory Block
A memory block is an abstraction for a region of memory

that might contain metadata necessary for the allocator to track
space that is (un)available for allocation. For example, a free list
allocator needs to know the size of each memory region, while
a fixed-size one needs to know only whether a region is free. As
a result, the contents of a memory block are allocator-specific.

Tinkertoy provides a collection of standard memory block
components to store the size, track the allocation status, maintain
pointers to next blocks, etc., allowing developers to assemble a
custom memory block simply by selecting existing components.
Alternatively, they can implement an allocator using some or
none of the existing components. For example, if a device has
less than 64 KB memory, one could use two 2-byte integers to
store the block size and the address of the next free block.

2) Static Aligner
Variable-sized memory allocators might rely on an aligner

(a functor) to ensure that all allocations are properly aligned to a
fixed boundary. An aligner calculates the amount of memory
needed to satisfy both the allocation request and the alignment
requirement; it is invoked by allocate. Tinkertoy provides three
types of aligners: null, constant and power-of-two.

3) Primitive Steps
Allocate is composed of three primitive steps, Get Free

Block, Mark Block Used, and Block to Pointer. Get Free Block
tries to find a free memory block large enough to satisfy the
request. Subsequently, Mark Block Used might modify the
metadata to mark the block in use. At the end, Block to Pointer
returns the start address of the block to the program.

Similarly, free is also composed of three primitive steps,
Pointer to Block, Mark Block Free, and Put Free Block, each of
which does the reverse of the corresponding step in allocate. As
such, we can provide a default implementation for both allocate
and free with these primitives, while leaving developers the
freedom to customize the behavior of each step.

4) Account Book

Primitive steps track allocations with specific data
structures, each of which implements part of an allocation
algorithm. Tinkertoy provides two types of account book,
overlay and standalone. The former stores metadata of a
memory block in the block itself, while the latter allocates
additional memory for metadata. We also provide common data
structures for each of them, such as a list and a binary tree.

B. Memory Efficiency of Assembled Binary Buddy Allocator

Tinkertoy’s binary buddy allocator allows developers to
specify a basic allocation size S and the maximum order N. It
uses a standalone binary tree represented as a bit array to track
the status of memory blocks of every possible size between S
and 2NS, consuming only 2N-3 bytes. In contrast, Linux’s binary
buddy allocator uses an array of free lists, each of which is
associated with a bit map that tracks the status of each pair of
buddy blocks of a given order, thus reserving 16N bytes for N
orders [6]. Fig. 8 shows the amount of memory reserved by
Linux’s allocator compared to that of Tinkertoy’s.

Fig. 8. A comparison of the amount of memory reserved, in bytes, for tracking

memory allocations.

The results demonstrate both the memory efficiency of
Tinkertoy’s allocator for the common case, which has relatively
few orders, and the advantages of Tinkertoy’s design: A
developer who needs more than ten orders can adopt the Linux
strategy by replacing the binary tree with a linked list and
extending the primitive steps of a free list allocator to update the
status of each pair of buddy blocks.

VI. CONTEXT SWITCHER

Tinkertoy’s context switcher is composed of two halves, to-
kernel, which defines kernel entry points and switches from a
user task to the kernel, and from-kernel, which does the reverse.
The processor jumps to the to-kernel half on an interrupt, so the
context switcher preserves the execution state and hands control
to the dispatcher. After processing the request, the dispatcher
calls the from-kernel half with the task that runs next. We model
execution state as an architecture-dependent object, specifying
the layout of saved registers and the calling conventions.

A. Execution Model Independent Design

A common place to store a task’s execution state is its stack.
After copying the machine’s registers into stack space, the
context switcher stores the address of the saved state into the
task’s control block, so it relies on constraints to have full access
to a task’s member field stack pointer, while remaining agnostic
to whether a kernel is event-based or thread-based. Tinkertoy
provides prebuilt context switchers for both x86 and ARMv7-M
for non-reentrant, single-threaded kernels.

48 64 80 96 112 128 144 160 176

1 2 4 8 16 32
64

128

256

0

100

200

300

3 4 5 6 7 8 9 10 11

N
u

m
b

er
 o

f
B

yt
es

Total Number of Orders

Memory Reserved For Tracking Allocations
Linux Tinkertoy

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

B. System Call and Execution State

Tinkertoy allows developers to define their own system
calls, using a broker function, syscall, for each architecture. The
broker is a variadic function that takes a numeric system call
identifier followed by an arbitrary number of arguments and
returns a signed 32-bit integer representing the kernel return
value; all system calls are essentially wrappers of this function.

The interface between syscall and the kernel uses registers,
passing the system call identifier in one register and a va_list
pointer in another. However, syscall must accept its arguments
from wrappers according to calling conventions. If the calling
conventions specify register parameters, syscall uses those; if
the calling conventions require arguments to be passed on the
stack, it uses two caller-saved registers, instead, ensuring that
the original values are preserved. The kernel should also interact
with its service routines adhering to calling conventions. To
facilitate this interaction in an architecture-independent fashion,
we define a constraint on the execution state to ensure that it
specifies the calling conventions for system calls by providing
the following functions for kernel service routines in Fig. 9.

Fig. 9. Definition of the constraint on the execution context to specify the

calling convention of system calls.

As a result, the implementation of the broker function is
paired with that of the execution state. For example, Tinkertoy
loads the system call identifier into %r0 on ARMv7-M, so it
implements the function getSyscallID by returning the register
value of %r0 in the saved execution state. Developers do not
need to provide their own implementations of both components
unless they port Tinkertoy to another architecture.

VII. DISPATCHER

The dispatcher connects user tasks and devices that request
services and kernel service routines that provide services. It does
not implement any kernel policy and is independent of the
execution model. We divide the dispatcher into two halves, the
specific half, which invokes kernel service routines requested by
a task or a piece of hardware, and the common half, which
invokes routines shared by all tasks, such as checking pending
signals.

A. Companion Components

After receiving a service request from the context switcher,
the dispatcher relies on two developer-specified components,
each of which is a functor, to select a kernel service routine that
can process the request. The Service Identifier Finder takes a
pointer to the interrupted task and returns the service identifier.
For example, ARM Cortex-M processors have a special
Interrupt Control and State Register (ICSR) that records the
current IRQ number, which can be used as the service identifier.
The Service Routine Mapper consumes a service identifier and
returns a pointer to the service routine. Since IRQ numbers are
fixed on ARM Cortex-M systems, developers can use either a
table or a switch statement to implement the mapper.

B. Assembling Dispatchers

Tinkertoy provides a builder class for assembling custom
dispatchers. Consider an ARM Cortex-M3 system that provides
two system calls, syssend and sysrecv, to send or receive data
via a UART port. The system uses the IRQ number as the service
identifier and supports signal delivery from the kernel. As such,
we assemble the dispatcher as shown in Fig. 10.

Fig. 10. Assemble a custom dispatcher for the system.

The service identifier finder reads the 32-bit IRQ number
from the ICSR register. If the number is 11, the mapper tells the
dispatcher to redirect the request to the kernel service routine
that processes system calls. Similarly, if the number is 22, the
request is redirected to the UART RX interrupt handler. Since
the kernel can send signals to a thread, we specify the special
service routine Setup Signal Handler Context that builds the
execution state for the thread that runs next if a signal is pending.

VIII. KERNEL SERVICE ROUTINES

Kernel service routines implement system calls and respond
to hardware interrupts. Depending upon the type of request, they
might ask the scheduler to reorder tasks and/or dequeue the next
available task. Additionally, they rely heavily on constraints and
thus provide services only if all requirements are satisfied. As
such, kernel service routines have the following three properties.

A. Non-blocking

Recall that Tinkertoy kernels are currently single-threaded,
so all kernel service routines must be one-shot and run to
completion. However, developers do not need to write routines
in a continuation passing style, such as having a callback
parameter in the function signature, because a service routine
that must be blocked waiting for some resources or conditions
in a multithreaded kernel can be naturally expressed as two (or
more) non-blocking service routines in a single-threaded kernel.

For example, when a task requests a read from a serial port,
the service routine that implements sysrecv checks whether the
kernel buffer has enough data to satisfy the request. If so, it
copies the data and asks the dispatcher to resume the task.
Otherwise, it places the task on the waiting queue of the driver
and retrieves the next task from the Task Blocked event handler
of the scheduler. Later, the serial device generates an interrupt
to notify the kernel that data is available for reading, so the
UART Rx interrupt handler is invoked to service the interrupt,
moving data from the hardware buffer to the kernel buffer.
When the kernel buffer has enough data to satisfy the receive
request, the interrupt handler dequeues the receiver task from the
waiting queue and asks the scheduler to unblock the task via the
Task Unblocked event handler. Depending upon the scheduling
policy, the scheduler might preempt the task being interrupted
and resume the receiver task. Subsequently, the receiver task
returns from the system call and proceeds with the data.

B. Task Control Block-Independent

Recall that Tinkertoy allows developers to assemble a task
control block, so kernel service routines should be independent
of any specific task control block type. However, a service

template <typename C>
concept ContextSpecifiesSysCallConvention = requires(C& c, Int32 v)
{
 { c.getSyscallIdentifier() } -> std::same_as<UInt32>;
 { c.getSyscallArgumentList() } -> std::same_as<va_list*>;
 { c.setSyscallKernelReturnValue(v) } -> std::same_as<void>;
};

using MyDispatcher = Dispatcher<TCB, UInt32, MyIdentifierFinder,
MyRoutineMapper, ContextSwitcherARM, SetupSignalHandlerContext>;

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

routine might rely on certain task control block components
(§9.1) to provide services. For example, the one that implements
sysgetpid must be able to retrieve the identifier of the task that
issues the request, so it uses the constraint Has Unique Identifier
to guarantee read access to the identifier and Can Invoke SysCall
to guarantee write access to the kernel return value. As a result,
it is agnostic to how the identifier is stored in the task control
block and which register will hold the kernel return value.

C. Component-Independent

We use a strategy similar to that described in the previous
section to make kernel service routines independent of other
kernel modules, such as the scheduler. For example, the service
routine that implements sysyield must have access to the
scheduler, which provides the Task Yielded event handler, while
the one implementing sysrecv needs the Task Blocked event
handler. As a result, we also translate these requirements into
scheduler constraints, ensuring that kernel service routines have
access to what exactly they need.

IX. EXECUTION MODELS

Thread-based and event-driven models are two common
execution models, but the debate over which one is better has
raged for decades [7]. In reality, some systems are simply easier
to express in one or the other model. Regardless of which model
developers choose for their applications, the kernel maintains a
task control block for each abstract unit of execution, such as a
process, a thread, an event handler, or a coroutine.

A task control block should contain only the information
needed by the kernel to provide services. For example, the kernel
needs the priority level of each task to provide priority-based
scheduling but does not need the task identifier if there is no
system call that references a task by its identifier. As such,
Tinkertoy provides building blocks from which to assemble,
initialize and finalize a task control block and execution model.

A. Task Control Block Components

1) Components “Meet” Constraints
Tinkertoy provides 10 task control block components, each

of which comprises a part of the final task control block by
defining zero or more instance variables and providing functions
to manipulate those instance variables, but more importantly,
each task control block component can be used to satisfy a
particular constraint as listed in Table 3.

2) Stack Components
Tinkertoy is designed to support a variety of different

application architectures as efficiently as possible. For example,
monitoring systems (§11.3.1) typically require a single task that
loops infinitely collecting and transmitting data, while server
systems, such as gateways (§11.3.3), use an endless supply of
short-lived threads. These different application architectures
impose different requirements on the kernel. Specifically, the
kernel need never reclaim stack space if task lifetimes are
essentially forever. Such tasks are best implemented by the non-
recyclable stack component that keeps track of the current stack
pointer only. In contrast, applications that use short-lived tasks
should be implemented by the recyclable stack component that
also records the start address of the stack, so the kernel can
reclaim stack space for new tasks. However, developers do not

have to limit themselves to these stack components; they can
design their own, for example, one that avoids recording the start
address of the stack by allocating a contiguous block of memory
for both the task control block and the stack, as done in Linux.

3) System Call Support Component
Recall that kernel service routines that implement system

calls read arguments and set the kernel return value (§8.2) by
manipulating saved execution state (§6.2). To read a task’s
saved state, a service routine must be able to access its stack
pointer. Since the execution state component provides an extra
layer of indirection to hide architecture-specific details, we
provide the system call support component for kernel service
routines to access arguments and the return value conveniently.
We use static polymorphism to explicitly make the system call
support component dependent on one of the stack components.

4) Other Components
We also provide standard components to declare a task

identifier, assign a priority level, adjust the task state, etc., but
developers can always implement their own to provide more
efficient application-specific memory management. Suppose
that a system supports at most four dynamic priority levels and
16 tasks, one might prefer to use 4-bit task identifiers, 2-bit
priority levels, and a 2-bit state representation, consuming only
a single byte instead of requiring three 4-byte integers. Fig. 11
presents an example of assembling such a task control block.

TABLE III. TASK CONTROL BLOCK COMPONENTS & CONSTRAINTS

Task Control Block

Components

Initializer

Components

Satisfied

Constraints

Shared Stack Assign Shared Stack Has Stack

Dedicated

Non-Recyclable Stack

Allocate/Assign

Dedicated Non-

Recyclable Stack

Has Dedicated Stack

Inherited From

Has Stack

Dedicated

Recyclable Stack

Allocate/Assign

Recyclable Stack

Has Recyclable Stack

Inherited From
Has Dedicated Stack

System Call Support Setup Execution State Can Invoke SysCall

Numeric Identifier

(with/without field)
Assign Unique ID Has Unique Identifier

Priority Level

(with/without field)
Assign Priority

Prioritizable

(Scheduler)

State

(with/without field)
Assign Task State Has Explicit State

B. Task Control Block Initializers and Finalizers

When the kernel creates a new task, it must allocate and
initialize a task control block. Similarly, when a task finishes
running or is killed by other tasks, the kernel must finalize and
release its control block. Both operations are implemented as
kernel service routines that rely on a task controller to allocate
and release control blocks, leaving developers responsible for
the allocation algorithm; they can, of course, use existing
building blocks from the Memory Allocator (§5.1) to assemble
a custom control block allocator.

Since developers assemble task control blocks from a
collection of components, they should be able to assemble the
corresponding initializers and finalizers as well. Tinkertoy
provides one or more initializer components for each task
control block component and convenient builder classes to
assemble a custom initializer and materialize a kernel service

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

routine. The same concept also applies to the finalizer, and as a
result, developers can initialize or finalize a task control block
in one line of code. Fig. 11 presents an example of initializing
an assembled task control block.

Fig. 11. Assemble an initializer to initialize a task control block. The 1st

argument block is the target to be initialized. The 2nd argument, with value 1, is

the task identifier, and is passed to the initializer component Assign Unique

Identifier. The rest arguments are passed to their corresponding components.

C. Thread-based Execution Model

Once developers have defined the task control block type
and built the initializer and finalizer, they can expose relevant
system calls, such as creating a new thread, to user programs in
two steps. First, they declare the system call prototypes, assign
a unique service identifier to each, and pass the identifier and
arguments to the syscall function (§6.2). Second, they add an
entry to the service routine mapper (§7.1), so that the dispatcher
can route the request to the corresponding kernel service routine.
Fig. 12 shows an example of implementing a system call
sysCreateThread and routing the request to the task control
block initializer built in Fig. 11.

Tinkertoy does not yet provide synchronization primitives,
such as mutex, semaphores and message queues, so there are
limitations in the current thread-based model (e.g., threads
cannot communicate). However, our builder classes are generic
enough to work with any number and type of components, so we
believe that it is possible to implement such functionality.

Fig. 12. Add a new system call to create a thread at runtime. The Service

Routine Builder materializes a kernel service routine for the new system call.

Internally, it reads system call arguments and forwards them to initializer
components. The kernel service routine is encapsulated as a functor, so the

macro is needed to convert the functor to a function pointer which can then be

used by the service routine mapper to route the request properly.

D. Event-driven Execution Model

The event-driven execution model allows developers to
define custom events and model their applications as individual
event handlers that run on a single shared stack. Tinkertoy
provides task control components specific to this model, such as
the event handler component that stores the handler entry point,
and standard kernel service routines as well as system calls to
(un)register events and their handlers and deliver events.

X. RELATED WORK

Tinkertoy’s building blocks make it possible to assemble a
custom kernel that is inherently modular. Before evaluating the
performance of the kernels we’ve assembled, we discuss how
this work draws on work in library operating systems, the

Exokernel [3], and the Flux OSKit [4]. We then introduce five
popular IoT operating systems and compare them to Tinkertoy.

A. Library Operating Systems

General-purpose operating systems must multiplex
hardware resources among user applications, so kernel designers
select a policy for sharing each resource on behalf of users and
expose a collection of abstractions to them. When applications
impose wildly different demands, arbitrating among them
becomes a key challenge. Library operating systems [14]
address this concern by allowing developers to implement
application-specific operating system abstractions in user space.

Exokernels [3] focus on presenting the right abstractions to
directly expose hardware, allowing applications to manage
resources efficiently at user level while still protecting them
from each other. However, the kernel still defines core
functionality and policies from which a library system can use
or extend for a particular application. Tinkertoy allows
developers to create or choose abstractions as well by providing
kernel service routines and exposing related system calls, but it
is a set of modules that are independent of the kernel architecture
and execution model, so developers are free to replace, add, or
remove any of them. Application-level resource management is
not our goal, because we believe that developers can use
hardware resources efficiently by carefully assembling a custom
operating system from building blocks.

The Flux OSKit [4] focuses on reusing components from
different existing systems to construct new ones. Its
encapsulation technique makes it easier to import code, such as
device drivers and network stacks, from other systems, and its
object-oriented design makes it possible to mix and match
different components to produce a new system. The Flux OSKit
provides two modes of system construction: separable
components and individual functions. Tinkertoy shares the
design concept of modularity and separability with the Flux
OSKit but does not import components from other operating
systems, primarily because such components are frequently too
large and expensive for IoT systems, but also because even the
overhead of wrapping these components in standard interfaces
might be too burdensome for our target environment. Instead,
we carefully design each component from scratch to provide a
third approach to system construction: composable code, so
developers can customize kernel data structures (e.g., task
control block) and related functions (e.g., initializers, finalizers,
and service routines) and construct entirely new systems by
assembling them out of a collection of modular, flexible, and
interacting components.

B. Other IoT Operating Systems

TinyOS [8] is an event-driven operating system written in
NesC [5]. Software services and hardware resources are
encapsulated as components, interacting with each other by
posting and responding to events. TinyOS achieves modularity
at the component level; developers write applications in terms
of a set of components but cannot customize a component easily
without tweaking the code. Besides, TinyOS does not support
user space nor dynamic memory allocation, making it vulnerable
to faulty user applications and infeasible to accommodate
unpredictable runtime resource requests. Its Rust-based
successor, Tock [9], exploits both hardware and programming

struct Block: Schedulable, Listable<Block>,
 UniqueIDNoDecl<Block>, PriorityNoDecl<Block>, StateNoDecl<Block>,
 DedicatedNonRecStack<Block>, SysCallSupport<Block, Context>
{ UInt8 identifier: 4, priority: 2, state: 2; };
using Init = Builder<Block, AssignUniqueID<Block>,
 AssignPriority<Block>, AllocateDedicatedStack<Block>,
 SetupExecutionContext<Block, ExecutionContextBuilder>>;
Init{}(block, 1, kHigh, kDefaultStackSize, task_main);

int sysCreateThread(int id, int pri, size_t size, void* ep)
{ return syscall(kSysIDCreateThread, id, pri, size, ep); }
using Routine = ServiceRoutineBuilder<Block, Scheduler,
 ThreadController, AssignUniqueID<Block>,
 AssignPriority<Block>, AllocateDedicatedStack<Block>,
 SetupExecutionContext<Block, ExecutionContextBuilder>>;
OSDefineAndRouteKernelRoutine(kCreateThrd, Block, Routine);

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

language protection mechanisms, focusing on fault isolation and
efficient and safe memory management.

Contiki [2] is another event-driven operating system written
in C. User applications are built upon the stack-less protothread
library, so they run cooperatively and can only be preempted by
hardware interrupts. The system supports dynamic memory
allocation but not user space and is modular in a coarse-grained
manner similar to TinyOS. Developers can edit a Makefile to
include only the modules they need but still cannot customize
the behavior of each module and the kernel easily like Tinkertoy.

FreeRTOS [22] is a real-time thread-based operating system
written in C. Its kernel is designed to be small and simple and
consists of only three source files: list, queue, and task. All other
kernel functionality, such as semaphores and event groups, are
built on top of these three constructs. Applications are
encapsulated as tasks with a private stack and can be scheduled
either preemptively or cooperatively. FreeRTOS relies heavily
on C macros to make the kernel modular at the API level but not
at the code level as Tinkertoy does. Developers customize the
system by providing a header file in which they define macros
to enable or disable kernel APIs.

Zephyr [23] is a thread-based operating system written in C.
Its kernel shares many design concepts with Linux. For example,
Zephyr provides multiple scheduling algorithms, such as
cooperative, preemptive, time slicing and earliest deadline first,
to suit application needs. It supports meta IRQ scheduling to
defer executing a function, which behaves similarly to Linux’s
tasklet and softirq. Zephyr provides a Kconfig interface [24], as
Linux does, allowing one to customize the system in a finer-
grained manner than FreeRTOS does. Developers can specify
the device drivers they need, the scheduling algorithm, the data
structure that implements the queue, etc., and similar to
Tinkertoy, some of the customizations are close to code level.

Using the following criteria, we select FreeRTOS and
Zephyr as our baselines in the evaluation. First, these systems
allow us to disable functionality that is not used, so both the
baseline kernels and our kernel are doing the same work.
Second, they are under active development and therefore do not
present performance or implementation challenges in the kernel.
Third, both have an official port that supports our emulated
board, so we can focus on adopting different kernel APIs when
porting applications to these systems, leaving platform-specific
code intact.

C. Summary

Tinkertoy shares the goal of building application-specific
operating systems with Exokernel and the Flux OSKit, but its
scale and design target are considerably different. While other
aforementioned IoT operating systems have design targets
closely aligned with those of Tinkertoy, they provide a prebuilt
kernel, from which developers remove unneeded functionality.
In contrast, Tinkertoy is not a kernel but a set of modules, from
which developers assemble a custom kernel, and thus it is the
granularity at which one can customize kernel modules easily
and design new modules specific to a particular application that
makes Tinkertoy distinctive. Our design principles ensure that
the unit of modification is as small as necessary. For example, it
takes 109 lines of code to implement the kernel interface that

changes a task’s priority in FreeRTOS, whereas one can
implement a kernel service routine in fewer than 10 lines of
code, simply notifying the scheduler through the Task Priority
Changed handlers, which can be reused by other routines, e.g.,
the one that prevents priority inversion in a multithreaded kernel.

XI. EVALUATION

We have identified three different kinds of kernels that apply
to many different IoT applications: 1) a monitoring kernel used
for applications responsible for collecting sensor data, 2) an
actuator kernel that is representative of modern cyber-physical
systems in which an actuator changes its physical surroundings,
and 3) a gateway kernel found in network-focused applications.
We demonstrate that Tinkertoy naturally supports all of these
kernels by assembling an instance of each type of kernel and
combining them into a concrete use case: an automated watering
system. These three kernels are chosen carefully to reflect first-
and second-generation sensor network operating systems, and
emerging third-generation systems that run on intelligent IoT
devices [11] and have functionality closer to that of a general
purpose operating system. We then analyze the memory
footprint and the runtime performance of the assembled kernels
and compare the results to other systems.

A. Automatic Watering System

An automatic watering system takes care of potted plants
while people are away from their home. It is composed of three
devices, a monitor, an actuator, and a gateway, each of which
requires a custom kernel. The monitor periodically fetches the
soil moisture level from a sensor placed in a pot. If the level
drops below a user-defined threshold, it asks the actuator to start
dripping water. Once the level reaches an upper threshold, it
signals the actuator to stop. The actuator controls the gate of a
water bottle. It opens the gate on receiving a dry alert from the
monitor and closes the gate on a wet alert. Optionally, a gravity
sensor can be placed in the bottle, enabling the actuator to notify
the user when the bottle runs out of water by sending out a CoAP
POST message to a Linux HTTP server via the gateway. The
gateway device sits between the actuator and the server, acting
as a transparent proxy that translates CoAP messages to HTTP
messages and vice versa. Fig. 13 depicts the setup.

Fig. 13. Deployment of the automatic watering system in a home network.

B. Experimental Setup

We have three tiny devices in total, each of which runs its
own custom kernel on a Stellaris LM3S811 board emulated by
the ARM Fast Models. Each board has a 50 MHz ARM Cortex-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

M3 processor, 64 KB Flash and 8 KB SRAM. Tinkertoy does
not yet support networking, so these devices use UART ports to
communicate with each other. We redirect each serial port to a
TCP socket and run a controller process on the host machine to
capture and display all messages within the network. Our
emulated boards have sensors simulated in the kernel, whose
values can be modified by the controller remotely. We use GCC
10.2.1 to compile all kernels with optimization level 3, code size
optimization and link phase garbage collection enabled. C++
exceptions, runtime support and C standard library are disabled.
As such, all unreferenced functions and variables are excluded
from the final executable.

C. Assembling Kernels

We evaluate implementation effort in terms of the number
of source lines of code (SLOC) to implement a kernel for each
device. Application code is not counted despite being compiled
with the kernel into a single binary image.

1) Monitor Kernel

System Requirements: The user application running on the
monitor device acts as an interface between the moisture sensor
and the water bottle and can be modeled as a state machine, so
an event-driven kernel is adequate. Table 4 lists the three
required events and their handlers. The system should deliver a
timer event on a regular basis, so that the reader task can fetch
and examine the moisture level and subsequently deliver a dry
or wet soil event if necessary. The dry handler then sends a dry
alert to the actuator, while the wet one does the opposite. Soil
events are more critical than the timer one, so the kernel should
run the handler immediately when an event is delivered.

TABLE IV. EVENTS IN MONITOR AND ACTUATOR KERNELS

Monitor Kernel Actuator Kernel

Events Event Handlers Events Event Handlers

Periodic Timer Sensor Reader Start Watering Open Gate

Dry Soil Dry Handler Stop Watering Close Gate

Wet Soil Wet Handler No Water Signal Alert

System Deployment: The above requirements suggest that
developers need a preemptive scheduler that can respond to task
creation and termination events. They also need the UART,
SysTick and Simulated Sensor driver modules and provide these
five items listed in Table 5 to assemble the monitor kernel.

TABLE V. ITEMS NEEDED TO ASSEMBLE THE MONITOR KERNEL

Item Description

1 Assemble the event control block and the event controller.

2 Assign a unique identifier to each system call.

3 Define the service routine mapper for the dispatcher.

4 Provide a timer interrupt handler to deliver timer events.

5 Provide a startup routine to initialize all modules.

Since all event handlers share the same stack, an event
control block needs to record only the handler address and
pointers to other blocks in the scheduler’s ready queue, thus
consuming only 12 bytes. The event controller maintains a table
of four event control blocks and arbitrates event registrations.
The first entry is reserved for the idle event, while the rest are
used by the application. The kernel provides five system calls to
manipulate events, sensors, and serial ports, so a simple switch
statement is sufficient to implement the mapper. The timer
interrupt handler tracks elapsed time in ticks. Once the number

of ticks reaches the threshold, it resets the counter and delivers
a periodic timer event by means of notifying the scheduler that
a new task is created. Tinkertoy provides a simple bootloader
that sets up the kernel stack, initializes global variables and runs
the kernel startup routine in ARM Handler mode. We need to
initialize the interrupt vector table, the timer and serial ports,
register event handlers, and start the dispatcher in the startup
routine. As a result, we need 65 lines of code in total to assemble
the monitor kernel. Table 6 shows the breakdown by component.

2) Actuator Kernel

System Requirements: The actuator kernel is similar to the
monitor kernel, also requiring three events shown in Table 4.
The UART RX interrupt handler receives messages from the
monitor and delivers the first two types of events. Message
handlers then open or close the water gate to start or stop
watering the plant. If the water bottle is empty, the message
handler delivers a No Water event, so that the Signal Alert
handler will send an alert message to the gateway. However, the
system must ensure that event handlers access the water gate in
order. Specifically, the Close Gate handler cannot preempt the
running Open Gate handler in case the moisture level changes
before the actuator opens the gate.

Differences in Deployment: As such, the actuator kernel
shares about 80% of its code of the monitor kernel. Developers
need a cooperative scheduler instead of a preemptive one and
implement the interrupt handler for the serial port instead of the
timer. The actuator kernel has two more system calls to control
the water gate and thus requires 90 lines of code in total, 52 of
which are shared with the monitor kernel. We remove 17 lines
of code (related to timer) and add 42 lines of code (related to
serial) to finish assembling the kernel. Table 6 shows the per-
component line counts.

3) Gateway Kernel
System Requirements: The gateway translates multiple

CoAP or HTTP messages concurrently, so a thread-based
execution model is necessary. The translator thread should finish
its work without being interrupted, so that it can be ready to
service the next message promptly. For demonstration purposes,
there are at most three translators that can run concurrently. To
reduce the complexity of detecting the size of an incoming
message without a network stack, each CoAP request is assumed
to be 32 bytes long.

System Deployment: The above requirements suggest a
cooperative scheduler that can handle task creation and blocked
and unblocked events. Task termination is not needed, because
a translator thread works in an infinite loop, remaining blocked
until it receives a message. Additionally, we need a memory
allocator to allocate a private stack to each thread. As such,
developers provide five items similar to those needed to
assemble the monitor kernel, except that the timer interrupt
handler is replaced by the serial one.

Since a thread never terminates, its stack is never released,
so the thread control block records the current stack pointer and
the status of the receive request, consuming only 24 bytes. The
status stores a reference to the user buffer and the number of
bytes requested by the thread and having been processed by the
serial driver. The UART RX interrupt handler maintains a queue
of threads blocked waiting for data. Once the request is fulfilled,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

the interrupt handler notifies the scheduler that the thread has
been unblocked. Finally, we initialize the memory manager and
other kernel modules in the startup routine. In total, we need 122
lines of code to assemble the gateway kernel. Table 6
summarizes the deployment result.

TABLE VI. DEPLOYMENT RESULT: BREAKDOWN BY COMPONENTS

Components
Monitor Actuator Gateway

Method SLOC Method SLOC Method SLOC

Scheduler ASMb 8 ASM 8 ASM 8

TCB ASM 1 ASM 1 MIXb 29

Controller ASM 1 ASM 1 ASM 14

Mapper WFSb 21 WFS 23 WFS 17

Dispatcher ASM 2 ASM 2 ASM 1

ISR WFS 12 WFS 36 WFS 29

Init Tasks WFS 7 WFS 7 MIX 13

Startup WFS 13 WFS 12 WFS 11

Total 65 90 122

b. ASM = Assemble from building blocks; WFS = Write from scratch; MIX = Both ASM and WFS.

D. Comparison Results

1) Porting Applications to Target Systems

Despite being a thread-based system, FreeRTOS provides a
lightweight mechanism, Event Group, to write event-driven
programs. Event handlers in the monitor and the actuator kernels
are converted to threads that wait for and process events in an
endless loop, while translator threads in the gateway kernel are
ported as is. However, since there is no strict distinction between
the kernel and the user space in FreeRTOS, system calls behave
like ordinary library calls and thus require no context switches.

Zephyr is also a thread-based system, so we follow the same
procedure as we did with FreeRTOS to port our applications,
except that Event Group is replaced by Binary Semaphore.
Zephyr can be configured to enable a user space, so the kernel
checks system call arguments and performs a context switch;
otherwise, system calls are the same as library calls. We choose
to disable argument checking, because Tinkertoy does not have
any protection against malicious arguments yet, and we did not
want to impose an unfair disadvantage on Zephyr.

2) Flash and Memory Footprint

We use readelf to dump the size of each segment in the
kernel executable and calculate the number of bytes reserved in
Flash and main memory, excluding statically allocated kernel
and user stack areas. Table 7 summarizes the result.

Tinkertoy significantly outperforms the other two systems,
because our building blocks allow developers to include only
entries that are needed in kernel data structures. For example, a
task control block is 12 bytes in Tinkertoy’s monitor kernel but
64 bytes in FreeRTOS and 112 bytes in Zephyr. Since there are
four event handlers registered on the system, it is unsurprising
that the other systems require more memory.

Zephyr additionally reserves about 1 KB to store kernel
configuration parameters, such as the number of IRQs, device
properties, and 344 bytes for the software ISR table. Even
though we allocate threads and semaphores statically, Zephyr’s
kernel still requires memory management routines to allocate
and release private data structure. However, the result is still
reasonable, as the reference minimal Flash footprint with
multithreading enabled is about 7 KB to 8 KB [20].

TABLE VII. FLASH AND MEMORY FOOTPRINT

Devices Kernels

Flash Footprint

(Bytes)

Memory Footprint

(Bytes)

Raw Normalizedc Raw Normalizedc

Monitor

Tinkertoy 2308 1.00 116 1.00

FreeRTOS 4808 2.08 672 5.79

Zephyr 11116 4.81 936 8.06

Actuator

Tinkertoy 2277 1.00 119 1.00

FreeRTOS 4845 2.12 888 7.46

Zephyr 8568 3.76 920 7.73

Gateway

Tinkertoy 3900 1.00 268 1.00

FreeRTOS 5976 1.53 792 2.95

Zephyr 10948 2.80 1032 3.85

c. Footprints are normalized to Tinkertoy.

3) Active Stack Usage

We trace the execution of each system and analyze their
stack footprint. Table 8 presents the result.

TABLE VIII. ACTIVE STACK FOOTPRINT

Devices Kernels
Active Stack Usage (Bytes)

Kernel User Total Normalized

Monitor

Tinkertoy 84 208 292 1.00

FreeRTOS 112 360 472 1.61

Zephyr 176 592 768 2.63

Actuator

Tinkertoy 88 192 280 1.00

FreeRTOS 116 412 528 1.88

Zephyr 96 584 680 2.42

Gateway

Tinkertoy 88 1056 1144 1.00

FreeRTOS 112 1160 1272 1.11

Zephyr 96 1456 1552 1.35

Both comparison systems have a larger kernel stack footprint
than Tinkertoy does, but the differences are insignificant in all
but the monitor kernel on Zephyr, because the kernel runs
periodic timer tasks on a shared system work queue instead of
an ordinary thread. As a result, sensor reading is performed in
the kernel and therefore increases the kernel stack footprint.

On the other hand, our monitor and actuator systems have a
significantly lower user stack footprint than the others, because
both are event-driven, and all the event handlers share a single
user stack. The difference is reduced to about 10% in the thread-
based gateway kernel, because translators on each system have
the same implementation except for system calls.

4) Performance
Tinkertoy-based kernels provide precisely the functionality

needed by applications, so they should have not only a low
memory footprint but also more efficient runtime than other
systems. We evaluate the performance by means of the amount
of time it takes the gateway kernel to receive a CoAP request
message and send out the translated HTTP message. Table 9
summarizes the statistics.

TABLE IX. GATEWAY KERNEL ROUND TRIP TIME IN MILLISECONDS

Kernels Samples Min Max Median Mean SD

Tinkertoy

1000

0.55 1.26 0.67 0.66 0.04

FreeRTOS 0.54 2.40 0.69 0.68 0.06

Zephyr 0.58 1.78 0.69 0.68 0.05

Our gateway system is comparable to FreeRTOS and Zephyr
despite them having user space disabled. We analyze the
assembly code and find that the difference is related to how the
kernel reacts to interrupts and unblocks the translator thread.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

When a new message arrives, the processor jumps to the
UART RX interrupt handler directly on FreeRTOS. In contrast,
Tinkertoy allows developers to select which functionality the
kernel should provide, so the processor must traverse through
the context switcher and the dispatcher (service identifier finder
and the service routine mapper) before entering the interrupt
handler, thus having a longer code path than FreeRTOS. Inside
the interrupt handler, Tinkertoy essentially does the same thing
as FreeRTOS, removing the translator thread from the waiting
list and putting it on the scheduler’s ready queue.

Meanwhile, Zephyr takes the multithreaded kernel into
consideration; it relies on spinlocks to protect semaphores and
the scheduler, thus introducing unnecessary barrier instructions
for every list operation on a single-threaded system. However,
Zephyr does not provide a separate implementation for such a
system, so we learn that Tinkertoy must provide building blocks
for both types of system in the future.

E. Summary

We evaluated Tinkertoy from three perspectives: the effort
needed to assemble a custom kernel, memory footprint and
runtime performance. We find that about 75% of the deployment
code is straightforward and easy to write, as developers use our
builder classes to concatenate a collection of components and
materialize kernel services. The rest deals with device interrupts,
but Tinkertoy does not yet provide standard building blocks in
this area, so developers have to use existing kernel APIs to
service the hardware manually at this moment.

The assembled kernels provide the exact functionality
needed by particular applications, so Tinkertoy-based kernels
have 1.5x to 4.7x smaller memory footprints than other popular
IoT operating systems and comparable performance to them.
However, there is still a large room for future improvement,
such as standard API packages to improve applications’
portability, source-to-source compilers to translate thread-based
programs to event-driven ones and vice versa.

XII. CONCLUSION

Tinkertoy allows developers to assemble operating systems
customized for particular applications in fewer than 150 lines of
code by providing a set of configurable and composable
components. We use constraints to ensure that each component
is as flexible as possible while also ensuring that all the
requirements are satisfied by developer-specified components.
The assembled systems not only provide precisely the
functionality that an application needs, but also reduce memory
footprint by as much as a factor of four compared to existing IoT
operating systems, with no performance penalty. While there are
many avenues for future work, we demonstrated that it is
possible to assemble realistic operating systems in this manner.
Tinkertoy is an embodiment of this approach and demonstrates
how to achieve flexibility and configurability to satisfy the
requirements of heterogeneous applications.

Tinkertoy is available at https://github.com/0xTinkertoy.

ACKNOWLEDGMENT

We thank Dr. Reto Achermann, Chris Chen and Sid
Agrawal, members of the Systopia Laboratory at University of
British Columbia, for providing valuable feedback on this work.

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

[1] H. Arasteh et al., "IoT-based smart cities: A survey", IEEE International
Conference on Environment and Electrical Engineering, 2016.

[2] A. Dunkels, B. Gronvall and T. Voigt, "Contiki a lightweight and flexible
operating system for tiny networked sensors", 29th Annual IEEE
International Conference on Local Computer Networks.

[3] D. Engler, M. Kaashoek and J. O'Toole, "Exokernel", Proceedings of the
fifteenth ACM symposium on Operating systems principles, 1995.

[4] B. Ford et al., "The Flux OSKit", ACM SIGOPS Operating Systems
Review, vol. 31, no. 5, pp. 38-51, 1997.

[5] D. Gay et al., “The nesC language: A holistic approach to networked
embedded systems”, Proceedings of Programming Language Design and
Implementation (PLDI), June 2003.

[6] M. Gorman, Understanding the Linux Virtual Memory Manager. Upper
Saddle River, N.J.: Prentice Hall PTR, 2004.

[7] H. Lauer and R. Needham, "On the duality of operating system
structures", ACM SIGOPS, vol. 13, no. 2, pp. 3-19, 1979.

[8] P. Levis et al., "TinyOS: An Operating System for Sensor Networks",
Ambient Intelligence, pp. 115-148, 2005.

[9] A. Levy et al., "Multiprogramming a 64kB Computer Safely and
Efficiently", Proceedings of the 26th Symposium on Operating Systems
Principles, 2017.

[10] L. Mainetti, L. Patrono and A. Vilei, "Evolution of wireless sensor
networks towards the Internet of Things: A survey", 19th International
Conference on Software, Telecommunications and Computer Networks,
pp. 1-6, 2011.

[11] J. Mills, J. Hu and G. Min, “Communication-efficient Federated Learning
for Wireless Edge Intelligence in IOT,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2020.

[12] M. Perera, M. Halgamuge, R. Samarakody and A. Mohammad, "Internet
of Things in Healthcare: A Survey of Telemedicine Systems Used for
Elderly People", IoT in Healthcare and Ambient Assisted Living, pp. 69-
88, 2021.

[13] D. Puccinelli and M. Haenggi, "Wireless sensor networks: applications
and challenges of ubiquitous sensing", IEEE Circuits and Systems
Magazine, vol. 5, no. 3, pp. 19-31, 2005.

[14] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo. "EbbRT:
a framework for building per-application library operating systems." In
Proceedings of the 12th USENIX conference on Operating Systems
Design and Implementation, 671–688, 2016.

[15] G. Toschi, L. Campos and C. Cugnasca, "Home automation networks: A
survey", Computer Standards & Interfaces, vol. 50, pp. 42-54, 2017.

[16] J. Vasseur and A. Dunkels, Interconnecting smart objects with IP.
Burlington, MA: Morgan Kaufmann Publishers/Elsevier, 2012.

[17] G. Xu, "IoT-Assisted ECG Monitoring Framework With Secure Data
Transmission for Health Care Applications," in IEEE Access, vol. 8, pp.
74586-74594, 2020.

[18] N. Xu, "A survey of sensor network applications", IEEE communications
magazine, 40(8), pp. 102-114, 2002.

[19] P. Zhang, C. Sadler, S. Lyon and M. Martonosi, "Hardware design
experiences in ZebraNet", Proceedings of the 2nd international
conference on Embedded networked sensor systems - SenSys '04, 2004.

[20] "Minimal footprint", Zephyr Project Documentation, [Online]. Available:
https://tinyurl.com/zephyrminfp

[21] “RFC 7228: Terminology for Constrained-Node Networks”, IETF RFC,
[Online]. Available: https://tools.ietf.org/html/rfc7228

[22] "FreeRTOS", FreeRTOS. [Online]. Available: https://www.freertos.org/

[23] "Zephyr", Zephyr Project. [Online]. Available: https://zephyrproject.org/

[24] “Configuration System (Kconfig)”, Zephyr Project Documentation,
[Online]. Available: https://tinyurl.com/zephyrkconfig

[25] “Constraints and concepts”, C++ Reference Manual. [Online]. Available:
https://en.cppreference.com/w/cpp/language/constraints

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3198907

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on August 18,2022 at 12:54:52 UTC from IEEE Xplore. Restrictions apply.

https://github.com/0xTinkertoy
https://tinyurl.com/zephyrminfp
https://tools.ietf.org/html/rfc7228
https://www.freertos.org/
https://zephyrproject.org/
https://tinyurl.com/zephyrkconfig
https://en.cppreference.com/w/cpp/language/constraints

	I. Introduction
	A. From Wireless Sensor Networks to Internet of Things
	B. Key Challenge
	C. Our approach and motivation
	D. Odyssey to Tinkertoy

	II. Architecture Overview
	A. Target Devices
	B. Overview of Module Interactions
	C. Overview of Module Decomposition

	III. Methodology
	A. Constrained Flexibility
	B. Code Reusability
	C. Code Composability
	D. Summary of Methodology

	IV. Scheduler
	A. Module Decomposition
	1) Policy Component
	2) Event Handler Component

	B. Building Custom Schedulers
	1) System Requirements
	2) Assembling Schedulers

	V. Memory Allocator
	A. Module Decomposition
	1) Memory Block
	2) Static Aligner
	3) Primitive Steps
	4) Account Book

	B. Memory Efficiency of Assembled Binary Buddy Allocator

	VI. Context Switcher
	A. Execution Model Independent Design
	B. System Call and Execution State

	VII. Dispatcher
	A. Companion Components
	B. Assembling Dispatchers

	VIII. Kernel Service Routines
	A. Non-blocking
	B. Task Control Block-Independent
	C. Component-Independent

	IX. Execution Models
	A. Task Control Block Components
	1) Components “Meet” Constraints
	2) Stack Components
	3) System Call Support Component
	4) Other Components

	B. Task Control Block Initializers and Finalizers
	C. Thread-based Execution Model
	D. Event-driven Execution Model

	X. Related Work
	A. Library Operating Systems
	B. Other IoT Operating Systems
	C. Summary

	XI. Evaluation
	A. Automatic Watering System
	B. Experimental Setup
	C. Assembling Kernels
	1) Monitor Kernel
	2) Actuator Kernel
	3) Gateway Kernel

	D. Comparison Results
	1) Porting Applications to Target Systems
	2) Flash and Memory Footprint
	3) Active Stack Usage
	4) Performance

	E. Summary

	XII. Conclusion
	Acknowledgment
	References

