
Arming IDS Researchers with a Robotic Arm Dataset
Arpan Gujarati, Zainab Saeed Wattoo, Maryam Raiyat Aliabadi, Sean Clark, Xiaoman Liu,

Parisa Shiri, Amee Trivedi, Ruizhe Zhu, Jason Hein, and Margo Seltzer
University of British Columbia (UBC), Vancouver, Canada

Abstract—Industry 4.0 is rapidly transforming traditional
manufacturing practices. Smart manufacturing technologies that
automate research and development using a combination of robotic
arms and domain-specific cyber-physical systems are at the core
of this transformation. Unfortunately, dependence on networked
communication increases the risk of security attacks, which must
be mitigated using either platforms that are secure by design
or intrusion detection and prevention systems. We report on an
ongoing project to design and develop intrusion detection systems
(IDS) for the Hein Lab, a smart manufacturing research lab in the
chemical sciences domain. Designing effective IDS requires large
datasets and high-quality, domain-specific benchmarks, which are
difficult to obtain. To address this gap, we present the Robotic
Arm Dataset (RAD), which we collected at the Hein Lab over a
three-month period. We also present our non-intrusive tracing
framework RATracer, which can be retrofitted onto any existing
Python-based automation pipeline, and two sets of preliminary
analyses based on the command and power data in RAD.

Index Terms—robotic arms, intrusion detection, dataset

I. INTRODUCTION

Industry 4.0, also known as the Industrial Internet of Things
(IIoT), is being driven by fully automated smart manufacturing.
These facilities need to be secured against attacks over the
Internet as well as attacks arising from the use of off-the-shelf
software. Defense in depth is crucial to ward off zero-day
attacks. For example, while host- and network-based intrusion
detection systems (IDS) help minimize unauthorized access,
additional safeguards are necessary to prevent automation tools
such as robotic arms from damaging expensive property or
harming the humans working in the same physical space.

Our work addresses the challenge of designing domain-
specific safeguards for a smart manufacturing research labo-
ratory in the chemical sciences domain. Specifically, we are
collaborating with researchers at the Hein Lab [15] – a state-
of-the-art research lab at the University of British Columbia
that blends advanced robotics with synthetic organic chemistry
– to secure their cyber-physical systems (CPS) infrastructure,
which they use for automating organic chemistry experiments.

The Hein Lab uses a single lab computer, accessed locally
or remotely, to programmatically control all CPS devices. We
introduce a trusted middlebox between the lab computer and
the CPS devices that need not be connected to the Internet; the
middlebox accepts only a restricted set of commands (Fig. 1).
Our goal is to use the middlebox as the last level of defense
by deploying effective safeguards on it (e.g., alerts, anomaly
detection, rule-based IDS, more complex behavioral-based IDS)
that understand the “language” in which the software on the
lab computer communicates with the automation tools.

Fig. 1. Overview: 1© Users program and automate experiments using the Hein
Lab’s software packages on the lab computer. 2© Python wrappers instrument
the software to intercept every device access. 3© An RPC client on the lab
computer sends each device command to the middlebox. 4© An RPC server
on the middlebox forwards each command to the target device, waits for
its response, and sends the response back. 5© The middlebox also monitors
the power consumption of robotic arms periodically. 6© Device commands,
responses, and the power data are continuously logged. 7© Data mining.

However, designing effective safeguards, even for a smaller
state space consisting only of commands, requires high-quality
domain-specific datasets and benchmarks. Unfortunately, such
datasets are limited, and those that are available, e.g., AURSAD
by Leporowski et al. [33, 34], do not apply to real-world
scenarios such as ours (§II). Robot arm simulators [1, 2]
offer a different approach to dataset generation, but real-
world deployments are often heterogeneous, consisting of one
or more robotic arms together with an assortment of smart
devices. It is nontrivial at best, and impossible at worst, to
integrate a collection of device-specific simulators to model an
environment as complex as the Hein Lab’s setup.

This paper: We summarize our experience working on the
first phase of our collaboration with the Hein Lab. Our goal is to
make available a robotic arm dataset that can support research
in multiple areas. To date, we have focused on anomaly-based
intrusion detection, which is a particularly promising approach
because, (i) there do not exist databases of known attacks, and
(ii) there is insufficient accumulated experience to produce a
collection of rules likely to capture all attack scenarios.

First, we present RATracer, a non-intrusive robotic arm
tracing framework that can be retrofitted onto any existing
Python-based automation pipeline without significant effort
from programmers and researchers (§III). RATracer is published
with the Python Package Index by the name niraapad [19].

Second, we open-source all traces collected by RATracer
as the Robotic Arm Dataset (RAD) (§IV) [22]. The dataset
includes (i) command/response data from multiple robotic arms

1

engaged in a variety of software-controlled chemical synthesis
workflows; (ii) data documenting the interaction between these
robotic arms and other smart devices used in the workflows;
and (iii) detailed power data recorded from each of the joints
in one of the robotic arms (the Universal Robots UR3e).

Third, we show that command sequences in RAD can be
interpreted as a language, allowing us to use natural language
processing (NLP) techniques to model experimental procedures
(§V) [6]. Our preliminary analyses use this approach to classify
different procedure types and identify anomalous procedure
runs in a small subset of supervised data within RAD.

Finally, we analyze power data measurements from the
UR3e to demonstrate that such side channels offer tremendous
potential in identifying both command parameters, such as
robot arm velocities, and external contexts, such as payload
weights (§VI) [7]. These results are encouraging, because such
data can be collected independently of Hein Lab’s software
infrastructure and without RATracer-like frameworks.

II. RELATED WORK

RAD is not the first open-source robotic arm dataset.
Leporowski et al. [33, 34] recently presented a similar time-
series dataset based on automated screw-driving operations,
carried out using the UR3e and an OnRobot screwdriver.
Likewise, Narayanan and Bobba [36] focused on a triangle-
shaped laser cutting application using a six-axis Yaskawa
Motoman MH5 robotic arm. We are also not the first to examine
side-channels, such as power profiles, as important data sources
that reveal the workings of a robotic arm. Pu et al. [38], Duman
et al. [27], and Khan et al. [32] studied power, acoustic, and
electromagnetic signals arising from robotic arms, respectively.
Our focus on heterogeneous, real-world, end-to-end workflows
sets RAD and this paper apart from prior work.

Wu et al. [3, 42, 43] address intrusion detection in smart
manufacturing, using an extensive testbed consisting of a 3D
printer, CNC milling machine, heating chamber, conveyor, and
three robotic arms for moving, welding, and assembly. However,
while their testbed is comparable to ours in complexity, each
of their case studies focuses on a single device, e.g., evaluating
a weakened 3D printing object, a manipulated CNC milling
process, or speed attack on the robotic arms.

In theory, simulators can generate RAD-like datasets, as
suggested in prior work by Zuo et al. [44] and Vijayan et al.
[41]. However, no integrated simulation framework exists today
that can provide real-world data on the interactions between
heterogeneous devices. Simulators also cannot generate side
channel data. For example, we observed significant discrepan-
cies between the power data collected from the UR3e robot
and that collected from its simulator [2].

Therefore, to the best of our knowledge, this is the first
effort of its kind in understanding the nature of data that
originates from real-world automation processes spanning
multiple heterogeneous components. Although RAD, RATracer,
and the analyses are presented in the context of Hein Lab’s
chemical synthesis experiments, the ideas, techniques, and
inferences generalize to other domains.

III. RATRACER

Recall from §I the middlebox-based setup that we deploy
in the Hein Lab. We focus on chemical synthesis experiments
spanning six different CPS devices: (i) four-axis N9 robot arm
from North Robotics; (ii) six-axis UR3e robot arm from Univer-
sal Robots; (iii) C-Mag HS 7 magnetic stirrer and heater from
IKA; (iv) 100-240V, 50/60Hz Fisherbrand Mini-Centrifuge
from Fisher Scientific; (v) Cavro XLP 6000 syringe pump from
Tecan; and (vi) Quantos balance for solid dosing from Mettler
Toledo [5, 16–18, 24, 25]. Henceforth, we refer to these as
N9, UR3e, IKA, Centrifuge, Tecan, and Quantos, respectively.
Since both N9 and Centrifuge are controlled via N9’s controller
box, we treat them as a single device called the C9. Similarly,
we consider the Arduino-controlled stepper motor used for
z-axis control in Quantos to be a part of Quantos.

Prior to our deploying the middlebox, all the devices in the
Hein Lab were connected directly to the lab computer over
Ethernet or USB (see Fig. 2). The lab computer hosts the
Hein Lab’s Python packages, typically one for each device,
which expose an intuitive and uniform high-level programming
API [12]. This enables lab members to easily program large and
complex automation processes spanning heterogeneous devices.
Our RATracer framework incorporates three main design
features: interception points (i.e., where the lab computer and
device communication is intercepted and traced), programmer-
friendly tracing, and distributed implementation.

RATracer intercepts all communication at the boundary
between low-level third-party software packages (e.g., Python’s
networking interfaces for TCP [21] and serial communica-
tion [20], UR3e’s urx package [8]) and high-level Python
libraries from the Hein Lab [12], which obviates the need to rely
on third-party software. Intercepting at boundary points such
as class FtdiDevice [11], which are used by many devices to
interface with the proprietary Windows FTDI driver, also allows
for seamless extension to accommodate other similar devices.

For tracing, our key priority is programmer friendliness: We
want to make it possible to enable RATracer with minimal
modification. Ideally, the main experiment script requires only
a single import statement, e.g., import ratracer.backends, and
allows for optional customization with a few lines of tracing
configuration (see below). We achieve this ideal by using
Python’s support for dynamic class modification (also known
as monkey patching). Specifically, we virtualize each class
on the data collection boundary. Higher-layer classes interact
with the virtualized classes. Each virtualized class executes
logic from the original class implementation and additionally
logs all class-level (static) and object-level accesses (including
responses from modules) to a MongoDB instance or a .csv file.
Fig. 3 (top) gives an overview of this approach.

We map the tracing process described above to a distributed
system by introducing a middlebox. We implement two differ-
ent modes using the gRPC remote procedure call framework.
In DIRECT mode, the middlebox simply collects trace data; in
REMOTE mode, the middlebox both captures trace data and
sends commands to the robots. DIRECT mode is useful for

2

Fig. 2. An overview of the Hein Lab’s software architecture [12]. Each box illustrates a Python class, its parent classes (if any), a connection variable, and its
main APIs, e.g., class ArduinoAugmentedQuantos inherits from class Quantos(Balance) and class ArduinoAugment, conn tcp denotes a socket connection used
to communicate with Quantos, conn stepper denotes an instance of a lower-level class ArduinoStepper, and api start dosing(...) and api move z axis(...)
denote respective APIs for dosing and motor control [13]. Boxes shaded in green denote classes whose API accesses we trace, e.g., class FtdiDevice [11].
Ovals shaded in pink denote third-party software, e.g., Python’s Socket [21] and Serial packages [20].

Fig. 3. (Top) Tracing in RATracer using class FtdiDevice as an example.
(Bottom) Periodic monitoring of power data from the UR3e robot arm.

verifying that RATracer is operating correctly, before allowing
it to interpose between the lab computer and the robotic arm.
REMOTE mode is useful for actually deploying the IDS
in a secure environment. RATracer also allows configuring
some devices for DIRECT tracing and some for REMOTE
tracing. Such hybrid configurations are convenient in practice,
because we can immediately incorporate new devices while
their communication issues with the middlebox (e.g., cabling

or TCP connection problems) are sorted out by IT.
Finally, we add a simple Python module to RATracer, which

collects power monitoring data from the UR3e robot arm at
25 Hz (Fig. 3, bottom). We currently do not collect power data
from other devices, since they do not provide similar APIs.

Overall, RATracer is a simple and extensible tracing frame-
work. To trace a new device that relies on a different networking
stack, we need to identify a Python class in the stack to
virtualize, add a virtual class mimicking the class’s method
signatures to backends.py (this step can be automated), and
then add the necessary import statements to the main script.
Other languages could be supported using appropriate language
bindings. RATracer is versatile, as demonstrated by integrating
it with different device-specific libraries (Fig. 2).

RATracer is also non-intrusive; Hein Lab researchers have
been using our distributed setup seamlessly for weeks while
prototyping new experiments and running fully automated ex-
periments. Nonetheless, we evaluated RATracer’s performance
by comparing the response times of N9 commands in DIRECT
and REMOTE modes, when the commands were invoked
via continuous button presses on a joystick.1 We summarize
the results for six different button press sequences in Fig. 4.

1RAD also enables end-to-end performance evaluation of network stacks
that connect the robot arms with the lab computer. For example, we rented a
high-end F16s v2 Windows Server instance on Azure [4] that is identical to
our middlebox (16 vCPUs and a 32GB RAM) and replayed the DIRECT mode
joystick traces by emulating N9 commands in the cloud server. The average
response times (∼ 60 ms), as shown in Fig. 4, are an order of magnitude
higher than DIRECT and REMOTE modes (< 10 ms), but are still an order
of magnitude lower than common robot arm movements (seconds), indicating
that cloud deployment is within the realms of feasibility.

3

D1 D2 D3 D4 D5 D6 R1 R2 R3 R4 R5 R6 V1 V2 V3 V4 V5 V6

Command Modes and Sequences (D = DIRECT, R = REMOTE, V = CLOUD VM)

101

102
Re

sp
on

se
 T

im
e

(m
s)

 (l
og

 sc
al

e)

Fig. 4. Response time box plots for N9’s ARM command. The y-axis ranges
from 3 to 100 ms. Boxes denote the interquartile-range (IQR) between quartiles
Q1 and Q3; lower and upper whiskers denote points Q1 - 1.5 IQR and Q3
+ 1.5 IQR; and outliers denote response times smaller and greater than the
whiskers. Outliers beyond 100 ms are not shown.

The results indicate that REMOTE mode increases average
response time by around 2 ms, and occasionally, the latency
exceeds 30 ms. As robot arm movements are on the order
of seconds, this overhead is negligible, in general. Even for
joystick procedures, which are finer grain, the quality-of-service
provided by RATracer remained intact.

IV. ROBOTIC ARM DATASET

We present a brief summary of our Robotic Arm Dataset
(RAD). Our online documentation contains an exhaustive list
of features and their explanations [23].

The dataset is divided into two parts: (i) command dataset,
which contains information curated from the traces collected
by RATracer when it intercepted Hein Lab’s software stack;
and (ii) power dataset, which refers to the power monitoring
data collected by RATracer directly from UR3e.

The command dataset traces the communication between
Hein Lab scripts and five automation devices: C9 (N9 and
Centrifuge), UR3e, IKA, Tecan, and Quantos. As of this writing,
the command dataset includes 128,785 trace objects, where
each trace object corresponds to a single command instance,
and each command instance corresponds to one of the 52
different command types. Fig. 5(a) illustrates the command-
wise distribution of all trace objects.

The dataset was collected over a three-month period during
which Hein Lab researchers executed several procedures,
including many short scripts for prototyping or for trying out
new libraries. We did not supervise all procedures that were
run, except for a few that we analyse in §V. Specifically,
we supervised a total of 25 procedure runs across four
types of procedures. P1: Automated Solubility with N9 (5
runs); P2: Automated Solubility with N9 and UR3e (4 runs);
P3: Crystal Solubility (4 runs); and P4: Joystick Movements
(12 runs) Among these, we mark three as anomalous, since they
resulted in crashes between a robot arm and another device.
The remaining 22 are marked benign; these executed either
successfully or were stopped by the lab operator (e.g., if the
operator put the wrong set of vials next to the robot arm,
they would terminate the process on the lab computer). All

commands from supervised experiments are labeled accordingly
whereas all other commands are labeled “unknown procedure”.

Procedures P1-P3 are a novel set of modular, closed-loop
solubility screening techniques proposed by the Hein Lab [9,
10, 40]. In a typical run, the robot arm iteratively increases the
amount of solvent in the solid until image analysis determines
that the solid has dissolved. Each run varies based on the
solids and solvents used, resulting in variations in the observed
sequences of commands. P4 corresponds to a user operating
the joystick to control the N9 to perform tasks such as lifting a
vial, uncapping a vial, and placing the vial in the Quantos (we
used these for evaluating RATracer’s performance in Fig. 4).

The power dataset contains 122 physical properties that are
collected every 40 ms, using the UR3e’s real-time monitoring
API. As a result, even though our power dataset contains more
than 40 million entries, the majority of these correspond to
quiescent periods. We store only a small fraction of the entries
that belong to quiescent periods (i.e., we store quiescent period
entries only on days with some activity).

Each entry in the power dataset measures a set of physical
properties, e.g., velocity, acceleration, current, moment, and
speed, for each of the UR3e robot’s specific joints. The analyses
in §VI focus on joint-specific current values that were collected
across multiple procedure runs of type P2, and two other simple
procedures: P5, UR3e movements with different velocities, and
P6, UR3e movements with different payload weights [14].

V. COMMAND DATASET ANALYSIS

We collected the command dataset for the purpose of building
an intrusion detection system, however, other use cases are
also possible, e.g., program synthesis, generating a sequence
of low-level commands from a high-level specification, and
specification mining, deriving a high-level program specification
from low-level commands. All of these use cases are premised
on the assumption that the dataset contains identifiable under-
lying patterns. To evaluate this assumption, and to gather other
useful insights from the dataset, we use data mining and NLP
techniques that are easily interpretable, specifically n-gram,
TF-IDF, and perplexity analyses. We use these techniques to
answer the following questions – RQ1: Can we identify Hein
Lab’s different scientific procedures in the RAD? RQ2: Can
we identify unexpected variations in procedures in the RAD?
– which can guide future development of more sophisticated
(e.g., ML-based) IDS. All our code is open source, implemented
in Python using pandas [35] and sklearn [37].

A. RQ1: Identifying Procedures

We begin by considering a simple n-gram model2 to ask
if certain sequences of commands repeat more regularly
than others. Fig. 5(b) shows the distribution of n-grams
for n ∈ {2, 3, 4, 5}. The results indicate that, as in natural
language, some sequences occur more frequently than others.
Additionally, we find that all the runs of a specific procedure
have similar n-gram frequencies.

2An n-gram is a contiguous sequence of n items from a given sample of text
or speech [26]. In our case, an n-gram refers to a sequence of n commands.

4

move_joints
move_to_location

open_gripper
init (UR3Arm)

close_gripper
move_circular
Q (get_status)

P (set_distance)
V (set_velocity)

I (set_valve_position)
A (set_position)

init (Tecan)
G (stop_batch_command)
g (start_batch_command)

k (set_dead_volume)
L (set_slope_code)

Z (set_home_position)
IN_PV_4 (read_stirring_speed)

IN_SP_4 (read_rated_speed)
IN_NAME (read_device_name)

IN_SP_1 (read_rated_temperature)
STOP_4 (stop_the_motor)
STOP_1 (stop_the_heater)

IN_PV_1 (read_external_sensor)
IN_PV_2 (read_hotplate_sensor)

init (IKA)
OUT_SP_4 (set_speed)

START_4 (start_the_motor)
START_1 (start_the_heater)

OUT_SP_1 (set_temperature)
MVNG (get_axes_moving_states)

OUTP (toggle_centrifuge)
ARM (move_arm)

BIAS (set_elbow_bias)
CURR (get_axis_current)

SPED (get_speed)
PING (ping)

init (C9)
HOME (home_n9)

JLEN (set_elbow_length)
POS (get_position)
MOVE (move_axis)

init (Quantos)
front_door_position

home_z_stage
zero (zero_balance_reading)

set_home_direction
start_dosing
target_mass

move_z_stage
lock_dosing_pin_position

unlock_dosing_pin_position

10
1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Count

Quantos (2367)
C9 (93231)

IKA (11448)
Tecan (16279)

UR3Arm
 (5460)

(a)

ARM_ MVNG
MVNG_ ARM

MVNG_ MVNG
Q_ Q

ARM_ ARM
MOVE_ MVNG
CURR_ MOVE
MVNG_ CURR

JLEN_ ARM
MVNG_ JLEN

MVNG_ARM_MVNG
ARM_MVNG_ARM

Q_Q_Q
MVNG_MVNG_MVNG

ARM_MVNG_MVNG
MVNG_MVNG_ARM

CURR_MOVE_MVNG
MOVE_MVNG_CURR
MVNG_CURR_MOVE

ARM_ARM_ARM
ARM_MVNG_ARM_MVNG
MVNG_ARM_MVNG_ARM

Q_Q_Q_Q
MVNG_MVNG_MVNG_MVNG

ARM_MVNG_MVNG_MVNG
MVNG_MVNG_ARM_MVNG
MVNG_ARM_MVNG_MVNG

MVNG_CURR_MOVE_MVNG
CURR_MOVE_MVNG_CURR
MOVE_MVNG_CURR_MOVE

MVNG_ARM_MVNG_ARM_MVNG
ARM_MVNG_ARM_MVNG_ARM

Q_Q_Q_Q_Q
MVNG_MVNG_MVNG_MVNG_MVNG
MVNG_CURR_MOVE_MVNG_CURR
CURR_MOVE_MVNG_CURR_MOVE
MOVE_MVNG_CURR_MOVE_MVNG
MVNG_MVNG_MVNG_ARM_MVNG
MVNG_ARM_MVNG_MVNG_MVNG
MVNG_MVNG_ARM_MVNG_MVNG

0
1000
2000
3000
4000
5000
6000
7000
8000

Count

Bigram
s

Trigram
s

Four-gram
s

Five-gram
s

(b)

Fig. 5. (a) Command-wise distribution of trace objects in the command dataset.
For non-intuitive command names, we provide their human-readable versions
in parentheses. The total number of command instances observed for each
device appears in the legend along with the device name. (b) Top ten bigrams,
trigram, four-grams, and five-grams in RAD, including those with repeated
commands. The Q command is the Tecan command for get_status (a).

Next, we use term frequency–inverse document frequency
(TF-IDF), to identify unique fingerprints for each procedure. TF-
IDF quantifies the importance of a word to a document relative
to the word’s importance in the entire corpus of documents [39].
TF-IDF assigns weights to each command to give more weight
to commands that appear more frequently in a procedure than
is expected, given their frequency in the entire dataset.

We use the following procedure to compute pairwise
similarities between each procedure in our dataset: (i) count
the number of times each command appears in a procedure run;
(ii) divide each count by the total number of commands in the
procedure run, so that the normalized counts in each procedure
run sum to one; (iii) use TF-IDF to scale each normalized
count to the significance of the command in the procedure; and
(iv) compute pairwise similarity scores using cosine similarity
between the TF-IDF vectors generated in (iii) for all procedure
runs (the higher the score, the greater the similarity).

Fig. 6 shows the 625 pairwise similarity scores for the 25
procedures. The dark blue region in the upper left quadrant
indicates that the Joystick Movement procedures (P4) are all
quite similar. This is unsurprising, because the joystick API
that is part of Hein Lab’s software distribution translates each
button press into a continuous stream of specific commands
that are repeated until the button is released, thereby giving all
traces of P4 a distinct flavor. Interestingly, although procedure
12 is an Automated Solubility with N9 procedure (P1), it is
more similar to the joystick procedure runs than to other P1

0 5 10 15 20
Procedure ID

0

5

10

15

20

Pr
oc

ed
ur

e
ID

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6. Pair-wise similarity scores based on TF-IDF for 25 supervised runs
of procedures P1-P4. IDs 0-11 correspond to Joystick Movements (P4), 12-
16 correspond to Automated Solubility with N9 (P1), 17-20 correspond to
Automated Solubility with N9 and UR3e (P2), and 21-24 correspond to Crystal
Solubility (P3). A similarity score of 1.0 (dark blue) indicates highest similarity.

procedures. The metadata in our dataset shows that procedure
12 used the joystick for a substantial time to move N9 to its
starting position, unlike other P1 procedures. Additionally,
procedure 12 stopped midway due to a shortage of solid
and executed none of the Quantos and Tecan commands
that are part of the automated solubility procedures but
not part of the joystick procedures (e.g., start_dosing,
target_mass, Q, V). The remaining P1 procedures (i.e., 13-
16) exhibit moderately high similarity among themselves
(mostly above 0.8). Procedure 16 is an anomaly, because the
Quantos front door crashed with the robot. However, before
crashing the procedure initiated Quantos commands such as
start_dosing and target_mass, so it is still similar to
the other Automated Solubility procedure runs.

Procedures 17-20 correspond to the Automated Solubility
with N9 and UR3e experiment (P2). Among these, procedures
17 and 18 have low similarity (around 0.58) with procedures
19 and 20 but a high similarity (more than 0.9) with each other.
This is particularly interesting, because the metadata shows
that run 17 is an anomaly but run 18 is not. We determined
that both stopped executing about one-tenth of the way into
the experiment, which accounts for their similarity. However,
in 17, because Quantos’ front door crashed into UR3e, we
marked it as an anomaly, whereas in 18, since a lab researcher
had mistakenly used the wrong gripper configuration, we did
not mark it as an anomaly. Procedure runs 19 and 20 were
complete, normal executions.

Procedures 21-24 are Crystal Solubility experiments (P3). All
runs exhibit high pairwise similarity scores (ranging between
0.9 and 0.99), even though Procedure run 22 is labeled an
anomaly. The robot arm crashed with the Tecan at the end of
the experiment. As the anomaly occurred at the end of the
procedure, run 22 is more similar to the other procedures of
the same type than the anomalous run for procedure P2.

In the preceding analysis, we considered only commands

5

and not their parameters. Despite this limitation, these TF-
IDF-based similarity scores do distinguish one procedure from
another (RQ1). More importantly, the analysis suggests that
the dataset captures sufficient information to sometimes detect
anomalies after the fact, e.g., the anomalous P2 experiments;
the next section investigates a potentially better technique that
could be adapted to real time detection.

B. RQ2: Identifying Unexpected Variations

While the analysis in §V-A suggests that anomaly detection
is possible, it does not provide a real-time solution. We next
demonstrate how we can capture both command frequencies
and command orderings in the training dataset to identify
unexpected procedures.

Given a training dataset consisting of Nv valid command
sequences S1, S2, . . ., SNv

, and a new command sequence
Snew, we want to compute the probability with which Snew is
likely to occur. This probability is a likelihood function for
Snew, which we can use to classify if Snew is an anomaly.
Suppose that Snew consists of commands c1, c2, . . . , c|Snew|.
Using the training dataset, we first compute the n-gram
probability P (ci | ci−n+1, . . . , ci−1)) for each i ∈ {n, |Snew|},
i.e., the probability with which ci follows ci−n+1, . . . , ci−1 in
the training dataset. For example, the bigram probability of
command sequence Snew is defined as P (c2|c1)× P (c3|c2)×
. . . × P (c|Snew||c|Snew|−1). To account for varying procedure
lengths, we need to normalize the likelihood function. We
compute the perplexity score, which is the normalized inverse
probability of Snew; as this is an inverse of the probability, a
lower perplexity score suggests a normal or benign trace and
a higher perplexity score suggests an anomaly. The perplexity
score is defined as (

∏|Snew|
i=1 1/P (ci|ci−n+1, . . . , ci−1))

1/|Snew|.
We use the 25 supervised procedure runs in RAD to generate

both training and test data using 5-fold cross validation. That
is, we (i) shuffle all 25 procedure runs and divide them into
five groups of five; (ii) hold one group as a test set and use
the other four groups as a training set; and then (iii) evaluate
the perplexity score of each procedure in the test set. We
repeat steps (ii)-(iii) five times using each of the five groups
as our test set. Each time, we compute three sets of perplexity
scores using bigram, trigram, and four-gram probabilities.
Finally, we cluster the computed perplexity scores into two
classes, anomalous and benign, using the Jenks natural breaks
optimization technique [31]. Table I summarizes various metric
scores for evaluating each of the three models.3

For anomaly detection, we desire high recall (true positives /
(true positives + false negatives)), because running anomalous
procedures could be disastrous. Our recall across all three
models is 1.0, indicating that all the models correctly classify
the three anomalies. From bigram to trigram, the number of
true negatives increases while the number of false positives
decreases, resulting in the improvement of accuracy, precision,
and F1-score metrics. The performance slightly degrades

3In Table I, weighted accuracy is computed by assigning a higher weight
(2×) to the true positive count over the true negatives count.

TABLE I

Metrics Bigram Trigram Four-gram

Accuracy 64% 84% 80%
Weighted accuracy 67.85% 85.71% 82.14%
Precision 0.25 0.43 0.38
F1 score 0.4 0.6 0.54
True positives (negatives) 3 (13) 3 (18) 3 (17)
False positives (negatives) 9 (0) 4 (0) 5 (0)

between trigrams and four-grams, suggesting that selecting
an ideal model size is nontrivial.

These experiments show that perplexity scores can be used
to classify unexpected procedure variations (RQ2). However,
our models raise too many false positives. We are guardedly
optimistic that a larger and more varied training dataset will
let us produce models that retain perfect recall, while reducing
the number of false positives.

VI. POWER DATASET ANALYSIS

The previous section suggests that we can likely build an
intrusion detection system by analyzing the communication
stream between the lab computer and the devices. However,
capturing that data requires a RATracer-like infrastructure and
the ability to modify the existing software infrastructure. While
we were able to do this for the Hein Lab, deploying such an
integrated system might not always be feasible. We collected a
power dataset to allow us to answer the question, RQ3, “Can
we use power monitoring to identify the same kinds of patterns
identified via command tracing to facilitate anomaly detection
in an unobtrusive fashion?”

Side-channel data such as power consumption can be
collected unobtrusively by attaching probes at power outlets or
even on the robot body itself. However, in our prototype, we
use RATracer and UR3e’s real-time monitoring API as a proxy
for such probes. While it is possible for us to gather power
data from a collection of robotic arms, during the course of
our data collection, the UR3e was the only robot arm with a
power monitoring API, so our dataset contains joint-specific
current profiles for each of the six joints in the UR3e only.

We conducted three sets of controlled experiments using
procedure types P2, P5, and P6 (see §IV for details).

P2 (Automated Solubility with N9 and UR3e) includes a
sequence of 58 commands, a majority of which are UR3e
move commands. Fig. 7(a) shows five portions of joint 1’s
current trace, corresponding to five different instances of the
move_joints() command. Each instance moves the robot
arm from location Li to Li+1, for i ∈ {0, 1, 2, 3, 4}. We
observe that the current trace for each command instance
is unique and that these unique patterns remain identical
across multiple iterations of this experiment. These results
suggest that while the command type alone does not correlate
with the current profile, the robot arm trajectories identified
by the command type and its arguments (e.g., location
endpoints) correlate strongly with the current profile. We test
this hypothesis by repeating the current experiment varying

6

0 5 10 15 20 25 30 35 40
Ticks (1 tick = 40 ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Cu

rre
nt

 (m
a)

L0-L1
L1-L2

L2-L3
L3-L4

L4-L5

(a) Different locations

0 50 100 150 200 250
Ticks (1 tick = 40 ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Cu
rre

nt
 (m

a)

NABH4
CSTI
GENTISTIC

(b) Different solids

0 20 40 60 80 100 120 140
Ticks (1 tick = 40 ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Cu
rre

nt
 (m

a)

100 mm/s
200 mm/s
250 mm/s

(c) Different velocities

0 100 200 300 400 500 600 700
Ticks (1 tick = 40 ms)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Cu
rre

nt
 (m

a)

20 g
500 g
1000 g

(d) Different weights

Fig. 7. UR3e joint 1 current profiles for four different scenarios. (a) The five curves show the current profile for five different instances of move_joint(),
each of which moves the robot arm from location Li to Li+1 for i ∈ {0, 1, 2, 3, 4}. Each curve is a subset of the time series of currents from the procedure
P2. (b) The time series of current measurements from a subset of procedure P2 during with the UR3e picks up a vial from the storage rack, places it in the
Quantos, and then returns to the home position. The three curves correspond to selecting three different solids. (c) The time series of currents from executions
of procedure (P5) moving the arm at different velocities. (d) The time series of currents from procedure (P6) with the arm carrying different weights.

the solid used in procedure P2. As shown in Fig. 7(b), the
current profiles do not vary as the solid changes (the Pearson
correlation coefficient exceeds 0.97), supporting the claim that
the variation in the power consumption is due to the specific
robot arm trajectories.

Next, we investigate the effect of robot arm velocities on
the current usage. We execute a procedure P5 where the robot
arm is moved between two specified locations with varying
linear velocities while keeping all other arguments (e.g., angle
and positions) constant. Fig. 7(c) illustrates the current traces
on joint 1 for velocities 100 mm/s, 200 mm/s, and 250 mm/s.
The current traces have similar shapes in each configuration,
i.e., same number of peaks, similar slopes and gradients, and the
amplitudes are proportional to the velocity. However, the curve
for 100 mm/s is “stretched”, because at low velocity, the robot
arm requires more time to move from one location to another.

Finally, we execute P6, where the robot arm moves payloads
of different weights from one location to another. Fig. 7(d)
illustrates the current traces on joint 1 for weights 20 g, 500 g,
and 1000 g. As expected, lifting heavier objects draws more
power. Typically, weights are not specified as part of command
arguments; they are simply an artifact of the object lifted by
the arm. A power-based IDS can detect varying weights in
the power profile, while a command-based IDS would need
additional information to make such a determination.

While the results shown here are for only one of the six UR3e
joints, we observe similar correlations in the current profiles
collected from other five joints. This data provides compelling
evidence that the power traces do reveal important information
about the particular procedure being run and features such as
velocity and payload weights, the latter of which is unavailable
from other means.

VII. CONCLUSION AND FUTURE WORK

Security is of grave concern in Industry 4.0 and IIoT
deployments. The risk of security attacks is potentially high,
because device controllers and lab workstations are routinely
connected to the Internet. In the worst case, if the CPS devices
in these deployments are maliciously controlled, they can harm
people and/or their surroundings. This is particularly concerning

in domains such as chemical sciences, where CPS devices such
as robot arms are surrounded by potentially lethal chemicals,
and a catastrophic outcome is just one misstep away.

We are collaborating with the Hein Lab, a research lab
that studies methods to fully automate chemical synthesis
procedures, to design and deploy a multi-level defense system
for the CPS devices in their lab. Using RATracer, we showed
the feasibility of deploying a middlebox-based design that
intercepts all communication between the lab computer and the
CPS devices. We open-source our Robotic Arm Dataset (RAD),
which is the first of its kind, as it captures automation exper-
iments spanning multiple heterogeneous automation devices.
Finally, we presented two sets of preliminary analyses based
on the command and power data in RAD to infer procedure
types, command parameters, and experimental contexts.

However, we are still a long way from deploying a full-
fledged IDS in the Hein Lab. As the number of devices grows
from five to fifty (as is expected in the Hein Lab), a single
middlebox will not suffice. While a single middlebox can easily
scale to tens of devices, we expect space and cabling issues
to be a more significant challenge. Expansion will therefore
require, potentially, a distributed architecture with multiple
middleboxes in smaller form factors.

Modeling robot commands as a language and using NLP
techniques for intrusion detection is a new approach, with
no precedent in the robotics literature. We therefore need to
investigate a wider array of techniques that are best suited for
our dataset and objectives. Our immediate goals are to bring
command arguments into the fold, find ways to automatically
generate labels, and evaluate models such as long short-term
memory [30] (which have been successfully deployed to model
time series data in many domains).

We also plan to conduct a more comprehensive study of
side channels by monitoring the power usage of all devices
in the lab. Recent results [28, 29] showing how to classify
device-specific power usages from the main power usage inside
a room are encouraging. Finally, while RAD is novel, we need
to generate many more anomalous traces for testing, or for
benchmarking other IDS. However, doing so in a manner that
does not destroy equipment remains an open question.

7

ACKNOWLEDGEMENTS

We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC) and
the UBC Science STAIR Grant. We also acknowledge the
contributions of other Hein Lab members, Veronica Lai, Tara
Zepel, Daniel Griffin, Jonathan Reifman, Shad Grunert, Lars
P.E. Yunker, Sebastian Steiner, Henry Situ, Fan Yang, and
Paloma L. Prieto, to the development of the automated and
crystal solubility procedures.

REFERENCES

[1] “Kortex Gazebo,” https://github.com/Kinovarobotics/ros kortex/
tree/noetic-devel/kortex gazebo.

[2] “UR3 Unity Simulation,” https://github.com/tonydle/ur3 unity
sim.

[3] “Intrusion detection system for cyber-manufacturing system.”
[4] “Fsv2-series,” https://docs.microsoft.com/en-us/azure/

virtual-machines/fsv2-series.
[5] “Fisher Scientific,” https://www.fishersci.com.
[6] “Command Data Analysis,” https://github.com/ubc-systopia/

dsn-2022-rad-artifact/tree/main/analysis/Dataset
CommandAnalysis.

[7] “Power Data Analysis,” https://github.com/ubc-systopia/
dsn-2022-rad-artifact/tree/main/analysis/Dataset
PowerAnalysis.

[8] “Python Library to Control the Robots from Universal Robots,”
https://github.com/SintefManufacturing/python-urx.

[9] “Code for Hein Lab’s Automated Solubility Experiment,”
https://gitlab.com/heingroup/robotic security experiments/-/
blob/master/n9/experiments/main solubility.py.

[10] “Code for Hein Lab’s Crystal Solubility Experiment,” https:
//gitlab.com/heingroup/robotic security experiments/-/blob/
master/n9/experiments/main crystal solubility profiling.py.

[11] “Serial Library that uses the FTDI Driver for More Reliable
Serial Communications,” https://gitlab.com/ada-chem/ftdi serial.

[12] “Code repositories for the Hein Group at the University of
British Columbia,” https://gitlab.com/heingroup.

[13] “Quantos Python API Wrapper,” https://gitlab.com/heingroup/
mtbalance.

[14] “Code for UR3e Movements with Different Payload Weights,”
https://gitlab.com/heingroup/robotic security experiments/-/
blob/master/ur/tests/ur different weights.py.

[15] “Hein Lab,” http://heinlab.com/.
[16] “IKA,” https://www.ika.com.
[17] “Mettler Toledo,” https://www.mt.com.
[18] “North Robotics,” https://www.northrobotics.com.
[19] “A Library that Routes all Communication to the N9 and

UR3 Robots via a Secure Middlebox,” https://pypi.org/project/
niraapad/.

[20] “pySerial’s documentation,” https://pythonhosted.org/pyserial/.
[21] “socket – Low-level networking interface,” https://docs.python.

org/3/library/socket.html.
[22] “RosyChem Lab Robotic Arm Dataset,” https://github.com/

ubc-systopia/dsn-2022-rad-artifact.
[23] “Robotic Arm Dataset (RAD) Features Description,”

https://github.com/ubc-systopia/dsn-2022-rad-artifact/blob/
main/docs/RAD Description.pdf.

[24] “Tecan,” https://www.tecan.com.
[25] “Universal Robots,” https://www.universal-robots.com.
[26] P. F. Brown, V. J. Della Pietra, P. V. Desouza, J. C. Lai, and

R. L. Mercer, “Class-Based n-gram Models of Natural Language,”
Computational linguistics, vol. 18, no. 4, pp. 467–480, 1992.

[27] T. B. Duman, B. Bayram, and G. İnce, “Acoustic Anomaly
Detection Using Convolutional autoencoders in Industrial Pro-

cesses,” in 14th International Conference on Soft Computing
Models in Industrial and Environmental Applications, 2019.

[28] J. Froehlich, E. Larson, S. Gupta, G. Cohn, M. Reynolds, and
S. Patel, “Disaggregated End-Use Energy Sensing for the Smart
Grid,” IEEE Pervasive Computing, vol. 10, no. 1, pp. 28–39,
2010.

[29] S. Gupta, M. S. Reynolds, and S. N. Patel, “ElectriSense:
Single-Point Sensing Using EMI for Electrical Event Detection
and Classification in the Home,” in 12th ACM International
Conference on Ubiquitous Computing, 2010.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] G. F. Jenks, “The Data Model Concept in Statistical Mapping,”
International Yearbook of Cartography, vol. 7, pp. 186–190,
1967.

[32] H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, R. L. Callan,
A. Yeredor, M. Prvulovic, and A. Zajić, “IDEA: Intrusion
Detection through Electromagnetic-Signal Analysis for Critical
Embedded and Cyber-Physical Systems,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 3, pp. 1150–
1163, 2019.

[33] B. Leporowski, D. Tola, C. Hansen, and A. Iosifidis, “AURSAD:
Universal Robot Screwdriving Anomaly Detection Dataset,”
arXiv preprint arXiv:2102.01409, 2021.

[34] ——, “Detecting Faults during Automatic Screwdriving: A
Dataset and Use Case of Anomaly Detection for Automatic
Screwdriving,” in Towards Sustainable Customization: Bridging
Smart Products and Manufacturing Systems. Springer, 2021,
pp. 224–232.

[35] W. McKinney, “Data Structures for Statistical Computing in
Python,” in 9th Python in Science Conference, 2010.

[36] V. Narayanan and R. B. Bobba, “Learning Based Anomaly
Detection for Industrial Arm Applications ,” in 4th ACM
Workshop on Cyber-Physical Systems Security and PrivaCy,
2018.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[38] H. Pu, L. He, C. Zhao, D. K. Yau, P. Cheng, and J. Chen,
“Detecting Replay Attacks against Industrial Robots via Power
Fingerprinting,” in 18th Conference on Embedded Networked
Sensor Systems, 2020.

[39] G. Salton and C. Buckley, “Term-Weighting Approaches in Au-
tomatic Text Retrieval,” Information Processing & Management,
vol. 24, no. 5, pp. 513–523, 1988.

[40] P. Shiri, V. Lai, T. Zepel, D. Griffin, J. Reifman, S. Clark,
S. Grunert, L. P. Yunker, S. Steiner, H. Situ et al., “Automated
Solubility Screening Platform Using Computer Vision,” Iscience,
vol. 24, no. 3, p. 102176, 2021.

[41] A. Vijayan, H. Singanamala, B. Nair, C. Medini, C. Nutakki, and
S. Diwakar, “Classification of Robotic Arm Movement using
SVM and Naı̈ve Bayes Classifiers,” in 3rd IEEE International
Conference on Innovative Computing Technology, 2013.

[42] M. Wu, “Intrusion Detection for Cyber-Physical Attacks in
Cyber-Manufacturing System,” Ph.D. dissertation, Syracuse
University, 2019.

[43] M. Wu and Y. B. Moon, “Alert Correlation for Detecting Cyber-
Manufacturing Attacks and Intrusions,” Journal of Computing
and Information Science in Engineering, vol. 20, no. 1, p. 011004,
2020.

[44] Y. Zuo, W. Qiu, L. Xie, F. Zhong, Y. Wang, and A. L.
Yuille, “CRAVES: Controlling Robotic Arm with a Vision-based
Economic System,” in 32nd IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

8

https://github.com/Kinovarobotics/ros_kortex/tree/noetic-devel/kortex_gazebo
https://github.com/Kinovarobotics/ros_kortex/tree/noetic-devel/kortex_gazebo
https://github.com/tonydle/ur3_unity_sim
https://github.com/tonydle/ur3_unity_sim
https://docs.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://www.fishersci.com
https://github.com/ubc-systopia/dsn-2022-rad-artifact/tree/main/analysis/Dataset_CommandAnalysis
https://github.com/ubc-systopia/dsn-2022-rad-artifact/tree/main/analysis/Dataset_CommandAnalysis
https://github.com/ubc-systopia/dsn-2022-rad-artifact/tree/main/analysis/Dataset_CommandAnalysis
https://github.com/ubc-systopia/dsn-2022-rad-artifact/tree/main/analysis/Dataset_PowerAnalysis
https://github.com/ubc-systopia/dsn-2022-rad-artifact/tree/main/analysis/Dataset_PowerAnalysis
https://github.com/ubc-systopia/dsn-2022-rad-artifact/tree/main/analysis/Dataset_PowerAnalysis
https://github.com/SintefManufacturing/python-urx
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/n9/experiments/main_solubility.py
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/n9/experiments/main_solubility.py
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/n9/experiments/main_crystal_solubility_profiling.py
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/n9/experiments/main_crystal_solubility_profiling.py
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/n9/experiments/main_crystal_solubility_profiling.py
https://gitlab.com/ada-chem/ftdi_serial
https://gitlab.com/heingroup
https://gitlab.com/heingroup/mtbalance
https://gitlab.com/heingroup/mtbalance
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/ur/tests/ur_different_weights.py
https://gitlab.com/heingroup/robotic_security_experiments/-/blob/master/ur/tests/ur_different_weights.py
http://heinlab.com/
https://www.ika.com
https://www.mt.com
https://www.northrobotics.com
https://pypi.org/project/niraapad/
https://pypi.org/project/niraapad/
https://pythonhosted.org/pyserial/
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://github.com/ubc-systopia/dsn-2022-rad-artifact
https://github.com/ubc-systopia/dsn-2022-rad-artifact
https://github.com/ubc-systopia/dsn-2022-rad-artifact/blob/main/docs/RAD_Description.pdf
https://github.com/ubc-systopia/dsn-2022-rad-artifact/blob/main/docs/RAD_Description.pdf
https://www.tecan.com
https://www.universal-robots.com

	Introduction
	Related Work
	RATracer
	Robotic Arm Dataset
	Command Dataset Analysis
	RQ1: Identifying Procedures
	RQ2: Identifying Unexpected Variations

	Power Dataset Analysis
	Conclusion and Future Work

