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Abstract—The Internet of Things (IoT) makes it possible for 

tiny devices with sensing and communication capabilities to be 

interconnected and interact with the cyber physical world. 

However, these tiny devices have limited computing power and 

memory, so they often cannot run commodity operating systems, 

such as Windows® and Linux. IoT devices are deployed 

everywhere, from smart home appliances to self-driving vehicles, 

and their applications impose ever-increasing and more 

heterogeneous demands on software architecture. There are many 

special-purpose and embedded operating systems built to satisfy 

these wildly different requirements, from early sensor network 

operating systems, such as TinyOS and Contiki, to more modern 

robot and real-time control systems, such as FreeRTOS and 

Zephyr. However, the rapid evolution and heterogeneity of IoT 

applications calls for a different solution. Specifically, this work 

introduces Tinkertoy, a collection of standard operating system 

modules from which developers can easily assemble customized 

operating systems. A customized operating system provides 

precisely the functionality needed by an application and consumes 

up to four times less memory than other IoT operating systems 

without sacrificing performance.  
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I. INTRODUCTION 

At the dawn of the 21st century, it had become possible to 
assemble small, lower-powered devices that combined 
computing and sensing. These early sensor network systems 
supported applications that ranged from wildlife tracking [19] to 
monitoring of the world’s infrastructure [18]. 

A. From Wireless Sensor Networks to Internet of Things 

Early wireless sensor networks (WSNs) were composed of 
tiny sensor devices with wireless communication capabilities. 
Applications running on these devices were simple, because 
their sole purpose was to take measurements of the physical 
world and transmit data back to a server [13]. However, due to 
limited computing power and memory, these devices could not 
run commodity operating systems, such as Windows® and 
Linux, so researchers created embedded systems, such as 
TinyOS [8] and Contiki [2], on which developers could deploy 
sensor applications on these first-generation devices.  

These devices used non-commodity communication 
protocols, such as ZigBee and Z-Wave, tailored to their 
communication hardware. As devices’ capabilities increased, 
they became able to make use of more general-purpose 
protocols, such as 6LoWPAN, thus increasing device 
interoperability [16]. For example, today, a light sensor device 
can ask lamp controllers to make a room brighter or darker, 

based on the brightness level it measures. These more capable 
devices are interconnected and jointly create the network of 
physical objects, called the Internet of Things (IoT) [10]. 

The IoT has attracted a lot of attention, because tiny devices 
play an important role in smart city management [1], healthcare 
[12], home automation [15], etc. Their applications are more 
sophisticated than previous sensor ones, demanding efficient 
memory management, multitasking, and real-time operations. 
For example, when a wearable electrocardiogram device detects 
an irregular heart rhythm, it is vital to alert both the patient and 
the physician in a timely fashion [17]. These second-generation 
devices frequently run newer, real-time operating systems, such 
as FreeRTOS [22] and Zephyr [23], to address those demands. 

B. Key Challenge 

To date, the IoT has had a tremendous impact in applications 
ranging from healthcare to home appliances, but there remains 
much potential. As the class of applications for IoT devices 
expands, each generation is likely to impose ever-increasing 
demands on the software infrastructure, so how should we build 
system software to deal with these wildly different application 
requirements on resource-constrained devices? 

Building a unified general-purpose operating system is one 
solution but not necessarily the best one, because such a system 
will always have features that particular applications do not 
need. Further, they might not provide precisely the right 
behavior that an application expects. For example, there are two 
common execution models, thread-based and event-driven. 
Controller devices that wait for commands and trigger actuators 
are easier to express in an event-driven model (§11.3.1, §11.3.2), 
while gateway devices that translate messages from one protocol 
to another concurrently are better implemented using a thread-
based model (§11.3.3). However, operating system designers 
typically make the choice on behalf of developers, thus exposing 
abstractions that may not be suitable for particular applications. 

C. Our approach and motivation 

We claim that the solution lies in making it easy to develop 
application-specific IoT operating systems to meet these rapidly 
increasing and diverging demands. However, building a special-
purpose system from scratch is overwhelmingly burdensome, so 
we introduce Tinkertoy, a collection of standard modules from 
which one can assemble a custom operating system in only a few 
lines of code. We are inspired by the success of the Unikernel 
[14] and the design concept of library operating systems [3]. In 
the same way that Unikernels let developers select only those 
libraries needed by an application, Tinkertoy lets developers 
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select a set of modules from which to assemble a custom system 
that provides precisely the functionality needed by an 
application. As such, we answer the following three questions: 

• What are the common modules needed in IoT system 
software? 

• How does one construct standard operating system 
modules so that applications can easily mix and match? 

• How do we build such modules so that the assembled 
systems do not suffer high runtime overhead? 

D. Odyssey to Tinkertoy 

While Unikernels are motivated largely by application-level 
resource management and removal of protection boundaries, our 
goal is to assemble customized operating systems that have a 
small memory footprint and runtime performance comparable to 
that of other IoT operating systems. Overall, this work makes 
the following contributions: 

• We present Tinkertoy, a set of standard modules that 
can be assembled into a custom IoT operating system 
(Sections IV through IX). 

• We exploit recent C++ language features that make 
each module as flexible as possible while still allowing 
for their efficient implementation (Section III). 

• We show that the effort of assembling a custom kernel 
is insignificant in terms of the number of lines of source 
code (Section XI.C). 

• We show through an empirical case-based study that 
assembled kernels have a smaller memory footprint 
and better runtime performance than other popular IoT 
operating systems (Section XI.D). 

II. ARCHITECTURE OVERVIEW 

A. Target Devices 

Tinkertoy is composed of the 10 modules, shown in Table 1, 
from which developers assemble kernels for low-end devices, as 
classified by IETF [21]. Such devices have a single-core ARM 
Cortex-M processor without an MMU, limited memory, sensors 
and/or actuators, and communication hardware to interact with 
other devices. However, Tinkertoy is not restricted to support 
only this kind of device, because most modules are, in fact, 
general-purpose. As more modules become available, we 
imagine that developers can assemble kernels for devices, for 
example, that have multiple symmetric cores. 

B. Overview of Module Interactions 

Before digging into the details of each module, we illustrate 
how they interact with each other to provide services to user 
applications. Consider a system consisting of two tasks in which 
a watchdog task monitors a worker task and restarts it upon 
abnormal termination. Fig. 1 depicts the watchdog task making 
a system call to wait and turn control over to the worker task. 

When the system boots, the kernel initializes itself and lets 
the watchdog task run (1). The watchdog task invokes a system 
call to wait until the worker task finishes (2). The system call 
raises an exception, causing the processor to switch to privileged 

mode and jump to a predefined kernel entry point in the context 
switcher (3). The context switcher preserves machine execution 
state on the watchdog task stack and restores the kernel state 
from the kernel stack (4), after which it returns to the dispatcher. 
The dispatcher relies on two companion components to process 
the request (5); it calls the service identifier finder to retrieve a 
unique service identifier (6) that is subsequently needed by the 
service routine mapper to select the kernel service routine (7) 
that implements the system call wait(). The routine receives a 
reference to the watchdog task (8) and finds that the task should 
be blocked, so it asks the scheduler to dequeue the worker task 
(9) which is then returned to the dispatcher (10). The dispatcher 
knows the next task to run, so it asks the context switcher to exit 
from the kernel, switch back to the unprivileged mode (11) and 
resume the worker task (12). Although not used in this example, 
there are multiple memory allocators that provide dynamically 
allocated memory for the kernel and user applications as needed. 

 

Fig. 1. Illustration of interactions between modules to service user requests. 

TABLE I.  TINKERTOY MODULES 

Modules 
Component Availabilitya Related 

Sections Prebuilt Building Blocks 

Constraints Provided by Tinkertoy III 

Scheduler ✓ ✓ IV 

Memory Allocator ✓ ✓ V 

Context Switcher ✓  VI 

Execution State ✓  VI 

System Call ✓  VI 

Dispatcher  ✓ VII 

Kernel Service Routines ✓ ✓ VIII 

Execution Models ✓ ✓ IX 

Task Control Block  ✓ IX 

a. A component can be a prebuilt one, assembled from building blocks or implemented by developers. 

C. Overview of Module Decomposition 

Most of the above modules can be found in a conventional 
operating system, but Tinkertoy provides them as configurable 
building blocks. Specifically, some modules (e.g., the scheduler) 
are divided into components, allowing developers to customize 
the behavior of a module by switching one of its components for 
another prebuilt one, assembling a component from our building 
blocks, or using their own implementation. For example, one 
could replace the FIFO queue with a priority queue to make a 
scheduler prioritized. Fig. 2 depicts the relationship between a 
customized kernel, modules, components and building blocks. 

Tinkertoy provides building blocks for both thread-based 
and event-driven models, so developers can customize the 
contents of the task control block, define kernel service routines 
that implement system calls and service hardware interrupts, and 
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expose related system calls to assemble an execution model that 
best suits their applications. While offering great flexibility to 
developers, Tinkertoy uses constraints (details in §3.1) to ensure 
that other kernel modules are independent of the execution 
model and that developer-specified modules can be reasonably 
assembled into a kernel. Currently, Tinkertoy limits such kernels 
to being single-threaded and non-reentrant, so it does not yet 
support nested hardware interrupts and multiple kernel stacks. 
Nevertheless, our building blocks are not designed under these 
assumptions and can be combined with multithreading-specific 
ones, e.g., to protect data structures used by a memory allocator. 

 

Fig. 2. Illustration of decomposing a kernel into primitive building blocks that 

can have multiple implementations to suit different applications’ needs. 

Developers assemble a kernel by reversing the decomposition process.  

III. METHODOLOGY 

Our goal is to create flexible building blocks for kernel 
modules without sacrificing runtime performance. We introduce 
the following three key design principles and the corresponding 
set of C++ language features we use to support them. 

A. Constrained Flexibility 

We use templates to capture the genericity of kernel modules 
whose mechanisms are, in fact, independent of other modules. 
For example, on some systems, a scheduler schedules processes, 
while on others, it schedules threads, so its design should be 
agnostic to the object to schedule, but a specific instance of a 
scheduler should be constrained to schedule objects of a specific 
type. For example, a priority-based scheduler must know how to 
reorder tasks by their priority level, so we express constraints on 
the task type using concepts standardized in C++20 [25]. 

 

Fig. 3. Definition of a concept that requires a type to overload the less than 

operator. MyPriorityScheduler can be specialized only if Task is comparable. 

A concept allows one to define a set of requirements on a 
type, such as which member functions the type must implement, 
which operators the type must overload, and which member 
types the type must define. A template can be associated with 
one or more concepts, jointly imposing constraints on the 
template parameter. When specializing a template, developers 
must provide a concrete type that satisfies all the requirements 
specified by those concepts, otherwise the compiler will not 
compile the code. Tinkertoy’s constraints are designed to be as 
concise and tight as possible but admit a large space of potential 
instances that satisfy the type requirements. For example, a 

priority-based scheduler can accept any task type that overloads 
the comparison operators. Fig. 3 shows an example concept 
definition and its usage. 

B. Code Reusability 

Developers should be able to use existing building blocks to 
assemble different instances of a particular kernel module, so it 
is imperative to make building blocks highly reusable. For 
example, any preemptive scheduler preempts a running task by 
placing it on the ready queue and resuming the next ready task. 
As such, we encapsulate the functionality of a building block as 
a functor, which is a C++ class that overloads the function call 
operator. In comparison to a C-style function pointer, a functor 
has all the benefits of class; it can be stateful, generic, and 
constrained by concepts, but more importantly, the compiler can 
inline calls to the functor, providing better performance than 
making an indirect function call at runtime. Fig. 4 shows an 
example functor that takes no arguments and returns void. 

C. Code Composability 

Tinkertoy provides a collection of standard building blocks 
for each kernel module, but developers might need to extend the 
functionality of an existing building block or combine multiple 
ones to satisfy their needs. For example, a multilevel feedback 
queue scheduler needs to allocate a quantum to a task before 
placing it on the ready queue. Subclassing and delegation are 
two common approaches, but they both incur runtime overhead, 
for example, by using virtual functions.  

Since building blocks are encapsulated as functors, we use 
fold expression from C++17 to create a new building block from 
existing ones at compile time. A fold expression is used with a 
template parameter pack, so Tinkertoy provides builder classes, 
covered in the remaining sections, taking building blocks as 
their template parameters and producing a new block. Fig. 4 
shows an example of creating a new functor from existing ones. 

 
Fig. 4. Implementation of a builder class that uses a fold expression to invoke, 

in the specified order, an arbitrary number of stateless functors, each of which 

is assumed to return void (for simplicity). Note that the builder class itself, when 

specialized, is a functor. Each FunctorX prints the digit “X”, so the assembled 

functor, MyFunctor, prints “132”. 

D. Summary of Methodology 

Tinkertoy leverages recent C++ language features to ensure 
that building blocks are reasonably flexible, highly reusable, and 
easily composable. These features allow us to write concise and 
efficient code. While we use C++, other languages have similar 
features, e.g., Rust’s type traits mechanism allows one to 
enforce constraints on a type at compile time, providing 
functionality similar to that of C++ concepts. We leave 
exploration of designing and implementing building blocks in 
other languages for future work.  

IV. SCHEDULER 

A scheduler decides which task should run and for how long 
it should execute. Its policy can be classified along different 
dimensions, such as preemptive vs. cooperative or prioritized vs. 

template <typename T> 
concept Comparable = requires(const T& lhs, const T& rhs) 
{  { lhs < rhs } -> std::same_as<bool>;  }; 
template <typename Task> requires Comparable<Task> 
struct MyPriorityScheduler {}; 

template <typename... Functor>  
struct FunctorBuilder 
{  void operator()() { (Functor{}(), ...); }  }; 
using MyFunctor = FunctorBuilder<Functor1, Functor3, Functor2>; 
MyFunctor{}();  // Print "132" 
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non-prioritized. Tinkertoy’s scheduler is composed of three 
components: Policy, Event Handlers, and Task Control Block 
Constraints. We analyze popular scheduling algorithms and 
model their commonalities as a set of building blocks shown in 
Table 2. After explaining this decomposition, we illustrate how 
to assemble a scheduler to meet application needs. 

TABLE II.  SCHEDULER BUILDING BLOCKS 

Scheduling Policies Event Handlers 

First In First Out Queue Timer Interrupt 

Prioritized Single Queue Task Creation 

Prioritized Multi Queue Task Termination 

Task Control Block Constraints Task Yielded 

Schedulable Task Blocked 

Implicitly Prioritizable Task Unblocked 

Prioritizable By Priority Task Killed 

Prioritizable By Mutable Priority Task Priority Changed 

Prioritizable By Auto Mutable Priority Task Self Priority Changed 

Quantizable Task Quantum Used Up 

A. Module Decomposition 

A scheduler maintains one or more queues to keep track of 
ready tasks (1) and decides which task to run in response to 
external events (2), such as a new task arriving in the system (3). 
Fig. 5 depicts the interactions between the scheduler and other 
kernel modules. 

 

Fig. 5. Illustration of interactions between scheduler components. 

1) Policy Component 

The policy component manages the ready queue reflecting 
whether a scheduler is prioritized. It exposes two primitives, 
ready and next, to enqueue and dequeue a task respectively. The 
queue accepts tasks only if they are schedulable, so we define 
the class Schedulable, from which all schedulable tasks must 
inherit. 

Tinkertoy provides three types of queues: FIFO, Prioritized 
Single, and Prioritized Multi. A scheduler that adopts a priority 
queue must assign priorities, so we define constraints, Implicitly 
Prioritizable, which requires a task to overload the comparison 
operators if it wants to keep its priority level private to the 
scheduler, and Prioritizable by Priority, which requires a task to 
reveal its priority level via a getter function. The actual type and 
the meaning of a priority level is determined by developers. For 
example, one can treat a task’s deadline or periodicity as its 
priority level and assemble an Earliest Deadline First or Rate 
Monotonic scheduler for a real-time operating system. The 
Prioritized Multi Queue component allows developers to specify 
a potentially different policy for each priority level. A multilevel 
queue scheduler needs a developer-provided mapper (a functor) 
to initialize each queue. For example, one can build a Prioritized 
Round Robin scheduler by providing a mapper that returns a 
FIFO queue for each level. 

Developers can build a new policy component from an 
existing one and a list of functors, as shown in Fig. 6, to 
customize enqueue and dequeue behaviors, such as updating the 
amount of time the task has been running. In general, the policy 
component makes it possible to materialize the queue for all 
common scheduling algorithms. 

2) Event Handler Component 

The event handler component reacts to scheduling events 
that can occur on a system and reflects characteristics such as 
whether a scheduler is preemptive. For example, when a new 
task is created, a cooperative scheduler might keep the current 
task running, while a preemptive one might run the task with the 
higher priority. These two different reactions are reflected in the 
implementation of the task creation handler. 

Tinkertoy provides ten types of event handlers, listed in 
Table 2, allowing developers to specify to which types of events 
a scheduler can respond and how it should respond. Each of 
them defines the interface through which other kernel modules 
interact with the scheduler and uses primitives provided by the 
policy component to manipulate the ready queue. For example, 
if a task can change its priority at run time, the kernel service 
routine invokes the Priority Changed handler to inform the 
scheduler that the priority level of a task has been changed; it is 
then up to the scheduler to reschedule if necessary. Our design 
has no limit on the number of handler types, so developers are 
free to declare and implement new types of handlers. 

B. Building Custom Schedulers 

Tinkertoy provides a builder class to assemble a scheduler 
from a policy component and a collection of event handlers. We 
illustrate this process to assemble a simple FIFO scheduler. 

1) System Requirements 

Let’s say that we want to build a scheduler for a kernel that 
allows a process to create another process, relinquish the 
processor voluntarily and wait for that process to finish. We 
assume the existence of a user process that never terminates 
(e.g., Unix’s init process). The kernel expects all processes to 
run in arrival time order and wants to track the number of times 
a task is preempted. The system does not have a hardware timer. 

2) Assembling Schedulers 

The above requirements suggest that we need five event 
handlers: Creation, Termination, Yielded, Blocked and 
Unblocked. Since the system has a never-terminating user 
process, there is always a runnable process, so we do not need 
an idle task. We build a new policy component on top of FIFO 
that increments the preemption counter of a task to be enqueued. 
We assemble the FIFO scheduler as shown in Fig. 6. 

 

Fig. 6. Composition of a FIFO scheduler using existing components. 

V. MEMORY ALLOCATOR 

Physical memory is a scarce resource on tiny devices without 
MMUs. Tinkertoy provides four prebuilt memory allocators, a 

using Policy = PolicyWithEnqueueExtensions<FIFO, Counter>; 
class MyFIFOScheduler : public SchedulerAssembler<Policy, 
    TaskCreation::Cooperative::KeepRunningCurrent<Task>, 
    TaskTermination::Common::RunNext<Task>, 
    TaskBlocked::Common::RunNext<Task>, 
    TaskUnblocked::Cooperative::KeepRunningCurrent<Task>, 
    TaskYielded::Common::RunNext<Task>> {} 
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free list allocator, a fixed-size resource allocator, a fast pool 
allocator, and a binary buddy allocator, as well as building 
blocks for developers to assemble custom allocators. We discuss 
how we decompose an allocator into components and show that 
our binary buddy allocator assembled for memory-constrained 
devices outperforms the Linux one in memory efficiency. 

A. Module Decomposition 

Dynamic memory allocation involves two major operations, 
allocate and free. We decompose a memory allocator into four 
components: Memory Block, Static Aligner, Primitive Steps, 
and Account Book. Fig. 7 depicts the interactions between them. 

 

Fig. 7. Illustration of interactions between memory allocator components. 

1) Memory Block 
A memory block is an abstraction for a region of memory 

that might contain metadata necessary for the allocator to track 
space that is (un)available for allocation. For example, a free list 
allocator needs to know the size of each memory region, while 
a fixed-size one needs to know only whether a region is free. As 
a result, the contents of a memory block are allocator-specific. 

Tinkertoy provides a collection of standard memory block 
components to store the size, track the allocation status, maintain 
pointers to next blocks, etc., allowing developers to assemble a 
custom memory block simply by selecting existing components. 
Alternatively, they can implement an allocator using some or 
none of the existing components. For example, if a device has 
less than 64 KB memory, one could use two 2-byte integers to 
store the block size and the address of the next free block. 

2) Static Aligner 
Variable-sized memory allocators might rely on an aligner 

(a functor) to ensure that all allocations are properly aligned to a 
fixed boundary. An aligner calculates the amount of memory 
needed to satisfy both the allocation request and the alignment 
requirement; it is invoked by allocate. Tinkertoy provides three 
types of aligners: null, constant and power-of-two.  

3) Primitive Steps 
Allocate is composed of three primitive steps, Get Free 

Block, Mark Block Used, and Block to Pointer. Get Free Block 
tries to find a free memory block large enough to satisfy the 
request. Subsequently, Mark Block Used might modify the 
metadata to mark the block in use. At the end, Block to Pointer 
returns the start address of the block to the program. 

Similarly, free is also composed of three primitive steps, 
Pointer to Block, Mark Block Free, and Put Free Block, each of 
which does the reverse of the corresponding step in allocate. As 
such, we can provide a default implementation for both allocate 
and free with these primitives, while leaving developers the 
freedom to customize the behavior of each step. 

4) Account Book 

Primitive steps track allocations with specific data 
structures, each of which implements part of an allocation 
algorithm. Tinkertoy provides two types of account book, 
overlay and standalone. The former stores metadata of a 
memory block in the block itself, while the latter allocates 
additional memory for metadata. We also provide common data 
structures for each of them, such as a list and a binary tree. 

B. Memory Efficiency of Assembled Binary Buddy Allocator 

Tinkertoy’s binary buddy allocator allows developers to 
specify a basic allocation size S and the maximum order N. It 
uses a standalone binary tree represented as a bit array to track 
the status of memory blocks of every possible size between S 
and 2NS, consuming only 2N-3 bytes. In contrast, Linux’s binary 
buddy allocator uses an array of free lists, each of which is 
associated with a bit map that tracks the status of each pair of 
buddy blocks of a given order, thus reserving 16N bytes for N 
orders [6]. Fig. 8 shows the amount of memory reserved by 
Linux’s allocator compared to that of Tinkertoy’s. 

 

Fig. 8. A comparison of the amount of memory reserved, in bytes, for tracking 

memory allocations. 

The results demonstrate both the memory efficiency of 
Tinkertoy’s allocator for the common case, which has relatively 
few orders, and the advantages of Tinkertoy’s design: A 
developer who needs more than ten orders can adopt the Linux 
strategy by replacing the binary tree with a linked list and 
extending the primitive steps of a free list allocator to update the 
status of each pair of buddy blocks. 

VI. CONTEXT SWITCHER 

Tinkertoy’s context switcher is composed of two halves, to-
kernel, which defines kernel entry points and switches from a 
user task to the kernel, and from-kernel, which does the reverse. 
The processor jumps to the to-kernel half on an interrupt, so the 
context switcher preserves the execution state and hands control 
to the dispatcher. After processing the request, the dispatcher 
calls the from-kernel half with the task that runs next. We model 
execution state as an architecture-dependent object, specifying 
the layout of saved registers and the calling conventions.  

A. Execution Model Independent Design 

A common place to store a task’s execution state is its stack. 
After copying the machine’s registers into stack space, the 
context switcher stores the address of the saved state into the 
task’s control block, so it relies on constraints to have full access 
to a task’s member field stack pointer, while remaining agnostic 
to whether a kernel is event-based or thread-based. Tinkertoy 
provides prebuilt context switchers for both x86 and ARMv7-M 
for non-reentrant, single-threaded kernels. 
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B. System Call and Execution State 

Tinkertoy allows developers to define their own system 
calls, using a broker function, syscall, for each architecture. The 
broker is a variadic function that takes a numeric system call 
identifier followed by an arbitrary number of arguments and 
returns a signed 32-bit integer representing the kernel return 
value; all system calls are essentially wrappers of this function. 

The interface between syscall and the kernel uses registers, 
passing the system call identifier in one register and a va_list 
pointer in another. However, syscall must accept its arguments 
from wrappers according to calling conventions. If the calling 
conventions specify register parameters, syscall uses those; if 
the calling conventions require arguments to be passed on the 
stack, it uses two caller-saved registers, instead, ensuring that 
the original values are preserved. The kernel should also interact 
with its service routines adhering to calling conventions. To 
facilitate this interaction in an architecture-independent fashion, 
we define a constraint on the execution state to ensure that it 
specifies the calling conventions for system calls by providing 
the following functions for kernel service routines in Fig. 9. 

 

Fig. 9. Definition of the constraint on the execution context to specify the 

calling convention of system calls. 

As a result, the implementation of the broker function is 
paired with that of the execution state. For example, Tinkertoy 
loads the system call identifier into %r0 on ARMv7-M, so it 
implements the function getSyscallID by returning the register 
value of %r0 in the saved execution state. Developers do not 
need to provide their own implementations of both components 
unless they port Tinkertoy to another architecture. 

VII. DISPATCHER 

The dispatcher connects user tasks and devices that request 
services and kernel service routines that provide services. It does 
not implement any kernel policy and is independent of the 
execution model. We divide the dispatcher into two halves, the 
specific half, which invokes kernel service routines requested by 
a task or a piece of hardware, and the common half, which 
invokes routines shared by all tasks, such as checking pending 
signals. 

A. Companion Components 

After receiving a service request from the context switcher, 
the dispatcher relies on two developer-specified components, 
each of which is a functor, to select a kernel service routine that 
can process the request. The Service Identifier Finder takes a 
pointer to the interrupted task and returns the service identifier. 
For example, ARM Cortex-M processors have a special 
Interrupt Control and State Register (ICSR) that records the 
current IRQ number, which can be used as the service identifier. 
The Service Routine Mapper consumes a service identifier and 
returns a pointer to the service routine. Since IRQ numbers are 
fixed on ARM Cortex-M systems, developers can use either a 
table or a switch statement to implement the mapper. 

B. Assembling Dispatchers 

Tinkertoy provides a builder class for assembling custom 
dispatchers. Consider an ARM Cortex-M3 system that provides 
two system calls, syssend and sysrecv, to send or receive data 
via a UART port. The system uses the IRQ number as the service 
identifier and supports signal delivery from the kernel. As such, 
we assemble the dispatcher as shown in Fig. 10. 

 

Fig. 10. Assemble a custom dispatcher for the system. 

The service identifier finder reads the 32-bit IRQ number 
from the ICSR register. If the number is 11, the mapper tells the 
dispatcher to redirect the request to the kernel service routine 
that processes system calls. Similarly, if the number is 22, the 
request is redirected to the UART RX interrupt handler. Since 
the kernel can send signals to a thread, we specify the special 
service routine Setup Signal Handler Context that builds the 
execution state for the thread that runs next if a signal is pending. 

VIII. KERNEL SERVICE ROUTINES 

Kernel service routines implement system calls and respond 
to hardware interrupts. Depending upon the type of request, they 
might ask the scheduler to reorder tasks and/or dequeue the next 
available task. Additionally, they rely heavily on constraints and 
thus provide services only if all requirements are satisfied. As 
such, kernel service routines have the following three properties. 

A. Non-blocking 

Recall that Tinkertoy kernels are currently single-threaded, 
so all kernel service routines must be one-shot and run to 
completion. However, developers do not need to write routines 
in a continuation passing style, such as having a callback 
parameter in the function signature, because a service routine 
that must be blocked waiting for some resources or conditions 
in a multithreaded kernel can be naturally expressed as two (or 
more) non-blocking service routines in a single-threaded kernel.  

For example, when a task requests a read from a serial port, 
the service routine that implements sysrecv checks whether the 
kernel buffer has enough data to satisfy the request. If so, it 
copies the data and asks the dispatcher to resume the task. 
Otherwise, it places the task on the waiting queue of the driver 
and retrieves the next task from the Task Blocked event handler 
of the scheduler. Later, the serial device generates an interrupt 
to notify the kernel that data is available for reading, so the 
UART Rx interrupt handler is invoked to service the interrupt, 
moving data from the hardware buffer to the kernel buffer. 
When the kernel buffer has enough data to satisfy the receive 
request, the interrupt handler dequeues the receiver task from the 
waiting queue and asks the scheduler to unblock the task via the 
Task Unblocked event handler. Depending upon the scheduling 
policy, the scheduler might preempt the task being interrupted 
and resume the receiver task. Subsequently, the receiver task 
returns from the system call and proceeds with the data. 

B. Task Control Block-Independent 

Recall that Tinkertoy allows developers to assemble a task 
control block, so kernel service routines should be independent 
of any specific task control block type. However, a service 

template <typename C> 
concept ContextSpecifiesSysCallConvention = requires(C& c, Int32 v) 
{ 
    { c.getSyscallIdentifier() } -> std::same_as<UInt32>; 
    { c.getSyscallArgumentList() } -> std::same_as<va_list*>; 
    { c.setSyscallKernelReturnValue(v) } -> std::same_as<void>; 
}; 

using MyDispatcher = Dispatcher<TCB, UInt32, MyIdentifierFinder, 
MyRoutineMapper, ContextSwitcherARM, SetupSignalHandlerContext>; 
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routine might rely on certain task control block components 
(§9.1) to provide services. For example, the one that implements 
sysgetpid must be able to retrieve the identifier of the task that 
issues the request, so it uses the constraint Has Unique Identifier 
to guarantee read access to the identifier and Can Invoke SysCall 
to guarantee write access to the kernel return value. As a result, 
it is agnostic to how the identifier is stored in the task control 
block and which register will hold the kernel return value. 

C. Component-Independent 

We use a strategy similar to that described in the previous 
section to make kernel service routines independent of other 
kernel modules, such as the scheduler. For example, the service 
routine that implements sysyield must have access to the 
scheduler, which provides the Task Yielded event handler, while 
the one implementing sysrecv needs the Task Blocked event 
handler. As a result, we also translate these requirements into 
scheduler constraints, ensuring that kernel service routines have 
access to what exactly they need. 

IX. EXECUTION MODELS 

Thread-based and event-driven models are two common 
execution models, but the debate over which one is better has 
raged for decades [7]. In reality, some systems are simply easier 
to express in one or the other model. Regardless of which model 
developers choose for their applications, the kernel maintains a 
task control block for each abstract unit of execution, such as a 
process, a thread, an event handler, or a coroutine. 

A task control block should contain only the information 
needed by the kernel to provide services. For example, the kernel 
needs the priority level of each task to provide priority-based 
scheduling but does not need the task identifier if there is no 
system call that references a task by its identifier. As such, 
Tinkertoy provides building blocks from which to assemble, 
initialize and finalize a task control block and execution model. 

A. Task Control Block Components 

1) Components “Meet” Constraints 
Tinkertoy provides 10 task control block components, each 

of which comprises a part of the final task control block by 
defining zero or more instance variables and providing functions 
to manipulate those instance variables, but more importantly, 
each task control block component can be used to satisfy a 
particular constraint as listed in Table 3. 

2) Stack Components 
Tinkertoy is designed to support a variety of different 

application architectures as efficiently as possible. For example, 
monitoring systems (§11.3.1) typically require a single task that 
loops infinitely collecting and transmitting data, while server 
systems, such as gateways (§11.3.3), use an endless supply of 
short-lived threads. These different application architectures 
impose different requirements on the kernel. Specifically, the 
kernel need never reclaim stack space if task lifetimes are 
essentially forever. Such tasks are best implemented by the non-
recyclable stack component that keeps track of the current stack 
pointer only. In contrast, applications that use short-lived tasks 
should be implemented by the recyclable stack component that 
also records the start address of the stack, so the kernel can 
reclaim stack space for new tasks. However, developers do not 

have to limit themselves to these stack components; they can 
design their own, for example, one that avoids recording the start 
address of the stack by allocating a contiguous block of memory 
for both the task control block and the stack, as done in Linux. 

3) System Call Support Component 
Recall that kernel service routines that implement system 

calls read arguments and set the kernel return value (§8.2) by 
manipulating saved execution state (§6.2). To read a task’s 
saved state, a service routine must be able to access its stack 
pointer. Since the execution state component provides an extra 
layer of indirection to hide architecture-specific details, we 
provide the system call support component for kernel service 
routines to access arguments and the return value conveniently. 
We use static polymorphism to explicitly make the system call 
support component dependent on one of the stack components. 

4) Other Components 
We also provide standard components to declare a task 

identifier, assign a priority level, adjust the task state, etc., but 
developers can always implement their own to provide more 
efficient application-specific memory management. Suppose 
that a system supports at most four dynamic priority levels and 
16 tasks, one might prefer to use 4-bit task identifiers, 2-bit 
priority levels, and a 2-bit state representation, consuming only 
a single byte instead of requiring three 4-byte integers. Fig. 11 
presents an example of assembling such a task control block. 

TABLE III.  TASK CONTROL BLOCK COMPONENTS & CONSTRAINTS 

Task Control Block 

Components 

Initializer 

Components 

Satisfied 

Constraints 

Shared Stack Assign Shared Stack Has Stack 

Dedicated 

Non-Recyclable Stack 

Allocate/Assign 

Dedicated Non-

Recyclable Stack 

Has Dedicated Stack 

Inherited From 

Has Stack 

Dedicated 

Recyclable Stack 

Allocate/Assign 

Recyclable Stack 

Has Recyclable Stack 

Inherited From 
Has Dedicated Stack 

System Call Support Setup Execution State Can Invoke SysCall 

Numeric Identifier 

(with/without field) 
Assign Unique ID Has Unique Identifier 

Priority Level 

(with/without field) 
Assign Priority 

Prioritizable 

(Scheduler) 

State 

(with/without field) 
Assign Task State Has Explicit State 

B. Task Control Block Initializers and Finalizers 

When the kernel creates a new task, it must allocate and 
initialize a task control block. Similarly, when a task finishes 
running or is killed by other tasks, the kernel must finalize and 
release its control block. Both operations are implemented as 
kernel service routines that rely on a task controller to allocate 
and release control blocks, leaving developers responsible for 
the allocation algorithm; they can, of course, use existing 
building blocks from the Memory Allocator (§5.1) to assemble 
a custom control block allocator. 

Since developers assemble task control blocks from a 
collection of components, they should be able to assemble the 
corresponding initializers and finalizers as well. Tinkertoy 
provides one or more initializer components for each task 
control block component and convenient builder classes to 
assemble a custom initializer and materialize a kernel service 
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routine. The same concept also applies to the finalizer, and as a 
result, developers can initialize or finalize a task control block 
in one line of code. Fig. 11 presents an example of initializing 
an assembled task control block. 

 

Fig. 11. Assemble an initializer to initialize a task control block. The 1st 

argument block is the target to be initialized. The 2nd argument, with value 1, is 

the task identifier, and is passed to the initializer component Assign Unique 

Identifier. The rest arguments are passed to their corresponding components. 

C. Thread-based Execution Model 

Once developers have defined the task control block type 
and built the initializer and finalizer, they can expose relevant 
system calls, such as creating a new thread, to user programs in 
two steps. First, they declare the system call prototypes, assign 
a unique service identifier to each, and pass the identifier and 
arguments to the syscall function (§6.2). Second, they add an 
entry to the service routine mapper (§7.1), so that the dispatcher 
can route the request to the corresponding kernel service routine. 
Fig. 12 shows an example of implementing a system call 
sysCreateThread and routing the request to the task control 
block initializer built in Fig. 11. 

Tinkertoy does not yet provide synchronization primitives, 
such as mutex, semaphores and message queues, so there are 
limitations in the current thread-based model (e.g., threads 
cannot communicate). However, our builder classes are generic 
enough to work with any number and type of components, so we 
believe that it is possible to implement such functionality. 

 

Fig. 12. Add a new system call to create a thread at runtime. The Service 

Routine Builder materializes a kernel service routine for the new system call. 

Internally, it reads system call arguments and forwards them to initializer 
components. The kernel service routine is encapsulated as a functor, so the 

macro is needed to convert the functor to a function pointer which can then be 

used by the service routine mapper to route the request properly. 

D. Event-driven Execution Model 

The event-driven execution model allows developers to 
define custom events and model their applications as individual 
event handlers that run on a single shared stack. Tinkertoy 
provides task control components specific to this model, such as 
the event handler component that stores the handler entry point, 
and standard kernel service routines as well as system calls to 
(un)register events and their handlers and deliver events. 

X. RELATED WORK 

Tinkertoy’s building blocks make it possible to assemble a 
custom kernel that is inherently modular. Before evaluating the 
performance of the kernels we’ve assembled, we discuss how 
this work draws on work in library operating systems, the 

Exokernel [3], and the Flux OSKit [4]. We then introduce five 
popular IoT operating systems and compare them to Tinkertoy. 

A. Library Operating Systems 

General-purpose operating systems must multiplex 
hardware resources among user applications, so kernel designers 
select a policy for sharing each resource on behalf of users and 
expose a collection of abstractions to them. When applications 
impose wildly different demands, arbitrating among them 
becomes a key challenge. Library operating systems [14] 
address this concern by allowing developers to implement 
application-specific operating system abstractions in user space. 

Exokernels [3] focus on presenting the right abstractions to 
directly expose hardware, allowing applications to manage 
resources efficiently at user level while still protecting them 
from each other. However, the kernel still defines core 
functionality and policies from which a library system can use 
or extend for a particular application. Tinkertoy allows 
developers to create or choose abstractions as well by providing 
kernel service routines and exposing related system calls, but it 
is a set of modules that are independent of the kernel architecture 
and execution model, so developers are free to replace, add, or 
remove any of them. Application-level resource management is 
not our goal, because we believe that developers can use 
hardware resources efficiently by carefully assembling a custom 
operating system from building blocks. 

The Flux OSKit [4] focuses on reusing components from 
different existing systems to construct new ones. Its 
encapsulation technique makes it easier to import code, such as 
device drivers and network stacks, from other systems, and its 
object-oriented design makes it possible to mix and match 
different components to produce a new system. The Flux OSKit 
provides two modes of system construction: separable 
components and individual functions. Tinkertoy shares the 
design concept of modularity and separability with the Flux 
OSKit but does not import components from other operating 
systems, primarily because such components are frequently too 
large and expensive for IoT systems, but also because even the 
overhead of wrapping these components in standard interfaces 
might be too burdensome for our target environment. Instead, 
we carefully design each component from scratch to provide a 
third approach to system construction: composable code, so 
developers can customize kernel data structures (e.g., task 
control block) and related functions (e.g., initializers, finalizers, 
and service routines) and construct entirely new systems by 
assembling them out of a collection of modular, flexible, and 
interacting components. 

B. Other IoT Operating Systems 

TinyOS [8] is an event-driven operating system written in 
NesC [5]. Software services and hardware resources are 
encapsulated as components, interacting with each other by 
posting and responding to events. TinyOS achieves modularity 
at the component level; developers write applications in terms 
of a set of components but cannot customize a component easily 
without tweaking the code. Besides, TinyOS does not support 
user space nor dynamic memory allocation, making it vulnerable 
to faulty user applications and infeasible to accommodate 
unpredictable runtime resource requests. Its Rust-based 
successor, Tock [9], exploits both hardware and programming 

struct Block: Schedulable, Listable<Block>,  
  UniqueIDNoDecl<Block>, PriorityNoDecl<Block>, StateNoDecl<Block>, 
  DedicatedNonRecStack<Block>, SysCallSupport<Block, Context> 
{ UInt8 identifier: 4, priority: 2, state: 2; }; 
using Init = Builder<Block, AssignUniqueID<Block>, 
    AssignPriority<Block>, AllocateDedicatedStack<Block>, 
    SetupExecutionContext<Block, ExecutionContextBuilder>>; 
Init{}(block, 1, kHigh, kDefaultStackSize, task_main); 

int sysCreateThread(int id, int pri, size_t size, void* ep) 
{ return syscall(kSysIDCreateThread, id, pri, size, ep); } 
using Routine = ServiceRoutineBuilder<Block, Scheduler, 
    ThreadController, AssignUniqueID<Block>, 
    AssignPriority<Block>, AllocateDedicatedStack<Block>, 
    SetupExecutionContext<Block, ExecutionContextBuilder>>; 
OSDefineAndRouteKernelRoutine(kCreateThrd, Block, Routine); 
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language protection mechanisms, focusing on fault isolation and 
efficient and safe memory management. 

Contiki [2] is another event-driven operating system written 
in C. User applications are built upon the stack-less protothread 
library, so they run cooperatively and can only be preempted by 
hardware interrupts. The system supports dynamic memory 
allocation but not user space and is modular in a coarse-grained 
manner similar to TinyOS. Developers can edit a Makefile to 
include only the modules they need but still cannot customize 
the behavior of each module and the kernel easily like Tinkertoy. 

FreeRTOS [22] is a real-time thread-based operating system 
written in C. Its kernel is designed to be small and simple and 
consists of only three source files: list, queue, and task. All other 
kernel functionality, such as semaphores and event groups, are 
built on top of these three constructs. Applications are 
encapsulated as tasks with a private stack and can be scheduled 
either preemptively or cooperatively. FreeRTOS relies heavily 
on C macros to make the kernel modular at the API level but not 
at the code level as Tinkertoy does. Developers customize the 
system by providing a header file in which they define macros 
to enable or disable kernel APIs. 

Zephyr [23] is a thread-based operating system written in C. 
Its kernel shares many design concepts with Linux. For example, 
Zephyr provides multiple scheduling algorithms, such as 
cooperative, preemptive, time slicing and earliest deadline first, 
to suit application needs. It supports meta IRQ scheduling to 
defer executing a function, which behaves similarly to Linux’s 
tasklet and softirq. Zephyr provides a Kconfig interface [24], as 
Linux does, allowing one to customize the system in a finer-
grained manner than FreeRTOS does. Developers can specify 
the device drivers they need, the scheduling algorithm, the data 
structure that implements the queue, etc., and similar to 
Tinkertoy, some of the customizations are close to code level. 

Using the following criteria, we select FreeRTOS and 
Zephyr as our baselines in the evaluation. First, these systems 
allow us to disable functionality that is not used, so both the 
baseline kernels and our kernel are doing the same work. 
Second, they are under active development and therefore do not 
present performance or implementation challenges in the kernel. 
Third, both have an official port that supports our emulated 
board, so we can focus on adopting different kernel APIs when 
porting applications to these systems, leaving platform-specific 
code intact. 

C. Summary 

Tinkertoy shares the goal of building application-specific 
operating systems with Exokernel and the Flux OSKit, but its 
scale and design target are considerably different. While other 
aforementioned IoT operating systems have design targets 
closely aligned with those of Tinkertoy, they provide a prebuilt 
kernel, from which developers remove unneeded functionality. 
In contrast, Tinkertoy is not a kernel but a set of modules, from 
which developers assemble a custom kernel, and thus it is the 
granularity at which one can customize kernel modules easily 
and design new modules specific to a particular application that 
makes Tinkertoy distinctive. Our design principles ensure that 
the unit of modification is as small as necessary. For example, it 
takes 109 lines of code to implement the kernel interface that 

changes a task’s priority in FreeRTOS, whereas one can 
implement a kernel service routine in fewer than 10 lines of 
code, simply notifying the scheduler through the Task Priority 
Changed handlers, which can be reused by other routines, e.g., 
the one that prevents priority inversion in a multithreaded kernel. 

XI. EVALUATION 

We have identified three different kinds of kernels that apply 
to many different IoT applications: 1) a monitoring kernel used 
for applications responsible for collecting sensor data, 2) an 
actuator kernel that is representative of modern cyber-physical 
systems in which an actuator changes its physical surroundings, 
and 3) a gateway kernel found in network-focused applications. 
We demonstrate that Tinkertoy naturally supports all of these 
kernels by assembling an instance of each type of kernel and 
combining them into a concrete use case: an automated watering 
system. These three kernels are chosen carefully to reflect first-  
and second-generation sensor network operating systems, and 
emerging third-generation systems that run on intelligent IoT 
devices [11] and have functionality closer to that of a general 
purpose operating system. We then analyze the memory 
footprint and the runtime performance of the assembled kernels 
and compare the results to other systems. 

A. Automatic Watering System 

An automatic watering system takes care of potted plants 
while people are away from their home. It is composed of three 
devices, a monitor, an actuator, and a gateway, each of which 
requires a custom kernel. The monitor periodically fetches the 
soil moisture level from a sensor placed in a pot. If the level 
drops below a user-defined threshold, it asks the actuator to start 
dripping water. Once the level reaches an upper threshold, it 
signals the actuator to stop. The actuator controls the gate of a 
water bottle. It opens the gate on receiving a dry alert from the 
monitor and closes the gate on a wet alert. Optionally, a gravity 
sensor can be placed in the bottle, enabling the actuator to notify 
the user when the bottle runs out of water by sending out a CoAP 
POST message to a Linux HTTP server via the gateway. The 
gateway device sits between the actuator and the server, acting 
as a transparent proxy that translates CoAP messages to HTTP 
messages and vice versa. Fig. 13 depicts the setup. 

 

Fig. 13. Deployment of the automatic watering system in a home network. 

B. Experimental Setup 

We have three tiny devices in total, each of which runs its 
own custom kernel on a Stellaris LM3S811 board emulated by 
the ARM Fast Models. Each board has a 50 MHz ARM Cortex-
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M3 processor, 64 KB Flash and 8 KB SRAM. Tinkertoy does 
not yet support networking, so these devices use UART ports to 
communicate with each other. We redirect each serial port to a 
TCP socket and run a controller process on the host machine to 
capture and display all messages within the network. Our 
emulated boards have sensors simulated in the kernel, whose 
values can be modified by the controller remotely. We use GCC 
10.2.1 to compile all kernels with optimization level 3, code size 
optimization and link phase garbage collection enabled. C++ 
exceptions, runtime support and C standard library are disabled. 
As such, all unreferenced functions and variables are excluded 
from the final executable. 

C. Assembling Kernels 

We evaluate implementation effort in terms of the number 
of source lines of code (SLOC) to implement a kernel for each 
device. Application code is not counted despite being compiled 
with the kernel into a single binary image. 

1) Monitor Kernel 

System Requirements: The user application running on the 
monitor device acts as an interface between the moisture sensor 
and the water bottle and can be modeled as a state machine, so 
an event-driven kernel is adequate. Table 4 lists the three 
required events and their handlers. The system should deliver a 
timer event on a regular basis, so that the reader task can fetch 
and examine the moisture level and subsequently deliver a dry 
or wet soil event if necessary. The dry handler then sends a dry 
alert to the actuator, while the wet one does the opposite. Soil 
events are more critical than the timer one, so the kernel should 
run the handler immediately when an event is delivered. 

TABLE IV.  EVENTS IN MONITOR AND ACTUATOR KERNELS 

Monitor Kernel Actuator Kernel 

Events Event Handlers Events Event Handlers 

Periodic Timer Sensor Reader Start Watering Open Gate 

Dry Soil Dry Handler Stop Watering Close Gate 

Wet Soil Wet Handler No Water Signal Alert 

System Deployment: The above requirements suggest that 
developers need a preemptive scheduler that can respond to task 
creation and termination events. They also need the UART, 
SysTick and Simulated Sensor driver modules and provide these 
five items listed in Table 5 to assemble the monitor kernel. 

TABLE V.  ITEMS NEEDED TO ASSEMBLE THE MONITOR KERNEL 

Item Description 

1 Assemble the event control block and the event controller. 

2 Assign a unique identifier to each system call. 

3 Define the service routine mapper for the dispatcher. 

4 Provide a timer interrupt handler to deliver timer events. 

5 Provide a startup routine to initialize all modules. 

Since all event handlers share the same stack, an event 
control block needs to record only the handler address and 
pointers to other blocks in the scheduler’s ready queue, thus 
consuming only 12 bytes. The event controller maintains a table 
of four event control blocks and arbitrates event registrations. 
The first entry is reserved for the idle event, while the rest are 
used by the application. The kernel provides five system calls to 
manipulate events, sensors, and serial ports, so a simple switch 
statement is sufficient to implement the mapper. The timer 
interrupt handler tracks elapsed time in ticks. Once the number 

of ticks reaches the threshold, it resets the counter and delivers 
a periodic timer event by means of notifying the scheduler that 
a new task is created. Tinkertoy provides a simple bootloader 
that sets up the kernel stack, initializes global variables and runs 
the kernel startup routine in ARM Handler mode. We need to 
initialize the interrupt vector table, the timer and serial ports, 
register event handlers, and start the dispatcher in the startup 
routine. As a result, we need 65 lines of code in total to assemble 
the monitor kernel. Table 6 shows the breakdown by component. 

2) Actuator Kernel 

System Requirements: The actuator kernel is similar to the 
monitor kernel, also requiring three events shown in Table 4. 
The UART RX interrupt handler receives messages from the 
monitor and delivers the first two types of events. Message 
handlers then open or close the water gate to start or stop 
watering the plant. If the water bottle is empty, the message 
handler delivers a No Water event, so that the Signal Alert 
handler will send an alert message to the gateway. However, the 
system must ensure that event handlers access the water gate in 
order. Specifically, the Close Gate handler cannot preempt the 
running Open Gate handler in case the moisture level changes 
before the actuator opens the gate. 

Differences in Deployment: As such, the actuator kernel 
shares about 80% of its code of the monitor kernel. Developers 
need a cooperative scheduler instead of a preemptive one and 
implement the interrupt handler for the serial port instead of the 
timer. The actuator kernel has two more system calls to control 
the water gate and thus requires 90 lines of code in total, 52 of 
which are shared with the monitor kernel. We remove 17 lines 
of code (related to timer) and add 42 lines of code (related to 
serial) to finish assembling the kernel. Table 6 shows the per-
component line counts. 

3) Gateway Kernel  
System Requirements: The gateway translates multiple 

CoAP or HTTP messages concurrently, so a thread-based 
execution model is necessary. The translator thread should finish 
its work without being interrupted, so that it can be ready to 
service the next message promptly. For demonstration purposes, 
there are at most three translators that can run concurrently. To 
reduce the complexity of detecting the size of an incoming 
message without a network stack, each CoAP request is assumed 
to be 32 bytes long. 

System Deployment: The above requirements suggest a 
cooperative scheduler that can handle task creation and blocked 
and unblocked events. Task termination is not needed, because 
a translator thread works in an infinite loop, remaining blocked 
until it receives a message. Additionally, we need a memory 
allocator to allocate a private stack to each thread. As such, 
developers provide five items similar to those needed to 
assemble the monitor kernel, except that the timer interrupt 
handler is replaced by the serial one. 

Since a thread never terminates, its stack is never released, 
so the thread control block records the current stack pointer and 
the status of the receive request, consuming only 24 bytes. The 
status stores a reference to the user buffer and the number of 
bytes requested by the thread and having been processed by the 
serial driver. The UART RX interrupt handler maintains a queue 
of threads blocked waiting for data. Once the request is fulfilled, 
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the interrupt handler notifies the scheduler that the thread has 
been unblocked. Finally, we initialize the memory manager and 
other kernel modules in the startup routine. In total, we need 122 
lines of code to assemble the gateway kernel. Table 6 
summarizes the deployment result. 

TABLE VI.  DEPLOYMENT RESULT: BREAKDOWN BY COMPONENTS 

Components 
Monitor Actuator Gateway 

Method SLOC Method SLOC Method SLOC 

Scheduler ASMb 8 ASM 8 ASM 8 

TCB ASM 1 ASM 1 MIXb 29 

Controller ASM 1 ASM 1 ASM 14 

Mapper WFSb 21 WFS 23 WFS 17 

Dispatcher ASM 2 ASM 2 ASM 1 

ISR WFS 12 WFS 36 WFS 29 

Init Tasks WFS 7 WFS 7 MIX 13 

Startup WFS 13 WFS 12 WFS 11 

Total 65 90 122 

b. ASM = Assemble from building blocks; WFS = Write from scratch; MIX = Both ASM and WFS. 

D. Comparison Results 

1) Porting Applications to Target Systems 

Despite being a thread-based system, FreeRTOS provides a 
lightweight mechanism, Event Group, to write event-driven 
programs. Event handlers in the monitor and the actuator kernels 
are converted to threads that wait for and process events in an 
endless loop, while translator threads in the gateway kernel are 
ported as is. However, since there is no strict distinction between 
the kernel and the user space in FreeRTOS, system calls behave 
like ordinary library calls and thus require no context switches. 

Zephyr is also a thread-based system, so we follow the same 
procedure as we did with FreeRTOS to port our applications, 
except that Event Group is replaced by Binary Semaphore. 
Zephyr can be configured to enable a user space, so the kernel 
checks system call arguments and performs a context switch; 
otherwise, system calls are the same as library calls. We choose 
to disable argument checking, because Tinkertoy does not have 
any protection against malicious arguments yet, and we did not 
want to impose an unfair disadvantage on Zephyr. 

2) Flash and Memory Footprint 

We use readelf to dump the size of each segment in the 
kernel executable and calculate the number of bytes reserved in 
Flash and main memory, excluding statically allocated kernel 
and user stack areas. Table 7 summarizes the result. 

Tinkertoy significantly outperforms the other two systems, 
because our building blocks allow developers to include only 
entries that are needed in kernel data structures. For example, a 
task control block is 12 bytes in Tinkertoy’s monitor kernel but 
64 bytes in FreeRTOS and 112 bytes in Zephyr. Since there are 
four event handlers registered on the system, it is unsurprising 
that the other systems require more memory. 

Zephyr additionally reserves about 1 KB to store kernel 
configuration parameters, such as the number of IRQs, device 
properties, and 344 bytes for the software ISR table. Even 
though we allocate threads and semaphores statically, Zephyr’s 
kernel still requires memory management routines to allocate 
and release private data structure. However, the result is still 
reasonable, as the reference minimal Flash footprint with 
multithreading enabled is about 7 KB to 8 KB [20]. 

TABLE VII.  FLASH AND MEMORY FOOTPRINT 

Devices Kernels 

Flash Footprint 

(Bytes) 

Memory Footprint 

(Bytes) 

Raw Normalizedc Raw Normalizedc 

Monitor 

Tinkertoy 2308 1.00 116 1.00 

FreeRTOS 4808 2.08 672 5.79 

Zephyr 11116 4.81 936 8.06 

Actuator 

Tinkertoy 2277 1.00 119 1.00 

FreeRTOS 4845 2.12 888 7.46 

Zephyr 8568 3.76 920 7.73 

Gateway 

Tinkertoy 3900 1.00 268 1.00 

FreeRTOS 5976 1.53 792 2.95 

Zephyr 10948 2.80 1032 3.85 

c. Footprints are normalized to Tinkertoy. 

3) Active Stack Usage 

We trace the execution of each system and analyze their 
stack footprint. Table 8 presents the result.  

TABLE VIII.  ACTIVE STACK FOOTPRINT 

Devices Kernels 
Active Stack Usage (Bytes) 

Kernel User Total Normalized 

Monitor 

Tinkertoy 84 208 292 1.00 

FreeRTOS 112 360 472 1.61 

Zephyr 176 592 768 2.63 

Actuator 

Tinkertoy 88 192 280 1.00 

FreeRTOS 116 412 528 1.88 

Zephyr 96 584 680 2.42 

Gateway 

Tinkertoy 88 1056 1144 1.00 

FreeRTOS 112 1160 1272 1.11 

Zephyr 96 1456 1552 1.35 

Both comparison systems have a larger kernel stack footprint 
than Tinkertoy does, but the differences are insignificant in all 
but the monitor kernel on Zephyr, because the kernel runs 
periodic timer tasks on a shared system work queue instead of 
an ordinary thread. As a result, sensor reading is performed in 
the kernel and therefore increases the kernel stack footprint. 

On the other hand, our monitor and actuator systems have a 
significantly lower user stack footprint than the others, because 
both are event-driven, and all the event handlers share a single 
user stack. The difference is reduced to about 10% in the thread-
based gateway kernel, because translators on each system have 
the same implementation except for system calls. 

4) Performance 
Tinkertoy-based kernels provide precisely the functionality 

needed by applications, so they should have not only a low 
memory footprint but also more efficient runtime than other 
systems. We evaluate the performance by means of the amount 
of time it takes the gateway kernel to receive a CoAP request 
message and send out the translated HTTP message. Table 9 
summarizes the statistics. 

TABLE IX.  GATEWAY KERNEL ROUND TRIP TIME IN MILLISECONDS 

Kernels Samples Min Max Median Mean SD 

Tinkertoy 

1000 

0.55 1.26 0.67 0.66 0.04 

FreeRTOS 0.54 2.40 0.69 0.68 0.06 

Zephyr 0.58 1.78 0.69 0.68 0.05 

Our gateway system is comparable to FreeRTOS and Zephyr 
despite them having user space disabled. We analyze the 
assembly code and find that the difference is related to how the 
kernel reacts to interrupts and unblocks the translator thread.  
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When a new message arrives, the processor jumps to the 
UART RX interrupt handler directly on FreeRTOS. In contrast, 
Tinkertoy allows developers to select which functionality the 
kernel should provide, so the processor must traverse through 
the context switcher and the dispatcher (service identifier finder 
and the service routine mapper) before entering the interrupt 
handler, thus having a longer code path than FreeRTOS. Inside 
the interrupt handler, Tinkertoy essentially does the same thing 
as FreeRTOS, removing the translator thread from the waiting 
list and putting it on the scheduler’s ready queue.  

Meanwhile, Zephyr takes the multithreaded kernel into 
consideration; it relies on spinlocks to protect semaphores and 
the scheduler, thus introducing unnecessary barrier instructions 
for every list operation on a single-threaded system. However, 
Zephyr does not provide a separate implementation for such a 
system, so we learn that Tinkertoy must provide building blocks 
for both types of system in the future.  

E. Summary 

We evaluated Tinkertoy from three perspectives: the effort 
needed to assemble a custom kernel, memory footprint and 
runtime performance. We find that about 75% of the deployment 
code is straightforward and easy to write, as developers use our 
builder classes to concatenate a collection of components and 
materialize kernel services. The rest deals with device interrupts, 
but Tinkertoy does not yet provide standard building blocks in 
this area, so developers have to use existing kernel APIs to 
service the hardware manually at this moment.  

The assembled kernels provide the exact functionality 
needed by particular applications, so Tinkertoy-based kernels 
have 1.5x to 4.7x smaller memory footprints than other popular 
IoT operating systems and comparable performance to them. 
However, there is still a large room for future improvement, 
such as standard API packages to improve applications’ 
portability, source-to-source compilers to translate thread-based 
programs to event-driven ones and vice versa. 

XII. CONCLUSION 

Tinkertoy allows developers to assemble operating systems 
customized for particular applications in fewer than 150 lines of 
code by providing a set of configurable and composable 
components. We use constraints to ensure that each component 
is as flexible as possible while also ensuring that all the 
requirements are satisfied by developer-specified components. 
The assembled systems not only provide precisely the 
functionality that an application needs, but also reduce memory 
footprint by as much as a factor of four compared to existing IoT 
operating systems, with no performance penalty. While there are 
many avenues for future work, we demonstrated that it is 
possible to assemble realistic operating systems in this manner. 
Tinkertoy is an embodiment of this approach and demonstrates 
how to achieve flexibility and configurability to satisfy the 
requirements of heterogeneous applications. 

Tinkertoy is available at https://github.com/0xTinkertoy. 
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