
International Journal of Critical Infrastructure Protection 33 (2021) 100430

Contents lists available at ScienceDirect

International Journal of Critical Infrastructure Protection

journal homepage: www.elsevier.com/locate/ijcip

ARTINALI#: An Efficient Intrusion Detection Technique for

Resource-Constraine d Cyb er-Physical Systems

Maryam Raiyat Aliabadi a , Margo Seltzer b , Mojtaba Vahidi Asl a , ∗, Ramak Ghavamizadeh

a

a Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
b Faculty of Computer Science, University of British Columbia, Vancouver, Canada

a r t i c l e i n f o

Article history:

Received 12 October 2020

Revised 8 January 2021

Accepted 27 February 2021

Available online 17 March 2021

Keywords:

Intrusion detection system

Cyber-physical system

Security

Accuracy

Efficiency

Feature selection

a b s t r a c t

Cyber-Physical Systems (CPSes) are integrated into security-critical infrastructures such as medical de-

vices, autonomous vehicles and smart grids. Unfortunately, the pervasiveness and network accessibility

of these systems and their relative lack of security measures make them attractive targets for attacks.

This makes building Intrusion Detection System (IDS) for CPSes a necessity. However, detecting intru-

sions requires collecting information about a system’s internal workings; this can be expensive both in

runtime and memory consumption. According to prior research, fine-grain monitoring of a CPS maxi-

mizes the chance of intrusion detection but incurs overhead that can exceed the resource constraints of

these systems. The objective of this study is to propose a solution for adapting IDSes for deployment on

resource-limited CPSes without losing detection accuracy.

We propose ARTINALI#; a Bayesian-based search and score technique that identifies the critical points

at which to instrument a CPS. Given a set of security monitors that observe run-time behavior of the

system, a set of specifications that verify the correct behavior of the system, and statistics gathered from

fault injection, ARTINALI# discovers a small set of locations and a rich set of specifications that yield full

attack coverage with low (memory and time) overhead. We deploy ARTINALI# to construct an IDS for

two CPSes: a smart meter and a smart artificial pancreas. We demonstrate that our technique reduces

the number of security monitors by 64% on average, leading to 52% and 69% reductions in memory and

runtime overhead respectively, while still detecting over 98% of emulated attacks, on average. ARTINALI#

enables the IDSes to be applicable to a wide range of CPS systems with different resource capacities.

In addition, it accelerates the attack detection process which is significantly essential for safety-critical

systems.

© 2021 Published by Elsevier B.V.

1

c

a

a

c

f

t

m

t

m

g

[

o

b

i

h

f

I

i

c

i

h

1

. Introduction

A CPS is the key element of the Internet of Things (IoT). It is

omposed of a cyber system, a physical system, sensors, actuators,

nd networking components, by which it integrates computations

nd physical environment. The cyber system (aka control program)

an control physical environment via actuators, and can receive

eedback from physical environment via sensors in real-time. As

he interaction between the physical domain and the cyber do-

ain increases, the physical system becomes more susceptible to

he security vulnerabilities that might exist in the control program
∗ Corresponding author.

E-mail addresses: m_raiyataliabadi@sbu.ac.ir (M. Raiyat Aliabadi),

seltzer@cs.ubc.ca (M. Seltzer), mo_vahidi@sbu.ac.ir (M. Vahidi Asl), r-

havami@sbu.ac.ir (R. Ghavamizadeh).

S

s

a

[

a

ttps://doi.org/10.1016/j.ijcip.2021.100430

874-5482/© 2021 Published by Elsevier B.V.
1,2] . Therefore, the security of the entire system strongly depends

n the security of the CPS’ control program. Recently, CPSes have

een widely deployed in critical infrastructure such as smart med-

cal devices [3] , robots [4] , smart grids [5] , and Autonomous Ve-

icles [6–8] . These systems perform sensitive tasks and are there-

ore potential targets for cyberattack. However, the rapid growth of

oT has led to deployment of CPSes without support for enforcing

mportant security properties

Intrusion Detection Systems (IDSes) are used to monitor

omputer systems and detect security attacks. Typical IDSes fall

nto two major categories: Signature-based, and behavior-based.

ignature-based IDSes compare the real-time behavior of the

ystem against known security attacks. As they rely on known

ttack models (signatures) they cannot detect unknown attacks

9] . This is significantly important for CPSes since they are working

utonomously for long periods of time, and hence are difficult to

https://doi.org/10.1016/j.ijcip.2021.100430
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijcip
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcip.2021.100430&domain=pdf
mailto:m_raiyataliabadi@sbu.ac.ir
mailto:mseltzer@cs.ubc.ca
mailto:mo_vahidi@sbu.ac.ir
mailto:r-ghavami@sbu.ac.ir
https://doi.org/10.1016/j.ijcip.2021.100430

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

b

I

i

a

c

a

d

b

a

s

s

f

t

m

r

s

t

l

s

a

t

H

i

C

I

t

a

c

c

t

s

c

o

o

h

f

C

t

s

T

m

i

s

t

l

m

c

t

k

s

s

t

p

s

i

s

m

b

a

a

D

h

t

c

c

t

t

t

m

t

t

s

g

s

o

A

r

f

o

t

s

[

B

W

t

a

c

r

e

C

s

attacks.
e interrupted for frequently patching or upgrading in the field.

n contrast, behavior-based systems detect intrusions by watch-

ng a system’s dynamic execution to identify suspect behavior

nd are able to detect both known and unknown attacks. We

an further divide behavior-based systems into anomaly-based

nd specification-based according to how suspect behavior is

efined. In an anomaly-based IDS, we build a model of normal

ehavior and flag deviations from that model as intrusions; in

 specification-based IDS, we assume that we have the correct

pecifications and we look for violations of those specifications.

Specification based IDSes are proposed as the best fit for CPS

ecurity [10–13] . A specification-based IDS implements two core

unctions: data monitoring and data analysis . Data monitoring is

he process by which an IDS observes system behaviour and accu-

ulates data logs. Data analysis is the process by which an IDS pe-

iodically analyzes the collected logs and checks them against the

pecifications derived from the CPS’s correct behavior. Data moni-

oring can be performed at host level (host-based IDS) or network

evel (network-based IDS). Host-based IDS is tailored to the CPS

ystem and monitors operations of CPS application, and application

nd operating system. Network-based IDS; however, is attached to

he network, and monitors all the incoming and outgoing traffic.

ost-based IDS provide more visibility than network-based IDS

nto the individual CPS applications, thus is able to quickly detect

PS misbehavior. Another important advantage of using host-based

DS is distributed control over attack detection; this is especially

he case for high-volume configurations like smart grids.

The locations in the system where data monitoring happens

re called security monitors. IDSes depend on the information

ollected by the security monitors, so it is important that they

apture adequate information about the run-time behaviour of

he system. However, smart security solutions for CPSes need to

upport light-weight intelligence. On one hand, deployment of se-

urity monitors using complete information maximizes the chance

f attack detection at the cost of memory usage and performance

verhead, which may limit scalability. On the other hand, CPSes

ave specific constraints that make the current IDSes challenging

or them to deploy. These constraints are:

• Limited memory: An IDS that is tailored to a CPS system

should satisfy resource constraints. For instance, an essential

module of an IDS is a pre-trained model (i.e., a set of mined

specifications) that represents the correct behavior of the CPS.

In some cases, the available memory is not even sufficient to

hold this model; further, a large number of security monitors

create large log files, that, in turn, may make the system run

out of memory. These scenarios make many existing intrusion

detection techniques inapplicable to CPSes [5] .

• Real-time requirements: Real-time CPS applications place

strict constraints on processing and reaction time. For exam-

ple, self-driving cars need to quickly detect objects and make

decisions on lane or speed changes or detecting pedestrians.

From a security point of view, taking the real-time require-

ments into account is vital as the IDS performance overhead

must not delay the expected response time of the system; par-

ticularly, in decision-making scenarios. Hence, the performance

overhead must be small enough to address the CPS real-time

constraints.

Due to these constraints, existing IDSes are not a good fit for

PS platforms. There has been a lot of research on intrusion de-

ection techniques using static analysis [14–17] , dynamic analy-

is [18–21] , artificial intelligence [22–24] , and provenance [25–27] .

he static analysis-based specification mining techniques build a

odel of a system based on code analysis. These techniques are

nherently conservative and produce few false positives. However,

tatic analysis alone does not provide enough information about
2
he run-time behavior of the system, which in turn, produces a

ot of false negatives. Furthermore, these techniques generate large

odels, leading to high overheads, often exceeding the resource

onstraints of a CPS. Dynamic analysis-based specification mining

echniques; however, observe the run-time behavior. They log the

ey points of the program to infer a set of likely invariants (aka

pecifications). Dynamic analysis-based techniques follow the as-

umption that common behavior is correct behavior, and hence

heir mined specifications reflect the common behavior rather than

otential behavior like what is identified in static analysis. As most

oftware systems are not provided with adequate test-cases, there

s a chance that some execution paths are not seen when mining

pecifications. The result is a high false positive rate [28,29] , which

akes them challenging for mission-critical CPSes. Provenance-

ased approaches [27] are a particular instance of a dynamic-

nalysis-based approach. However, collecting data provenance in

 fine-grained setting imposes excessive runtime overhead [26] .

eep Learning (DL) algorithms are accurate for modeling the be-

avior of complex systems and detecting unknown attacks, but

hey consume a lot of memory, posing a problem for resource-

onstrained environments.

While there has been a significant amount of work on CPS se-

urity [10,30–32] , these techniques offer no systematic way to find

he best trade off between accuracy and efficiency. They reduce

he size of the model through coarse data monitoring, or they de-

ect only certain categories of attacks at run-time. As a result, their

odels do not guarantee full attack coverage of the intrusion de-

ection technique.

We formulate the problem of constructing an intrusion detec-

ion technique for CPSes as an optimization problem. Given a set of

pecifications defining correct behaviour of the CPS, a set of fine-

rained security monitors that observe the run-time behavior, and

tatistics gathered from fault injection, we discover a sparse subset

f security monitors that achieve full attack coverage. We present

RTINALI#: a greedy technique based on a feature selection algo-

ithm that uses a Bayesian network to predict the probability of

ull attack coverage given information from partial attack coverage

f security monitors. The use of Bayesian network along with fea-

ure selection has been shown to be effective to reduce dimen-

ionality in a variety of applications, including data set creation

33] , post-silicon validation [34] , and fault diagnosis [35] . We use

ayesian-based feature selection to build an efficient IDS for CPSes.

e use Bayesian inference as a scoring function in a feature selec-

ion algorithm to select a small subset of security monitors whose

ttack coverage exceeds a user-provided lower bound. Then, we

apture data from only these monitors to evaluate whether the IDS

un-time achieves high detection accuracy. To the best of our knowl-

dge, we are the first to design an intrusion detection technique for

PS systems with preserved detection accuracy under resource con-

traints . We make the following contributions:

• We present ARTINALI#, which discovers the core set of security

monitors and a rich set of specifications that yield high accu-

racy with low overhead.

• We deploy ARTINALI# in the context of ARTINALI, which is an

intrusion detection technique designed for CPS systems.

• We build an IDS prototype for two CPS systems, an advanced

metering infrastructure and a smart artificial pancreas.

• We evaluate our IDS on the two systems using arbitrary attacks

emulated by fault injection. We find that ARTINALI# exhibits

64% and 23% reduction in the number of security monitors

and specifications, respectively, which in turn, leads to 69% and

52% decrease in IDS runtime and space consumption, respec-

tively, while preserving 98% detection accuracy against arbitrary

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

S

c

g

n

d

A

w

a

2

H

d

2

m

n

m

t

a

a

D

t

s

D

G

i

[

fi

a

t

t

b

2

f

[

i

r

E

s

i

U

o

d

c

t

p

c

c

n

t

h

i

s

g

t

t

i

2

(

b

r

i

t

[

P

t

T

l

b

f

t

p

a

2

d

g

o

[

c

a

d

U

h

a

f

c

p

t

t

H

o

[

r

2

a

b

[

h

A

D

t

n

e

t

m

We organized the rest of the paper as follows:

ection 2 presents the intrusion detection techniques and their

urrent shortcomings for CPS systems. Section 3 presents back-

round material, including an overview of ARTINALI and Bayesian

etworks. In Section 4 , we present ARTINALI#. Section 5 intro-

uces our case studies and explains how to build an IDS using

RTINALI# and then outlines our experimental procedure. Finally,

e present an evaluation of our technique in the face of arbitrary

ttacks in Section 6 .

. Previous work

Prior research explored different intrusion detection techniques.

owever, these approaches have some the following limitations:

• They often detect only certain categories of known attacks at

run-time.

• They analyze only coarse-grain information, which affects

detection accuracy, especially for forensic analysis.

• They do not consider intrinsic code properties for attack

detection.

• They are not designed to take into account the resource

constraints of the underlying platform.

We explore related work in three broad areas: intrusion

etection systems, specification mining, and CPS security.

.1. Network-based IDS

Thakore et al. proposed a quantitative methodology to deter-

ine maximum-utility, cost-optimal deployments of monitors in

etworked distributed systems [36] . This work introduces three

etrics; cost, coverage and redundancy and uses them to quantify

he richness of monitor data with respect to intrusion detection

nd the associated cost with deployment. Their exact solutions

re, in general, computationally expensive. Grant et al. introduced

inv for capturing invariants between variables at various dis-

ributed nodes and for checking them at real-time using real-time

napshots [37] . However, their empirical evaluation indicated that

inv’s runtime grows exponentially with the number of nodes.

enge et al. developed a heuristic approach for intrusion detection

n a smart grid with respect to the available budget and bandwidth

38] . They designed two intrusion detection systems, where the

rst one optimally places IDS modules on communication paths,

nd the second one provides resilient communications. Although

hese techniques are useful for efficient monitoring of network

raffic, they are not suitable for deployment in host-based IDSes,

ecause they are all too resource intensive.

.2. Host-based IDS

Murtaza et al. discover the use of trace abstraction techniques

or decreasing the execution time of IDS without losing accuracy

39] . They consider system call traces as traces of kernel module

nteractions and use the resulting abstract traces as input to cur-

ent intrusion detection techniques, such as Sequence Time-Delay

mbedding and Hidden Markov Models. Farooqui et al. combine

ymbolic execution and dynamic instrumentation to decrease the

nstrumentation points and thus performance overheads [40] .

sing this approach, they show a decrease in kernel runtime

verheads in GPUes. Farid et al. presented a host-based intrusion

etection technique for small IoT devices respecting their memory

onstraints [5] . They built an IDS that maximizes coverage of

he security properties using two techniques. The first technique

erforms security analysis at the design level based on model

hecking. The second technique includes security analysis at the

ode level using symbolic ececusion. However, their technique is
3
ot scalable to complex CPSes with large code bases. An Inline Au-

omation Model (IAM) approach for efficient intrusion detection in

ost-based IDSes was presented by Gopalakrishna et al. [41] . IAM

s a static analysis-based intrusion detection technique that con-

tructs a control flow graph (CFG) for each user function in a pro-

ram. The run-time monitor is implemented as a library interposi-

ion method, that intercepts library calls and checks them against

he model. This approach incurs low overhead, however, monitor-

ng only the library interface does not produce high accuracy.

.3. Artificial intelligence-based IDS

Recently, Machine Learning (ML), particularly, Deep Learning

DL) techniques, have been introduced to detect and classify cy-

er attacks [22–24,42,43] . For example, Yang et al. present a deep

einforcement learning scheme to defend a smart grid against data

ntegrity attacks [43] . Chen et al. present HeNet, a DL technique

o classify fine-grained control flow traces for malware detection

24] . HeNet achieves high accuracy on detecting Return Oriented

rogramming (ROP) attacks against AdobeR Reader. A LSTM-based

echnique for anomaly detection was introduced by Kim et al. [22] .

hey capture the semantic meaning of each system call and its re-

ation to other system calls. Moreover, they proposed an ensem-

le method that can better fit IDS design by focusing on lowering

alse alarm rates. DL techniques are highly accurate for modeling

he software and detecting unknown attacks. However, as shown in

rior work [44–46] , the adversarial characteristics of CPS systems

nd DL resource requirement make their integration challenging.

.4. Provenance-based IDS

Provenance is a metadata describing the complete journey of

ata and processes [47] . Provenance is useful in auditing, debug-

ing, and forensics investigation. There is a considerable amount

f work on provenance-based intrusion detection techniques

25–27,47,48] . Nonetheless, the fusion of provenance with CPS se-

urity has not yet been explored [47] . Han et al. present UNICORN,

 host-based anomaly detection system that uses whole-system

ata provenance to detect advanced persistent threats [25] .

NICORN discovers provenance graphs that provide adequate

istorical information to detect malicious activities with high

ccuracy. FRAPpuccino [48] is another provenance-based approach

or detecting unusual behavior in programs running on PaaS

louds. Palyvos et al. [26] present GeneaLog, a highly granular data

rovenance technique that takes advantage of cross-layer proper-

ies of the software stack, that incurs a minimal overhead. To keep

rack of data in CPS systems, provenance can play a critical role.

owever, collecting fine-grained data provenance is an expensive

peration that imposes a significant time and space overheads

26,49,50] . It might be applicable for servers but is prohibitive for

esource-constrained CPSes.

.5. Static specification mining

Static specification mining includes a family of techniques that

nalyze source code to mine specifications and deduce correct

ehavior of the system [14–17,51] . For example, Karim et al.

14] present synchronized pushdown systems (SPDS), and show

ow SPDS discovers security vulnerabilities due to misusing Crypto

PIs in Android apps and Maven Central repositories. Wagner and

ean [51] also extract an automaton model from source code for

heir FSM-based intrusion detection system. They introduced a

on-deterministic pushdown automaton (NDPDA), which builds an

xtensive model of the software system based on system calls. Al-

hough NDPDA show good accuracy, they are slow due to high

emory overhead. Giffen et al. [17] propose the Dyck model, based

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

o

s

n

2

s

[

t

o

i

I

b

D

u

i

T

a

G

t

w

r

t

f

h

t

d

T

C

2

t

[

f

f

p

a

c

c

y

f

c

c

l

i

I

[

a

r

c

C

a

p

h

3

3

g

I

d

t

c

e

t

n

i

c

h

3

w

t

t

i

a

t

i

g

r

t

i

d

c

b

y

y

a

F

P

a

F

f

m

p

c

t

i

4

n static analysis of source code. Although they could remove

ome of the false negatives they increased the size of the model

oticeably.

.6. Dynamic specification mining

Dynamic specification mining techniques exploit various

ystem execution traces to discover implicit program rules

18,19,21,52–55] . For example, Daikon is a dynamic analysis-based

echnique that derives (likely) invariants representing constraints

n data value relations [28] . DIDUCE [56] combines data invariant

nference and checking in a single tool for fault diagnosis purposes.

t is not only able to dynamically monitor and check software,

ut also scales dynamic invariant detection to large programs.

ySy [57] combines the advantages of dynamic invariant inference

sing Daikon and static analysis using symbolic execution, result-

ng in inferring a more accurate invariant set than that of Daikon.

exada [29] and Perracotta [58] derive temporal logic proposition,

nd captures sequences of events via tracking dynamic traces. The

K-Tail algorithm combines data invariants and temporal specifica-

ions and represents sequences of method calls that are annotated

ith data [59] . Perfume models system properties based on

esource consumption [60] . It integrates event relations and their

ime constraints in a model. While the current techniques are use-

ul for modeling one or two important dimensions of a system be-

avior, Aliabadi et al. [10] introduce a dynamic specification mining

echnique that mines specifications along the three dimensions of

ata, event, and time, and generates a 3D model for the system.

his technique is highly accurate for security attack detection in

PSes, but incurs noticeable overheads for complex CPS platforms.

.7. CPS security solutions

During recent years, CPS security has received a lot of at-

ention due to the ubiquity and criticality of these systems

10,30–32] . Carreon et al. [31] present a probabilistic formulation

or detecting malware by monitoring the internal timing of the dif-

erent components of the system. They evaluate their model on a

acemaker using three known attacks [61] . Bezemskij et al. present

n approach based on Bayesian networks that processes data re-

eived from robot sensors to detect attacks on cyber or the physi-

al systems [62] . Zimmer et al. [32] develop an IDS based on anal-

sis of the execution time of tasks in real-time CPSes and use it

or detecting code injection attacks. They estimate worst-case exe-

ution time (WCET) using static analysis of portions of the source

ode. The study discusses three instrumentation strategies that al-

ow monitoring of the execution time of tasks without compromis-

ng real-time performance. Deng et al. present an anomaly-based

DS for IoT networks using fuzzy c-means clustering (FCM) and PCA

30] . To reduce memory usage, they use PCA for feature extraction

nd reduction. Overall, the way that these techniques approach the

esource limitation challenge in CPSes reduces their detection ac-

uracy. They either do not fully utilize intrinsic code properties of

PS systems for attack detection or are designed to detect only

 subset of known attacks. Moreover, none of these techniques

ropose a systematic way to minimize overheads, while obtaining

igh detection accuracy against targeted and arbitrary attacks.

. Background

.1. ARTINALI

ARTINALI 1 is a dynamic specification mining technique that

enerates models of CPS correct behavior for specification-based
1 A Real-Time-specific Invariant iNference ALgorIthm. I

4
DSes [10] . ARTINALI models the security policy of a system by

efining the set of specifications that must hold true during run

ime. A specification, or interchangeably an invariant, is a logical

ondition that is preserved at a particular set of program points,

,g., the insulin dosage taken for a diabetic patient by a smart ar-

ificial pancreas never exceeds 3.5 units (Basel ≤ 3.5).

ARTINALI identifies six major categories of invariants that are

eeded to verify the fundamental security properties of a CPS:

• Data invariant: captures the expected distribution of values of

data variables during correct execution [10] .

• Event invariant: captures the correct sequence of the events’ oc-

currence [10] .

• Time Invariant: captures the correct time boundaries of an event

[10] .

• Data per Event (D | E) Invariant: captures the data invariant that

is preserved within specific event [10] .

• Event per Time (E| T) Invariant: captures the constraints over

event and time. It represents the boundaries of transition times

from one event to another in an event sequence [10] .

• Data per Time (D | T) Invariant: captures the constraints over data

and time. It represents the data invariant as a function of time

[10] .

ARTINALI develops a model of a system’s behavior by analyz-

ng the rich data captured from full instrumentation of the CPS

ode. Unfortunately, this full instrumentation leads to high over-

ead (quantified in Section 6).

.2. Bayesian network

We present a brief overview of Bayesian Networks (BNs), which

ill be used in Section 4 . BNs model the joint distribution of sta-

istically dependent random variables. Learning and inference are

he two main characteristics associated with BNs [63] . The former

nvolves the ability to capture the causal dependence among the

vailable information (e.g., a set of discrete measurements), while

he latter allows one to extract hidden information without know-

ng the parametric form of the model. A BN is a directed acyclic

raph (DAG) with two types of components: A) nodes, which

epresent random variables, and edges, representing the condi-

ional dependencies between nodes. B) The conditional probabil-

ty p(y i | pa (y i)) of each node y i given its parents pa (y i) , which is

escribed by a conditional probability table (CPT) [61] . These two

omponents are essential to compute the joint probability distri-

ution over all nodes of the network. Given a network with nodes

 = y 1 , y 2 , . . . , y n , we compute the joint probability distribution of

 using the following equation:

p(y) = p(y 1 , y 2 , . . . , y n) = �p(y i | pa (y i))

Fig. 1 shows a Bayesian network. It represents a joint prob-

bility distribution over the random variables Age(A), Gender(G),

ood intake(F), and Diabetes(D), broken down into distributions

 (A) , P (G) , P (F | A, G) and P (D | F) . Having the DAG and CPTs, we are

ble to compute any user-specified queries. e.g., P (D = T rue | G =
 emale) .

ARTINALI# uses Bayesian networks both for learning and in-

erence. It first learns the correlations among security monitor

easurements in the form of a DAG and CPTs . Next, it computes

robabilistic answers to user specified queries about IDS attack

overage. For example, a user may seek the joint distribution of

he subsets of security monitors based on their prediction power

n attack detection.

. Methodology

We present a systematic way to find a good trade-off between

DS attack coverage and CPS resource constraints . First, we present

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Fig. 1. A Bayesian network. It is a directed acyclic graph; a directed edge from a

parent to a child identifies that the parent (source of the edge) is a cause for the

child (destination of the edge). For example, food intake is a parent for diabetes .

Having the above DAG and CPTs, we are able to compute any user-specified queries.

e.g., P(D = T rue | G = F emale) .

o

g

4

a

m

4

a

s

n

e

A

a

fi

t

a

a

c

w

b

o

t

s

c

B

s

m

a

s

P

4

B

f

T

p

p

n

(

t

f

t

t

w

u

o

t

a

a

t

s

a

l

a

c

s

h

s

n

4

b

f

c

t

a

(

a

d

a

e

ur problem formulation. Second, we introduce the ARTINALI# al-

orithm as our solution.

.1. Problem formulation

We formulate the problem of constructing an IDS for a CPS as

n optimization problem. We define the following terms in the for-

ulation:

• We let Z(�, �) to be an IDS defined over a set of security mon-

itors � and a set of invariants � for monitoring and detection

purposes, respectively. We denote the (memory and time) over-

head of IDS Z(�, �) by | Z(�, �) | .
• We further let E, D, and T denote the subsets of security mon-

itors corresponding to events, data variables and timestamps,

respectively. Thus, � = E
⋃

D

⋃

T .

• We define � as the set of m invariants (specifications) that

must hold to verify the correctness of the CPS program. Each

of the invariants φi ∈ � is defined over some of E, D and T .

• We define λφi
to be a set of security monitors whose values are

necessary to evaluate the invariant φi .

• We define u (λφi
) to be the attack coverage provided by the in-

variant φi and thus by the security monitors λφi
.

• U : 2 n � −→ R is an attack coverage function defined over the se-

curity monitors. Attack coverage is defined as the detection ac-

curacy of the IDS over a set of attacks. Overall, we have n se-

curity monitors and m invariants. Thus, the real value U(�) = ⋃ m

i =1 u (λφi
) , denotes the IDS full attack coverage, where the set

� =

⋃ m

i =1 λφi
, denotes all security monitors that must be ob-

served so that full attack coverage is achieved.

• We let μ denote the lower bound attack coverage, required by

the user.

• We want to construct an IDS based on the subset of security

monitors � ′ ⊆ � and a subset of invariants �′ ⊆ �, so that the

i) IDS attack coverage is greater or equal to the lower bound μ,

and ii) the overhead of the IDS is significantly lowered subject

to the constraint imposed by μ.

More formally, we define our goal as the following:

• We find Z(�′ , � ′), �′ ⊆ � and � ′ ⊆ � so that

U(� ′) ≥ μ ⇒ | Z(�′ , � ′) | � | Z(�, �) | (1)

.2. ARTINALI#

ARTINALI# is a greedy technique based on a feature selection

lgorithm that utilizes a Bayesian Network to score the subsets of

ecurity monitors based on their prediction power. Our Bayesian

etwork quantifies the richness of the security monitor data and

valuates the prediction power of every subset of monitors jointly.
5
RTINALI# runs as an optimizer between the model training phase

nd deployment phase of an intrusion detection system. It helps

nd the core set of security monitors that will produce high de-

ection accuracy with low overhead.

ARTINALI# requires a training data set containing information

bout security monitors and their contribution to detecting every

rbitrary attack. We build a training data set by enabling all se-

urity monitors and collecting the information about the extent to

hich each contributes to attack detection. We use code mutation-

ased fault injection to emulate attacks. We further assume that

ur training test cases are rich enough to include all possible at-

acks on a CPS platform. Our objective then is to identify a sparse

ubset of security monitors � ′ ⊆ � that likely provide full attack

overage.

We define a set of security monitor weights SM consisting of n

oolean variables s 1 , s 2 , . . . s i , . . . , s n that indicate whether the i th

ecurity monitor (ψ i) contributes to attack detection (i.e., s i = 1

eans ψ i ’s data is to detect an attack). We show this relationship

s � = SM ∗ �, where � is the transpose of � . We aim to find a

maller subset SM

′ ⊆ SM such that the following equation holds.

 (s i = 1 , ∀ s i ∈ SM| s j = 1 , ∀ s j ∈ SM

′) ≥ μ (2)

.2.1. Bayesian network

We use a Bayesian network learning algorithm to construct a

N that infers the probability of full coverage given information

rom partial coverage of security monitors on our crafted attacks.

o compute the conditional probability in Eq. 2 , we need to com-

ute the joint probability distribution over s 1 , s 2 ,, s n . We sam-

le the joint probability distribution over security monitors by run-

ing attacks on the CPS code and observing which specification

and hence which security monitor(s)) contribute to attack detec-

ion (as shown in Fig. 2). After running attacks, we collect the

requencies with which each security monitor contributes to at-

ack detection, and the actual combination of all security moni-

ors in each attack detection, i.e., the group of security monitors

hose data is required for detecting the same attack. It allows

s to compute the conditional probabilities (e.g., the probability

f the attack coverage of a monitor given that of the other moni-

ors, P (s i = 1 | s j = 1 ∧ s t = 1)) and capture dependence information

mong monitors. This data is required for learning the structure

nd conditional probability tables (CPTs) of a Bayesian Network

hat is able to approximate the joint probability distribution over

ecurity monitors. Since we are interested only in full attack cover-

ge, we add a full attack coverage node (fac) to the BN, which is re-

ated to all security monitors and indicates whether their weights

re all set to 1, i.e., P (fac=1) = P (s i = 1 , ∀ s i ∈ SM) . It allows us to

ompute the probability of full attack coverage fac = 1 given a sub-

et of monitors. This equation is used as a score function in our

ybrid feature selection algorithm. The goal is to compute a sparse

ubset of security monitors to make the attack coverage at the fac

ode equal or greater than μ.

.2.2. Hybrid feature selection

Feature selection in machine learning is useful for finding the

est feature set within high dimensional data sets [64] . The best

eature set contains the fewest number of dimensions that most

ontribute to predicting accuracy. ARTINALI# selects features to

ransform the original feature set into a smaller one to reduce the

mount of resources required. It seeks a small subset of features

security monitors) to build a model to use as a classifier.

Relevance of each feature for prediction alone does not imply

 relationship among features. According to previous work, a

eep connection between feature selection and causal mech-

nisms like Bayesian learning and inference leads to a more

ffective subset of features in practice [65,66] . Furthermore,

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Fig. 2. Data set creation for Bayesian learning using 11 attacks (A 1 − A 11) and 22 security monitors (s 1 − s 22).

f

s

p

p

t

m

i

i

t

t

a

s

p

w

s

i

a

t

e

E

w

o

w

a

m

s

i

d

a

r

e

b

4

t

i

w

o

s

t

a

�

�

s

t

g

o

p

Z

5

d

f

r

p

t

I

5

of the IDS?
eature selection methods such as Ridge/LASSO regression es-

entially aim to find the relevant features that maximize a

osterior distribution, but do not allow one to actually compute

osterior probabilities (E.g., attack detection probability). In con-

rast, Bayesian network learns the correlations among security

onitor measurements in the form of a DAG and CPTs. Next,

t computes probabilistic answers to user specified queries. So,

t not only finds the minimal relevant features, it allows one

o actually compute posterior probabilities (here, attack detec-

ion probability). For these reasons, we use Bayesian learning

nd inference in conjunction with feature selection to score the

ubsets of security monitors based on their attack detection

ower.

We design a hybrid approach using a standard sequential For-

ard Feature Selection (FFS) algorithm to select a small set of rich

ecurity monitors (Algorithm 1). We chose FFS due to its simplic-

ty and speed [64] . Using the hybrid algorithm, ARTINALI# greedily

dds security monitors sequentially to an empty set until the addi-

ion of more features does not increase the IDS attack coverage. In

ach step, we calculate the attack coverage probability formula in

q. 2 using BN for adding a feature (s x). If the probability increases,

e keep the added feature in the target set SM

′ = { s 1 , s 2 ,s x } ;
therwise, we start a backward pass on the current set SM

′ . First,

e add the feature s x to an empty temporary set (SM

′′ = { s x })
nd calculate the attack coverage probability. Second, we add each

ember of the current subset SM

′ one by one to the temporary

et SM

′′ and compute the attack coverage probability. In each step,

f probability increases we keep the added feature; otherwise, we

rop it. Third, we choose the set with smallest size between SM

′
nd SM

′′ and continue the hybrid algorithm with un-visited secu-

ity monitors. Once the probability exceeds the lower bound cov-

rage μ, a small set of security monitors with a good coverage had

een identified.

.2.3. Configure the IDS

Once the small subset of security monitor weights SM

′ is iden-

ified, we are able to compute the target subset of security mon-

tors � ′ using Eq. 3 . Recall that the weights have binary values,

here s i = 1 means that the monitor ψ i should be instrumented

n the CPS program and s = 0 denotes that ψ should not be in-
i i

6
trumented. We also map the target set of security monitors back

o the specification set to shrink the specification space and to

chieve the target set of specifications �′ using Eq. 4 .

′ = SM

′ ∗ � (3)

′ = { φi |
m ⋃

i =1

λφi
= � ′ } (4)

We then configure the IDS based on such target sets, i.e., we in-

trument only the locations defined by target security monitors � ′
o collect logs and monitor the CPS behavior. Then we use the tar-

et specification set �′ as a base model in our IDS. ARTINALI# not

nly reduces memory usage, but speeds up the intrusion detection

rocess. Furthermore, it preserves full attack coverage of the IDS

(� ′ , �′) with high probability, while lowering runtime overhead.

. Experimental setup

As a proof of concept, we built an IDS based on ARTINALI# and

eploy it in the context of two CPSes: an advanced metering in-

rastructure and an a smart artificial pancreas. We begin by stating

esearch questions (RQs) we address and introducing the two CPS

latforms. Then, we detail the procedure that we follow to build

he IDS. Finally, we introduce the metrics we use to evaluate the

DS.

.1. Research questions (RQs)

RQ1. What fraction of attacks can be detected by an IDS using a

complete set of security monitors?

RQ2. How much reduction in the number of security monitors is

achievable using ARTINALI#?

RQ3. How much reduction in the number of specifications is

achievable using ARTINALI#?

RQ4. How much does ARTINALI# decrease memory overhead of

the IDS?

RQ5. How much does ARTINALI# improve runtime performance

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Algorithm 1 ARTINALI# computes a small subset of security mon-

itors for coverage constraint μ using a hybrid feature selection al-

gorithm and a Bayesian network that calculates the probability of

having full attack coverage provided partial coverage of different

subsets of security monitors. We use fault injection to emulate ar-

bitrary attacks and measure the attack coverage of the IDS.

1: // Input: � Security monitors, � Invariants, μ Lower bound

coverage, FI Fault injection statistics

2: // Output: IDS Z(�′ , � ′)
3: SM ← s 1 , s 2 , . . . s n // The full set of monitors

4: SM

′ ← ∅ // The target set of monitors

5: SM

′′ ← ∅ // A temporary set of monitors

6: Passive_set ← ∅ // A subset of monitors that are not present in

any attack detection.

7: Redundant_set ← ∅ // A subset of monitors that don’t add to

the coverage.

8: itr ← zero

9: U max [itr] ← zero

10: Learn Bayesian Network structure from FI, � and �

11: for all ψ i ∈ � do

12: if ψ i �∈

⋃ m

j=1 λφ j
then

13: Add ψ i to Passi v e _ set

14: Remove s i from SM

15: while P (fac=1 | x j = 1 , ∀ x j ∈ SM

′) ≤ μ do

16: itr + +

17: for all s i ∈ (SM − SM

′) do // Forward pass

18: U i ← P (fac=1 | s i = 1 , x j = 1 , ∀ x j ∈ SM

′)
19: Let s max be the s i producing the maximum U i

20: Let U max [itr] be the maximum U i

21: if U max [itr] > U max [itr−1] then

22: Add s max to SM

′
23: if U max [itr] == U max [itr−1] then

24: Add s max to SM

′′
25: for all s k ∈ (SM

′ − SM

′′) do // Backward pass

26: W k ← P (fac=1 | s k , s p = 1 , s p ∈ SM

′′)
27: if W k is increasing then

28: Add s k to SM

′′
29: SM

′ ← Min (SM’ and SM

′′)
30: � ′ ← SM

′ ∗ �

31: Redundant_set ← � − � ′ −Passive_set

32: �′ ← { φi | ⋃ m

i =1 λφi
= � ′ }

33: Return Z(�′ , � ′)

5

u

5

I

p

a

t

t

t

b

m

t

t

a

e

5

h

t

r

s

t

G

m

i

r

t

i

t

r

c

m

[

O

l

5

A

m

N

t

u

s

h

t

a

I

a

m

c

t

p

A

S

i

5

r

i

w

m

A

C

d

s

m

t

T

i

1

W

o

t

o

s

t

.2. Case studies

We use two following CPS platforms as our case studies to eval-

ate ARTINALI#.

.2.1. Smart meters

Smart meters are key building blocks of an Advanced Metering

nfrastructure (AMI). AMI provides two-way communication with a

ower provider [67] . The large scale deployment of smart meters

nd the investigation of many security vulnerabilities in AMI make

hem good candidates on which to evaluate ARTINALI# [10] .

Generally, a smart meter is composed of a meter and a con-

roller (also called gateway). The meter receives energy usage

hrough analog front end sensors and accumulates them in a

uffer. The gateway is a communication interface between the

eter and the power provider’s server. It sends server commands

o the meter, and sends energy usage back to the server at specific

ime intervals. We use SEGMeter [68] , an open source smart meter,

s our case study. SEGMeter is implemented in 2500 lines of Lua,

xcluding libraries [10] .
7
.2.2. Smart Artificial Pancreas (SAP)

Traditional glucose measurement and manual insulin injection

as been substituted to continuous glucose monitoring and au-

onomous insulin delivery devices. This automated approach is

eferred to as a Smart Artificial Pancreas (SAP) . A SAP is highly

ecurity-sensitive as attacks on this system compromise the pa-

ients’ life [69] . Generally, a SAP is composed of a Continuous

lucose Monitor (CGM), an insulin pump, and a controller, com-

only connected through a wireless network [70] . The CGM and

nsulin pump are wearable medical devices, in which the former

egularly measures the patient’s blood glucose (BG) level and sends

he measurements to the controller, and the latter automatically

njects insulin via subcutaneous infusion. A SAP delivers insulin in

wo doses: bolus and basal . Each type has a specific injection time,

ate, and dosage based on the patient’s needs. The controller re-

eives the measured BG from CGM and sends an actuation com-

and to the pump for correcting the BG level. We use OpenAPS

71] , an open source SAP, as a second use case to evaluate our IDS.

penAPS implements the controller component of an SAP in 20 0 0

ines of JavaScript, excluding libraries.

.3. Build an IDS based on ARTINALI#

Building an IDS based on ARTINALI# requires two steps: In Step

 , we build the IDS base model, Z(�, �) , which uses all security

onitors to fully instrument the CPS code. In Step B , using ARTI-

ALI#, we identify those security monitors that are most influen-

ial in attack detection.

We begin with an IDS using full instrumentation so that we can

se it as a baseline to determine to what extent coverage of a sub-

et of security monitors, � ′ , implies coverage of all invariants (and

ence full set of security monitors, �). Thus, the goal of Step A is

o capture a comprehensive CPS model achieving full attack cover-

ge (U(�) ∼=

100%), while the goal of Step B is to build an efficient

DS with full detection power.

We evaluate the resulting IDS using different types of targeted

nd arbitrary attacks. In Step A , we collect attack coverage infor-

ation, such as violated specifications and a mapping between se-

urity monitors and the attack(s) they help detect. We then use

his data as training data in Step B . Fig. 3 illustrates the overall ex-

erimental procedure that we follow for building an IDS based on

RTINALI#. The procedure consists of the following components: i)

pecification mining , ii) Data monitoring , iii) Data analysis , iv) Fault

njection , and v) Optimization .

.3.1. Specification mining

Specification mining is the process of capturing a model that

epresents the correct behavior of the CPS system. A CPS model

ncludes a set of specifications that lead to a decision regarding

hether a given pattern of activity is suspicious. To build the CPS

odel, one can use any specification-mining technique; we use

RTINALI [10] . To mine specifications, we first fully instrument the

PS code with three types of security monitors: event monitors,

ata monitors, and time monitors, which collect high dimen-

ional data for both training and test purposes. To place security

onitors into the code, we insert calls to ARTINALI API functions

hat were developed for collecting traces before and after events.

able 1 shows the number and type of security monitors that we

nstrumented on both platforms. Overall, we employed 216 and

57 security monitors on SEGMeter and OpenAPS, respectively.

e collect execution traces from the two CPSes under correct

peration. Then, we randomly divide them into a set of training

races (consisting of 3/5 of traces) and testing traces (including 2/5

f traces). We use the training set as input to ARTINALI to mine

pecifications � and to build the CPS model. Table 1 presents the

ype and the number of invariants that ARTINALI generates for the

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Table 1

Security monitor and invariant distributions for full coverage IDS across platforms.

CPS Monitors Invariants

Event Data Time O v eral l T ime D | E E| T D | T O v eral l

SEGMeter 75 47 94 216 12 24 37 24 97

OpenAPS 69 28 60 157 4 22 18 7 51

Fig. 3. Overall experimental procedure of building an IDS based on ARTINALI#.

S

O

(

5

o

e

c

d

5

d

t

t

o

c

i

w

t

n

c

a

a

a

5

e

a

c

l

v

d

d

g

[

c

t

c

n

a

f

a

p

c

i

P

f

i

EGMeter and OpenAPS platforms: 97 for SEGMeter and 51 for

penAPS, broken down into the T ime, D | E, E| T , and D | T categories

defined in Section 3.1).

.3.2. Data monitoring

The data monitoring component observes the run-time behavior

f the CPS, collecting the security monitor data from the program’s

xecution and recording it. Before optimization, this component in-

ludes all security monitors, �; after optimization, it uses the re-

uced number of monitors, � ′ .

.3.3. Data analysis

The information collected by data monitoring is input to the

ata analysis component, which periodically processes the moni-

oring data and evaluates it against the specifications derived from

he CPS model. The detection accuracy of the data analysis (and

f the IDS) is determined by the security monitor data and the

omprehensiveness of the invariants, both of which are resource-

ntensive. To optimize IDS efficiency, while preserving its accuracy,

e first need to collect attack coverage information and build our

raining test suite. Attack coverage information includes faulty and

on-faulty traces collected by security monitors, violated specifi-

ations associated with each attack, and detected attacks by data

nalysis component, that can be achieved after evaluating the IDS

gainst various types of attacks. We use fault injection to emulate

ttacks and to build our training test suite for the optimization step.

.3.4. Fault injection

A small number of hand-crafted attacks are not sufficient to

valuate an IDS for CPS systems as these systems need protection
8
gainst unknown attacks. This is especially important for security-

ritical CPSes such as smart medical devices [10] . Furthermore, un-

ike general-purpose computer systems, there is no known set of

ulnerabilities and attack vectors for these systems. CPSes have

ifferent hardware, software and OS stack. Therefore, an attack

iscovered against a common Linux kernel applicable to many

eneral-purpose servers, may not be applicable to a CPS system

5] . Consequently, the existing attack vectors for computer systems

annot cover new attacks against CPSes.

Previous work has used fault injection (code mutation) to study

he effects of unknown attacks in CPS systems [5,72] . The main

hallenge is that the state space of fault injection may grow expo-

entially [73] . Moreover, not all the injected faults are manifested

s real bugs/attacks. However, we use three types of model-based

ault injection to emulate the behavior of security attacks and cre-

te more meaningful results:

• Data mutations : modify the run-time values of data variables.

• Branch flipping : modify the correct control flow of the program

by inverting branch conditions.

• Artificial delay insertions : change the correct timing behavior of

a system.

As stated in [10] , data mutation attacks can change the im-

ortant data in the program (e.g., race condition or memory

orruption attacks). Similarly, branch flipping can lead to illegit-

mate execution flows (e.g., buffer overflow or Return-Oriented

rogramming attacks). Ultimately, artificial delays prevent essential

unctions to be completed at expected time, or may cause other

mportant functionalities to be suppressed [10] . Using the above

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Table 2

The number of mutations in each attack category for SEGMeter and OpenAPS.

CPS Attack category

Data mutation Branch flipping Artificial delay

SEGMeter 175 226 45

OpenAPS 151 170 71

c

w

m

t

a

a

W

s

o

N

o

a

d

5

f

s

A

t

r

a

m

d

T

t

O

a

r

g

f

O

c

c

b

p

s

p

m

s

t

o

o

p

t

A

t

i

a

a

A

s

O

t

Fig. 4. Time taken (in seconds) to build a BN as a function of the number of secu-

rity monitors on CPS platforms.

o

c

O

[

a

s

p

5

t

f

o

6

t

a

2 HillClimbSearch implements a greedy local search that starts from the DAG start

and proceeds by iteratively performing single-edge manipulations that maximally

increase the score.
3 BDeu provides uniform prior over the parameters of each local distribution in

the network, which makes structure learning computationally efficient.
ode mutations, we are able to emulate a wide range of attacks

ithout biasing to the specific vulnerabilities. We assume our code

utation attacks are rich enough to include all possible attacks on

he CPS platforms.

Table 2 presents the number of mutations performed in each

ttack category for our CPS platforms. Overall, we performed 447

nd 392 fault injections for SEGMeter and OpenAPS, respectively.

e injected each of these faults in the control program of the re-

pective CPS platforms. After fault injection, we observe one of four

utcomes: a) Crash , b) Hang ,c) SDC (Silent Data Corruption) , and d)

o corruption . We are interested only in SDC and No corruption

utcomes (which comprise about 78% of the outcomes, on aver-

ge), as the Crash and Hang outcomes do not need an IDS to be

etected.

.3.5. Optimization

ARTINALI# runs as an optimizer within our intrusion detection

ramework. It reduces the computational resources in high dimen-

ional data sets to maintain scalability and accuracy of the IDS.

s illustrated in Fig. 3 , ARTINALI# uses attack coverage informa-

ion as its training data set to train a Bayesian network and to

un a greedy feature selection algorithm. The structure-learning

lgorithm identifies considerable dependence among the security

onitors. We add the full coverage (fac) feature to our training

ata set, representing a logical AND of all the security monitors.

he corresponding fac node in the network allows us to compute

he probability of full attack coverage given a subset of monitors.

nce BN construction is complete, ARTINALI# performs the search

nd score feature selection to compute a sparse subset of secu-

ity monitors to make the attack coverage at the fac node equal or

reater than μ. Figs. 5 and 6 show the structure of the learnt BN

or the serial_talker and determine_basel functions of SEGMeter and

penAPS platforms, respectively. The serial_talker function on the

ontroller program of smart meter is in charge of receiving power

onsumption data at specific time intervals and buffering them for

illing calculation purposes. The determine_basal on the controller

rogram of OpenAPS is in charge of receiving blood glucose mea-

urements and identifying the insulin (basel) dosage and other im-

ortant parameters such as injection rate and duration.

When learning the Bayesian network, it is essential to ask how

any security monitors to consider in the analysis. The larger the

ubset of security monitors analyzed together, the more accurate

he relationships acquired in the network. However, as the number

f relationships between security monitors grows, the complexity

f learning a BN increases.

Training is an offline, one-time activity. As such, it does not im-

act runtime performance of the IDS. Nonetheless, it is important

hat its training time is practical. We empirically analyzed how

RTINALI# performance changes as the number of security moni-

ors increases on both CPS systems. Fig. 4 illustrates the time spent

n BN learning as a function of the number of security monitors

nalyzed. We started with 15 security monitors and added 15 at

 time until we had included all the monitors on each platform.

s can be seen, learning is fast (≤ 1 minute) when the number of

ecurity monitors is small (less than 75 and 45 on SEGMeter and

penAPS, respectively). Then, both curves grow quadratically, while

he learning time for OpenAPS shows a sharper increase than that
9
f SEGMeter. Overall, it takes 17.2 and 15.3 min to build a BN in-

luding 216 and 157 nodes (security monitors) for SEGMeter and

penAPS, respectively, which is completely practical.

We implemented ARTINALI# in Python. We used the bnlearn

74] and pgmpy [75] libraries to learn the Bayesian parameters

nd structure. We used the HC (HillClimbSearch 2) algorithm [76] for

tructure learning, and BDeu (Bayesian Dirichlet equivalent uniform

rior 3) [77] as the initialization of prior distributions.

.4. Evaluation metrics

We chose the following metrics similar to what is considered in

he previous work [5,10,37,40] for IDS evaluation purposes.

Accuracy: We use the attack coverage ratio to measure the ef-

ective accuracy of an IDS.

• Attack Coverage ratio (AC) is the fraction of injected attacks that

are successfully detected by the IDS.

Overhead: We also measure the memory and performance

verheads of the IDS.

• Memory overhead is defined as the total memory used by the

IDS. It is a function of the size of IDS, the number of specifica-

tions in the CPS model, and the size of the log files produced

by security monitors .

• Performance overhead is the increase in execution time that re-

sults from executing the IDS on the target CPS. This metric is

dependent on both Data Monitoring and Data Analysis . As stated

in [10] , we measure the performance overhead per cycle, where

a cycle refers to one complete execution of the main loop of the

CPS. (Both the SEGmeter and OpenAPS consist of a repeating

single loop).

. Evaluation

We evaluate the IDS on our CPS platforms before and after op-

imization using the evaluation metrics presented in Section 5.4 ,

ddressing each research questions in its own sub-section.

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Fig. 5. BN structure created by ARTINALI# for serial_talker function on SEGMeter platform. It consists of 20 nodes including 19 security monitor weights and a fac node.

Fig. 6. BN structure created by ARTINALI# for determine-basal function on OpenAPS platform. It consists of 15 nodes including 14 security monitor weights and a fac node.

6

u

b

9

u

a

I

b

i

r

9

s

6

i

fi

A

.1. RQ1. Attack coverage

First, we present the attack coverage ratio incurred by the IDS,

sing the full set of security monitors and the invariants extracted

y ARTINALI. Overall, the IDS was able to detect 98 . 26% and

8 . 1% of attacks on SEGMeter and OpenAPS, respectively. To better

nderstand the results, we decompose the AC ratio in the different

ttack categories in Figs. 7 and 8 . As illustrated, on average, the

DS exhibits 97 . 8% , 99% and 97 . 9% AC ratios against data mutation,

ranch flipping and artificial delay attacks, respectively, which result

n over 98% aggregated coverage in both platforms. We use these
10
esults to establish the lower bound μ (98 . 26% for SEGMeter and

8 . 1% for OpenAPS) that we will use to evaluate our optimized

ystem.

.2. RQ2. Security monitor reduction

Next, we measure the reduction in the number of security mon-

tors achievable under the given attack coverage constraints. We

nd it useful to categorize the security monitors into three groups:

ctive, Passive and Redundant .

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Table 3

Security monitor distribution across platforms for full coverage.

CPS Active Passive Redundant Total monitors

Event Data Time Event Data Time Event Data Time

SEGMeter 44 11 22 38 39 10 31 7 14 216

OpenAPS 32 9 18 22 5 10 22 13 26 157

Fig. 7. AC Ratio of IDS for different attack types on SEGMeter platform.

Fig. 8. AC Ratio of IDS for different attack types on OpenAPS platform.

Fig. 9. Security monitor variations in (a) SEGMeter and (b) OpenAPS. Active moni-

tors have 100% contribution for full attack coverage, while constitute less than 40%

of security monitors on both platforms.

Table 4

Security monitor distribution on SEGMeter platforms for 98%, 95% and 90% coverage

after optimization.

μ Security monitors

Event Data Time Reduction

98% 44 11 22 139 (66%)

95% 39 10 20 147 (68%)

90% 26 8 16 166 (77%)

Table 5

Security monitor distribution on OpenAPS platforms for 98%, 95% and 90% coverage

after optimization.

μ Security monitors

Event Data Time Reduction

98% 32 9 18 97 (62%)

95% 20 9 18 109 (69%)

90% 15 8 16 117 (75%)

t

b

f

O

a

t

a

i

a

w

p

b

i

t

b

c

a

S

t

e

• Active : A security monitor is active , if the data it collects is used

for capturing (or evaluating) an invariant. Active monitors in-

clude both the monitors quickly selected for inclusion in the

minimal set and those monitors whose inclusion is less obvi-

ous. In principle, ARTINALI# correctly identifies and prioritizes

these security monitors according to the attack coverage con-

straints on each platform.

• Passive : A security monitor is passive if it is not associated with

any invariants. Thus, passive monitors never contribute to de-

tecting any attack initiated by fault injection and are not se-

lected to be included in the optimized set.

• Redundant : An active security monitor is redundant if it does

not add to the current coverage. Redundant security monitors

are correlated to other active monitors, so that if a fault injec-

tion test covers an active monitor, its correlated monitors will

be certainly covered. For example, assume variables x and y are

correlated as: y = x+1 . Any mutation on variable x changes y, so

y is redundant from an attack coverage perspective and is not
selected. t

11
Table 3 shows how the full set of security monitors are dis-

ributed across the Active, Passive, and Redundant categories in

oth evaluation systems. Passive and redundant monitors account

or 139 (out of 216) and 97 (out of 157) monitors in SEGMeter and

penAPS, respectively. Only, Active monitors, which constitute 36%

nd 38% of monitors in SEGMeter and OpenAPS, respectively con-

ribute meaningfully to IDS attack coverage (according to Fig. 9). As

 result, ARTINALI# is able to remove 66% and 62% of security mon-

tors in SEGMeter and OpenAPS, respectively, without losing detection

ccuracy.

Tables 4 and 5 show how the number of monitors decreases as

e relax the coverage constraint from 98% to 95% to 90% on both

latforms. The lower bound constraints permits a direct trade-off

etween detection performance and overhead. For example, reduc-

ng the coverage constraint on OpenAPS from 98% to 90% reduces

he number of monitors required to only 25% of the original num-

er; SEGMeter achieves a similar reduction. Overall, ARTINALI# de-

reases the number of security monitors by 77% (166 out of 216)

nd 75% (117 out of 157) to produce 90% guaranteed coverage on

EGMeter and OpenAPS, respectively.

Using a greedy approach to select the monitors to include in

he optimized IDS decreases the computational complexity from

xponential to quadratic, but can lead to a sub-optimal solu-

ion. According to the feature selection literature [78,79] , simple

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Table 6

Type and number of invariants on SEGMeter platform for 98%, 95% and 90% IDS

coverage after optimization.

μ Invariants

T ime D | E E| T D | T Reduction

98% 10 24 21 17 25 (26%)

95% 8 22 21 16 30 (31%)

90% 8 19 21 13 36 (39%)

Table 7

Type and number of invariants on OpenAPS platform for 98%, 95% and 90% IDS

coverage after optimization.

μ Invariants

T ime D | E E| T D | T Reduction

98% 4 16 13 7 11 (20%)

95% 4 15 12 7 13 (25%)

90% 3 15 10 7 16 (32%)

p

b

s

s

N

t

2

W

f

d

r

e

6

s

m

(

s

a

g

j

a

i

v

t

v

o

n

t

s

s

(

w

b

t

a

r

a

n

b

t

9

m

Table 8

Memory overhead of full-coverage IDS, before and after optimization, running on

SEGMeter.

Pre-Optimization Post-Optimization

Memory (MB)

Data monitoring 2.96 1.35

Data analysis 1.59 0.87

Total 4.55 2.22

Table 9

Performance overhead of full-coverage IDS, before and after optimization, running

on SEGMeter.

Pre-Optimization Post-Optimization

Time overhead (%)

Data monitoring 23.3 7.3

Data analysis 0 0

Total 23.3 7.3

Execution Time (sec)

CPS cycle 60.94 60.94

IDS cycle 4.97 2.93

b

t

w

t

6

S

u

i

i

u

t

p

p

a

a

o

a

d

f

o

c

6

n

d

1

o

s

t

t

f

d

p

p

h

r

s

a

rocedures of the floating search, such as feature swapping and

acktracking can effectively yield significant improvement in the

earch performance. To mitigate the possibility of sub-optimal

olution, we have included backtracking as a major step in ARTI-

ALI# (Algorithm 1). Moreover, we applied feature swapping

hrough shuffling the feature space. We run the algorithm on

0 shuffled sets of security monitors and select the best results.

e find that ARTINALI# selects the same subset of monitors

or the shuffled sets on OpenAPS. SEGMeter, however, produces

ifferent sets whose sizes vary by only a single monitor. These

esults suggest that ARTINALI# provides a robust solution on our

valuation platforms.

.3. RQ3. Specification reduction

We next quantify the optimization effect on the specification

pace. Having identified the target set of security monitors, we

ap them back to the system’s specifications. We observe that 25

out of 97) and 11 (out of 51) invariants are excluded from the full

et of invariants for SEGMeter and OpenAPS, respectively. Deeper

nalysis reveals that the excluded invariants fall into three cate-

ories: 1) invariants that are never violated during the attack in-

ection tests. Note that attacks are detected only by violated invari-

nts, and we assume that our test suite is complete. Therefore, the

nvariants that are always true do not detect attacks. E.g., the in-

ariant Power_consumption ≥ 0 on SEGMeter always holds true, as

here is no meaningful attack that makes the power consumption

alue negative. 2) Invariants that overlap, e.g., the invariant b ≤ a

verlaps with the invariants a ≥ 10 and 0 ≤ b ≤ 5 ; therefore, it does

ot lead to greater attack coverage. 3) Invariants that are seman-

ically dependent on other invariants, e.g., the following invariants

how the logical ordering of three events (including read(BG),

end(BG) , and receive(basel)) in OpenAPS: (i) read(BG) � send(BG) ,

ii) send(BG) � receive(basel) , and (iii) read(BG) � receive(Basal) ,

here invariant E i � E j means the event E i always happens

efore the event E j . If either of invariants i or ii are violated,

hen invariant iii will also be violated, thus it does not provide

dditional attack coverage and can be removed. Overall, ARTINALI#

educes the number of specifications by 26% and 20% on SEGMeter

nd OpenAPS, respectively, while preserving full attack coverage.

Just as decreasing μ, the attack coverage constraint, reduces the

umber of security monitors necessary, it also reduces the num-

er of specifications necessary. Tables 6 and 7 show the reduc-

ion in specifications, by type, as we reduce μ from 98% to 95% to

0% . probability of full coverage across platforms. While less dra-

atic than the reduction in required security monitors, the num-
12
er of invariants also decreases with μ. Overall, ARTINALI# reduces

he number of required invariants by 26 − −39% and 20 − −32% as

e reduce μ from 98% to 90% for SEGMeter and OpenAPS, respec-

ively.

.4. RQ4. Memory overhead

We measured the memory usage of our IDS running on the

EGMeter platform. SEGMeter has 16MB of RAM, of which 12MB is

tilized by the operating system and the meter program. Accord-

ngly, a room of 4MB is available for the IDS (including data mon-

toring and data analysis components). Table 8 shows the memory

sage of both components, separately, at run-time, before and af-

er optimization. Memory consumption of the data analysis com-

onent before optimization is 2.96MB. The data monitoring com-

onent, however, creates log files that consume 1.59MB, on aver-

ge, for each iteration of CPS execution. Therefore, the full cover-

ge IDS needs 4.55MB memory, which exceeds the available mem-

ry on SEGMeter. After optimization, we observe that memory us-

ge is decreased to 1.35 and 0.87MB in the data monitoring and

ata analysis components, respectively, for a total of 2.22MB for

ull coverage IDS. Overall, ARTINALI# decreases SEGMeter IDS mem-

ry consumption sufficiently to make intrusion detection feasible given

urrent resource constraints.

.5. RQ5. Performance overhead

Finally, we analyze the performance overhead of the IDS run-

ing on the SEGMeter platform, which consists of an embed-

ed micro-controller (Broadcom BCM3302 V2.9 240 MHz CPU and

6 MB RAM) running Linux. More specifically, we measure the

verhead imposed by both the data monitoring and data analy-

is components. Table 9 (first part) shows the overheads of the

wo components separately. We repeated these measurements 10

imes, and presented the average overhead. We observe that the

ull coverage IDS incurs 23% runtime overhead before optimization,

ue to the data monitoring component, which runs in the same

rocess as the CPS. The data analysis module runs as a separate

rocess and thus adds zero overhead. After optimization, the over-

ead drops from 23% significantly to 7% , a 69% improvement in

un-time efficiency.

Moreover, the execution time of the data analysis component

hould be lower than the execution time of the CPS’s cycle. This is

n important metric that determined if the IDS is able to keep up

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

Fig. 10. Variations of (a) AC ratio, (b) run-time overhead and (c) space overhead of

the IDS based on the number of security monitors on SEGMeter platform.

w

a

6

w

o

T

M

o

m

C

o

d

t

t

A

m

A

l

7

s

a

T

r

i

7

a

7

c

c

f

l

m

a

f

N

fl

I

o

t

o

t

a

n

l

w

a

e

I

o

a

a

o

N

v

d

S

t

s

t

s

c

w

t

7

m

y

t

s

c

w

w

n

c

f

t

8

s

o

s

g

t

t

t

t

c

t

o

a

p

n

o

s

6

4

ith the CPS. Table 9 shows the raw execution time of a CPS cycle

s well as an IDS cycle. As shown, the entire CPS cycle takes about

1 seconds, while the IDS cycle before optimization takes 4.97 s,

hich is less than a sixth of execution time of the CPS cycle. After

ptimization, however, the IDS execution time reduces to 2.93 s.

hus, ARTINALI# accelerates the attack detection process on SEG-

eter by 41% . The IDS is not a bottleneck in either the optimized

r unoptimized cases and easily keeps up with the CPS. Further-

ore, the data monitoring component collects logs as soon as the

PS starts working, while data analysis waits until the completion

f the first iteration of CPS execution. This leads to a one-iteration

elay for attack notification, i.e., 61 s.

Figs. 10 illustrates the relationship between the AC ratio, run-

ime overhead and space overhead of the IDS running on SEGMe-

er platform as a function of the number of security monitors. The

C ratio is quite robust to a reduction in the number of security

onitors until we have eliminated all but a few tens of monitors.

s the number of security monitors increases, all three graphs fol-

ow an ascending order. When the number of monitors reaches to

7, AC ratio gets maximized and stabilized at 98.26%. While both

pace and run-time overhead graphs grow almost linearly, the vari-

tions of the former illustrates a sharper increase than the latter.

he growth continues until performance and memory overheads

each to 23% and 114%, respectively, when all security monitors are

n use.

. Discussion

We next examine the threats to the validity of our experiments

nd reflect on ARTINALI#’s generalizability.

.1. Threats to validity

An external threat to the validity is the small size of CPS codes

onsidered. The time complexity of BN learning varies quadrati-

ally with the number of monitors. This could become prohibitive

or a large CPS with many hundreds of monitors. One potential so-

ution is to partition the security monitors at the granularity of

ethods and to learn a separate BN for each partition. This would

llow BN learning to scale to arbitrarily large CPSes, but would

ail to capture inter-method relationships among security monitors.

evertheless, BN learning is a one-time process that is done of-

ine, so it does not have a negative impact on scalability of the

DS in run time.

An internal threat to validity is using fault injection to evaluate

ur IDS. Fault injection does not necessarily represent all real at-
13
acks. However, it allows us to emulate the potential attacks with-

ut biasing the evaluation towards known exploits. We decreased

his threat by using model-based fault injection used for emulating

ttacks in prior work.

A construct threat to validity is the greedy nature of our tech-

ique, in which the order of adding features to the target set may

ead to a sub-optimal solution. We minimize this threat in two

ays. First, we apply a hybrid feature selection algorithm that adds

n additional search step to check whether a feature we may drop

ncompasses two or more existing features in the target collection.

f it does, we retain the new feature and drop the other two. Sec-

nd, we ran the algorithm for shuffled sets of security monitors

nd chose the best result.

A second construct threat to validity is that a system developer,

ware of a system’s security policy, may be able to determine a pri-

ri which security monitors were necessary, without using ARTI-

ALI#. While we acknowledge this hypothesis, we suspect that de-

elopers will be unable to detect all inter-variable dependencies.

Finally, another construct threat to validity is that the IDS starts

ata analysis after the first iteration of CPS execution is completed.

uch after-the-fact analysis is sufficient to trigger attack mitiga-

ion mechanism in many systems. But, it may not be acceptable in

ecurity-critical systems that need even more precise real-time at-

ack detection/prevention. To eliminate the notification delay, one

olution is to place invariants as assertion constraints into the

ode. However, solving this problem is out of the scope of this

ork - which is focused on finding a small set of security moni-

ors - and hence is considered as a direction for the future studies.

.2. Generalizability

ARTINALI# discovers a small set of security monitors (instru-

ented locations) for resource-constrained CPS applications, which

ields full attack coverage with low overheads. It enables the IDS

o be applicable to a wide range of CPS systems with different re-

ource capacities. We hypothesize that CPS code is accessible and

an be modified to instrument the code - this is reasonable since

e envision this technique to be deployed by CPS developers who

ants to enhance their system security (if not, one can use a bi-

ary instrumentation engine). Furthermore, ARTINALI# is benefi-

ial to any intrusion detection techniques tailored to non-CPS plat-

orms as it significantly lowers the cost of the IDS and accelerates

he attack detection process.

. Conclusion

Resource constraints of cyber-physical systems make tailoring a

ecurity solutions to them challenging. We formulated the problem

f constructing an intrusion detection system for cyber-physical

ystems as an optimization problem. We developed ARTINALI#: a

reedy technique based on a hybrid feature selection algorithm

hat deploys the Bayesian network capabilities for approximating

he probability of full attack detection given information from par-

ial detection of security monitors. Given a set of security monitors

hat observe the run-time behavior of the system, a set of specifi-

ations that verify the correct behaviour of the system, and statis-

ics gathered from fault injection, ARTINALI# discovers a small set

f security monitors and a rich set of specifications that yield full

ttack coverage with low (memory and time) overheads. We de-

loy ARTINALI# on two CPS platforms, and show that our tech-

ique eliminates 64% of security monitors and 23% of invariants,

n average, while preserving over 98% detection accuracy. As a re-

ult, ARTINALI# optimizes memory and time overheads by 52% and

9% , respectively, and speeds up the attack detection procedure by

1% .

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

n

s

t

n

f

f

D

c

i

A

E

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
As future work, we plan to incorporate whole system prove-

ance to the specification mining process and build a multi-layer

ecurity model for the system. Another potential direction for fu-

ure work is to incorporate specifications for dynamic attack diag-

osis and mitigation. In particular, we plan to use graphical models

or fine-grained attack diagnosis through specifications, and per-

orm system reconfiguration based on the results of the diagnosis.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgment

This work was supported in part by the Natural Sciences and

ngineering Research Council of Canada (NSERC) .

eferences

[1] A. Cardenas , S. Amin , B. Sinopoli , A. Giani , A. Perrig , S. Sastry , et al. , Challenges
for securing cyber physical systems, Workshop on Future Directions in Cyber–

Physical Systems Security, 5, Citeseer, 2009 .
[2] R.C. Machado , D.R. Boccardo , V.G.P. De Sá, J.L. Szwarcfiter , Software control and

intellectual property protection in cyber-physical systems, EURASIP J. Inf. Se-
cur. 2016 (1) (2016) 1–14 .

[3] N. Leavitt , Researchers fight to keep implanted medical devices safe from hack-
ers, Computer 43 (8) (2010) 11–14 .

[4] A. Khalid , P. Kirisci , Z.H. Khan , Z. Ghrairi , K.-D. Thoben , J. Pannek , Security

framework for industrial collaborative robotic cyber-physical systems, Comput.
Ind. 97 (2018) 132–145 .

[5] F.M. Tabrizi , K. Pattabiraman , Design-level and code-level security analysis of
IoT devices, ACM Trans. Embedded Comput. Syst. (TECS) 18 (3) (2019) 1–25 .

[6] P. Dash , M. Karimibiuki , K. Pattabiraman , Out of control: stealthy attacks
against robotic vehicles protected by control-based techniques, in: Proceed-

ings of the 35th Annual Computer Security Applications Conference, 2019,

pp. 660–672 .
[7] S. Checkoway , D. McCoy , B. Kantor , D. Anderson , H. Shacham , S. Savage ,

K. Koscher , A. Czeskis , F. Roesner , T. Kohno , et al. , Comprehensive experimen-
tal analyses of automotive attack surfaces., USENIX Security Symposium, San

Francisco, 2011 .
[8] K. Koscher , A. Czeskis , F. Roesner , S. Patel , T. Kohno , S. Checkoway , D. McCoy ,

B. Kantor , D. Anderson , H. Shacham , et al. , Experimental security analysis of a

modern automobile, in: 2010 IEEE Symposium on Security and Privacy, IEEE,
2010, pp. 447–462 .

[9] R. Mitchell , I.-R. Chen , A survey of intrusion detection techniques for cyber–
physical systems, ACM Comput. Surv. (CSUR) 46 (4) (2014) 1–29 .

[10] M.R. Aliabadi , A .A . Kamath , J. Gascon-Samson , K. Pattabiraman , Artinali: dy-
namic invariant detection for cyber-physical system security, in: Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering, ACM,

2017, pp. 349–361 .
[11] R. Berthier , W.H. Sanders , H. Khurana , Intrusion detection for advanced me-

tering infrastructures: requirements and architectural directions, in: 2010 First
IEEE International Conference on Smart Grid Communications (SmartGrid-

Comm), IEEE, 2010, pp. 350–355 .
[12] J. Goh , S. Adepu , M. Tan , Z.S. Lee , Anomaly detection in cyber physical systems

using recurrent neural networks, in: 2017 IEEE 18th International Symposium

on High Assurance Systems Engineering (HASE), IEEE, 2017, pp. 140–145 .
[13] E. Bartocci , J. Deshmukh , A. Donzé, G. Fainekos , O. Maler , D. Ni ̌ckovi ́c ,

S. Sankaranarayanan , Specification-based monitoring of cyber-physical sys-
tems: a survey on theory, tools and applications, in: Lectures on Runtime Ver-

ification, Springer, 2018, pp. 135–175 .
[14] J. Späth , K. Ali , E. Bodden , Context-, flow-, and field-sensitive data-flow analy-

sis using synchronized pushdown systems, Proc. ACM Program. Lang. 3 (POPL)

(2019) 1–29 .
[15] S. Shoham , E. Yahav , S.J. Fink , M. Pistoia , Static specification mining using au-

tomata-based abstractions, IEEE Trans. Softw. Eng. 34 (5) (2008) 651–666 .
[16] M. Gabel , Z. Su , Symbolic mining of temporal specifications, in: Proceedings

of the 30th International Conference on Software Engineering, ACM, 2008,
pp. 51–60 .

[17] J.T. Giffin , S. Jha , B.P. Miller , Efficient context-sensitive intrusion detection.,
NDSS, 2004 .

[18] P. Bian , B. Liang , W. Shi , J. Huang , Y. Cai , Nar-miner: discovering negative as-

sociation rules from code for bug detection, in: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, ACM, 2018, pp. 411–422 .
[19] P. Bian , B. Liang , Y. Zhang , C. Yang , W. Shi , Y. Cai , Detecting bugs by discovering

expectations and their violations, IEEE Trans. Softw. Eng. (2018) .
14
20] R.-Y. Chang , A. Podgurski , J. Yang , Finding what’s not there: a new ap-
proach to revealing neglected conditions in software, in: Proceedings of the

2007 International Symposium on Software Testing and Analysis, ACM, 2007,
pp. 163–173 .

[21] B. Liang , P. Bian , Y. Zhang , W. Shi , W. You , Y. Cai , Antminer: mining more bugs
by reducing noise interference, in: Proceedings of the 38th International Con-

ference on Software Engineering, ACM, 2016, pp. 333–344 .
22] G. Kim, H. Yi, J. Lee, Y. Paek, S. Yoon, Lstm-based system-call language model-

ing and robust ensemble method for designing host-based intrusion detection

systems. arXiv preprint arXiv:1611.01726 .
23] A. Chawla , B. Lee , S. Fallon , P. Jacob , Host based intrusion detection sys-

tem with combined cnn/rnn model, in: Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, Springer, 2018, pp.

149–158 .
24] L. Chen , S. Sultana , R. Sahita , Henet: A deep learning approach on intel® pro-

cessor trace for effective exploit detection, in: 2018 IEEE Security and Privacy

Workshops (SPW), IEEE, 2018, pp. 109–115 .
25] X. Han, T. Pasquier, A. Bates, J. Mickens, M. Seltzer, Unicorn: run-

time provenance-based detector for advanced persistent threats.
arXiv preprint arXiv:2001.01525 .

26] D. Palyvos-Giannas , V. Gulisano , M. Papatriantafilou , Genealog: fine-grained
data streaming provenance at the edge, in: Proceedings of the 19th Interna-

tional Middleware Conference, 2018, pp. 227–238 .

27] T. Pasquier , X. Han , T. Moyer , A. Bates , O. Hermant , D. Eyers , J. Bacon ,
M. Seltzer , Runtime analysis of whole-system provenance, in: Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 1601–1616 .

28] M.D. Ernst , J. Cockrell , W.G. Griswold , D. Notkin , Dynamically discovering likely
program invariants to support program evolution, IEEE Trans. Softw. Eng. 27

(2) (2001) 99–123 .

29] C. Lemieux , D. Park , I. Beschastnikh , General ltl specification mining (t), in:
2015 30th IEEE/ACM International Conference on Automated Software Engi-

neering (ASE), IEEE, 2015, pp. 81–92 .
30] L. Deng , D. Li , X. Yao , D. Cox , H. Wang , Mobile network intrusion detection for

iot system based on transfer learning algorithm, Cluster Comput. 22 (4) (2019)
9889–9904 .

[31] N. Carreon , A. Gilbreath , R. Lysecky , Window-based statistical analysis of

timing subcomponents for efficient detection of malware in life-critical sys-
tems, in: 2019 Spring Simulation Conference (SpringSim), IEEE, 2019, pp.

1–12 .
32] C. Zimmer , B. Bhat , F. Mueller , S. Mohan , Time-based intrusion detection in

cyber-physical systems, in: Proceedings of the 1st ACM/IEEE International Con-
ference on Cyber-Physical Systems, 2010, pp. 109–118 .

33] M. Prasad , S. Tripathi , K. Dahal , An efficient feature selection based Bayesian

and rough set approach for intrusion detection, Appl. Soft Comput. 87 (2020)
105980 .

34] Z. Wang , Z. Wang , X. Gu , S. He , Z. Yan , Feature selection based on Bayesian
network for chiller fault diagnosis from the perspective of field applications,

Appl. Thermal Eng. 129 (2018) 674–683 .
35] R.O. Gallardo , A.J. Huy , A. Ivanov , M.S. Mirian , Reducing post-silicon coverage

monitoring overhead with emulation and bayesian feature selection, in: 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE,

2015, pp. 816–823 .

36] U. Thakore , G.A. Weaver , W.H. Sanders , A quantitative methodology for se-
curity monitor deployment, in: 2016 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), IEEE, 2016, pp.
1–12 .

37] S. Grant , H. Cech , I. Beschastnikh , Inferring and asserting distributed system

invariants, in: Proceedings of the 40th International Conference on Software

Engineering, 2018, pp. 1149–1159 .

38] B. Genge , P. Haller , C.-D. Dumitru , C. En ̆achescu , Designing optimal and re-
silient intrusion detection architectures for smart grids, IEEE Trans. Smart Grid

8 (5) (2017) 2440–2451 .
39] S.S. Murtaza , W. Khreich , A. Hamou-Lhadj , S. Gagnon , A trace abstraction ap-

proach for host-based anomaly detection, in: 2015 IEEE Symposium on Com-
putational Intelligence for Security and Defense Applications (CISDA), IEEE,

2015, pp. 1–8 .

40] N. Farooqui , K. Schwan , S. Yalamanchili , Efficient instrumentation of gpgpu
applications using information flow analysis and symbolic execution, in: Pro-

ceedings of Workshop on General Purpose Processing Using GPUs, 2014, pp.
19–27 .

[41] R. Gopalakrishna , E.H. Spafford , J. Vitek , Efficient intrusion detection using au-
tomaton inlining, in: 2005 IEEE Symposium on Security and Privacy (S&P’05),

IEEE, 2005, pp. 18–31 .

42] H. Aghakhani , A. Machiry , S. Nilizadeh , C. Kruegel , G. Vigna , Detecting decep-
tive reviews using generative adversarial networks, in: 2018 IEEE Security and

Privacy Workshops (SPW), IEEE, 2018, pp. 89–95 .
43] D. An , Q. Yang , W. Liu , Y. Zhang , Defending against data integrity attacks

in smart grid: a deep reinforcement learning-based approach, IEEE Access 7
(2019) 110835–110845 .

44] K. Tange , M. De Donno , X. Fafoutis , N. Dragoni , Towards a systematic survey of

industrial IoT security requirements: research method and quantitative anal-
ysis, in: Proceedings of the Workshop on Fog Computing and the IoT, 2019,

pp. 56–63 .
45] M. Mohammadi , A. Al-Fuqaha , S. Sorour , M. Guizani , Deep learning for iot

big data and streaming analytics: a survey, IEEE Commun. Surv. Tutor. 20 (4)
(2018) 2923–2960 .

https://doi.org/10.13039/501100000038
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0001
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0002
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0002
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0002
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0002
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0002
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0003
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0003
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0004
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0005
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0005
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0005
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0006
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0006
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0006
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0006
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0007
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0008
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0009
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0009
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0009
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0010
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0010
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0010
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0010
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0010
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0011
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0011
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0011
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0011
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0012
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0012
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0012
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0012
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0012
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0013
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0014
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0014
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0014
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0014
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0015
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0015
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0015
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0015
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0015
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0016
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0016
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0016
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0017
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0017
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0017
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0017
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0018
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0018
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0018
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0018
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0018
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0018
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0019
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0020
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0020
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0020
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0020
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0021
http://arxiv.org/abs/1611.01726
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0023
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0023
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0023
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0023
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0023
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0024
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0024
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0024
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0024
http://arxiv.org/abs/2001.01525
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0026
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0026
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0026
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0026
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0027
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0028
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0028
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0028
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0028
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0028
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0029
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0029
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0029
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0029
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0030
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0030
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0030
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0030
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0030
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0030
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0031
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0031
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0031
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0031
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0032
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0032
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0032
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0032
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0032
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0033
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0033
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0033
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0033
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0034
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0034
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0034
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0034
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0034
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0034
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0035
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0035
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0035
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0035
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0035
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0036
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0036
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0036
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0036
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0037
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0037
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0037
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0037
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0038
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0038
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0038
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0038
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0038
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0039
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0039
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0039
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0039
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0039
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0040
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0040
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0040
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0040
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0041
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0041
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0041
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0041
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0042
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0042
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0042
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0042
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0042
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0042
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0043
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0043
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0043
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0043
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0043
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0044
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0044
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0044
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0044
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0044
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0045
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0045
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0045
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0045
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0045

M. Raiyat Aliabadi, M. Seltzer, M. Vahidi Asl et al. International Journal of Critical Infrastructure Protection 33 (2021) 100430

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

46] R. Chalapathy, S. Chawla, Deep learning for anomaly detection: a survey.
arXiv preprint arXiv:1901.03407 .

[47] S. Suhail , C.S. Hong , Z.U. Ahmad , F. Zafar , A. Khan , Introducing secure prove-
nance in iot: requirements and challenges, in: 2016 International Workshop on

Secure Internet of Things (SIoT), IEEE, 2016, pp. 39–46 .
48] X. Han , T. Pasquier , T. Ranjan , M. Goldstein , M. Seltzer , Frappuccino: fault-de-

tection through runtime analysis of provenance, 9th { USENIX } Workshop on
Hot Topics in Cloud Computing (HotCloud 17), 2017 .

49] B. Lerner , E. Boose , Rdatatracker: collecting provenance in an interactive script-

ing environment, 6th { USENIX } Workshop on the Theory and Practice of
Provenance (TaPP 2014), 2014 .

50] J.F. Pimentel , L. Murta , V. Braganholo , J. Freire , noworkflow: a tool for collect-
ing, analyzing, and managing provenance from python scripts, Proc. VLDB En-

dow. 10 (12) (2017) .
[51] D. Wagner , R. Dean , Intrusion detection via static analysis, in: Proceedings.

2001 IEEE Symposium on Security and Privacy, 2001. S&P 2001, IEEE, 2001,

pp. 156–168 .
52] C. Lemieux , D. Park , I. Beschastnikh , General ltl specification mining (t), in:

2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), IEEE, 2015, pp. 81–92 .

53] I. Beschastnikh , Y. Brun , J. Abrahamson , M.D. Ernst , A. Krishnamurthy , Using
declarative specification to improve the understanding, extensibility, and com-

parison of model-inference algorithms, IEEE Trans. Softw. Eng. 41 (4) (2015)

408–428 .
54] J. Abrahamson , I. Beschastnikh , Y. Brun , M.D. Ernst , Shedding light on dis-

tributed system executions, in: Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, ACM, 2014, pp. 598–599 .

55] M.D. Ernst , J.H. Perkins , P.J. Guo , S. McCamant , C. Pacheco , M.S. Tschantz ,
C. Xiao , The daikon system for dynamic detection of likely invariants, Sci. Com-

put. Programm. 69 (1–3) (2007) 35–45 .

56] S. Hangal , M.S. Lam , Tracking down software bugs using automatic anomaly
detection, in: Proceedings of the 24rd International Conference on Software

Engineering, 2002. ICSE 2002, IEEE, 2002, pp. 291–301 .
57] C. Csallner , N. Tillmann , Y. Smaragdakis , Dysy: dynamic symbolic execution for

invariant inference, in: Proceedings of the 30th International Conference on
Software Engineering, ACM, 2008, pp. 281–290 .

58] J. Yang , D. Evans , D. Bhardwaj , T. Bhat , M. Das , Perracotta: mining temporal API

rules from imperfect traces, in: Proceedings of the 28th International Confer-
ence on Software Engineering, ACM, 2006, pp. 282–291 .

59] D. Lorenzoli , L. Mariani , M. Pezzè, Automatic generation of software behavioral
models, in: Proceedings of the 30th International Conference on Software En-

gineering, ACM, 2008, pp. 501–510 .
60] T. Ohmann , M. Herzberg , S. Fiss , A. Halbert , M. Palyart , I. Beschastnikh ,

Y. Brun , Behavioral resource-aware model inference, in: Proceedings of the

29th ACM/IEEE International Conference on Automated Software Engineering,
ACM, 2014, pp. 19–30 .

61] K. Huang , C. Zhou , Y.-C. Tian , S. Yang , Y. Qin , Assessing the physical impact of
cyberattacks on industrial cyber-physical systems, IEEE Trans. Ind. Electron. 65

(10) (2018) 8153–8162 .
15
62] A. Bezemskij , G. Loukas , D. Gan , R.J. Anthony , Detecting cyber-physical threats
in an autonomous robotic vehicle using Bayesian networks, in: 2017 IEEE Inter-

national Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Comput-

ing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 2017, pp. 98–103 .
63] S. Krishnamurthy , S. Sarkar , A. Tewari , Scalable anomaly detection and isola-

tion in cyber-physical systems using Bayesian networks, in: ASME 2014 Dy-
namic Systems and Control Conference, American Society of Mechanical Engi-

neers Digital Collection, 2014 .

64] L. Ladha , T. Deepa , Feature selection methods and algorithms, Int. J. Comput.
Sci. Eng. 3 (5) (2011) 1787–1797 .

65] C.K. Fisher , P. Mehta , Bayesian feature selection for high-dimensional linear re-
gression via the ising approximation with applications to genomics, Bioinfor-

matics 31 (11) (2015) 1754–1761 .
66] I. Tsamardinos , C.F. Aliferis , A.R. Statnikov , E. Statnikov , Algorithms for large

scale Markov blanket discovery., in: FLAIRS Conference, 2, 2003, pp. 376–380 .

67] F. Skopik , Z. Ma , T. Bleier , H. Grüneis , A survey on threats and vulnerabilities
in smart metering infrastructures, Int. J. Smart Grid Clean Energy 1 (1) (2012)

22–28 .
68] Smart energy groups home page., 2011, (http://smartenergygroups.com).

69] J. Radcliffe , Hacking medical devices for fun and insulin: breaking the human
scada system, in: Black Hat Conference Presentation Slides, 2011, 2011 .

70] C. Li , A. Raghunathan , N.K. Jha , Hijacking an insulin pump: security attacks and

defenses for a diabetes therapy system, in: 2011 13th IEEE International Con-
ference on e-Health Networking Applications and Services (Healthcom), IEEE,

2011, pp. 150–156 .
[71] D. Lewis, Introducing the# openaps project(2015).

72] K.-Y. Tseng , D. Chen , Z. Kalbarczyk , R.K. Iyer , Characterization of the error re-
siliency of power grid substation devices, in: IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN 2012), IEEE, 2012, pp. 1–8 .

73] M.R. Aliabadi , K. Pattabiraman , Fidl: a fault injection description language for
compiler-based sfi tools, in: International Conference on Computer Safety, Re-

liability, and Security, Springer, 2016, pp. 12–23 .
[74] E. Taskesen, bnlearn, 2019, (https://github.com/erdogant/bnlearn).

75] A . Ankan , A . Panda , pgmpy: probabilistic graphical models using python, in:
Proceedings of the 14th Python in Science Conference (SCIPY 2015), Citeseer,

2015 .

[76] J.A. Gámez , J.L. Mateo , J.M. Puerta , Learning bayesian networks by hill climb-
ing: efficient methods based on progressive restriction of the neighborhood,

Data Mining Knowl. Discov. 22 (1–2) (2011) 106–148 .
77] D. Heckerman , D. Geiger , D.M. Chickering , Learning bayesian networks: the

combination of knowledge and statistical data, Mach. Learn. 20 (3) (1995)
197–243 .

78] F. Hafiz , A. Swain , E.M. Mendes , Orthogonal floating search algorithms: from

the perspective of nonlinear system identification, Neurocomputing 350 (2019)
221–236 .

79] J.Q. Gan , B.A.S. Hasan , C.S.L. Tsui , A filter-dominating hybrid sequential forward
floating search method for feature subset selection in high-dimensional space,

Int. J. Mach. Learn. Cybern. 5 (3) (2014) 413–423 .

http://arxiv.org/abs/1901.03407
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0047
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0047
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0047
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0047
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0047
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0047
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0048
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0048
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0048
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0048
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0048
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0048
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0049
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0049
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0049
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0050
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0050
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0050
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0050
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0050
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0051
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0051
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0051
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0052
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0052
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0052
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0052
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0053
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0053
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0053
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0053
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0053
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0053
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0054
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0054
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0054
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0054
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0054
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0055
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0056
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0056
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0056
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0057
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0057
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0057
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0057
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0058
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0058
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0058
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0058
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0058
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0058
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0059
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0059
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0059
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0059
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0060
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0061
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0061
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0061
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0061
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0061
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0061
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0062
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0062
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0062
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0062
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0062
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0063
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0063
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0063
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0063
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0064
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0064
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0064
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0065
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0065
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0065
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0066
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0066
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0066
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0066
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0066
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0067
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0067
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0067
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0067
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0067
http://smartenergygroups.com
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0069
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0069
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0070
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0070
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0070
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0070
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0072
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0072
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0072
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0072
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0072
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0073
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0073
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0073
https://github.com/erdogant/bnlearn
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0075
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0075
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0075
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0076
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0076
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0076
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0076
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0077
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0077
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0077
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0077
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0078
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0078
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0078
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0078
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0079
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0079
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0079
http://refhub.elsevier.com/S1874-5482(21)00022-6/sbref0079

	ARTINALI#: An Efficient Intrusion Detection Technique for Resource-Constrained Cyber-Physical Systems
	1 Introduction
	2 Previous work
	2.1 Network-based IDS
	2.2 Host-based IDS
	2.3 Artificial intelligence-based IDS
	2.4 Provenance-based IDS
	2.5 Static specification mining
	2.6 Dynamic specification mining
	2.7 CPS security solutions

	3 Background
	3.1 ARTINALI
	3.2 Bayesian network

	4 Methodology
	4.1 Problem formulation
	4.2 ARTINALI#
	4.2.1 Bayesian network
	4.2.2 Hybrid feature selection
	4.2.3 Configure the IDS

	5 Experimental setup
	5.1 Research questions (RQs)
	5.2 Case studies
	5.2.1 Smart meters
	5.2.2 Smart Artificial Pancreas (SAP)

	5.3 Build an IDS based on ARTINALI#
	5.3.1 Specification mining
	5.3.2 Data monitoring
	5.3.3 Data analysis
	5.3.4 Fault injection
	5.3.5 Optimization

	5.4 Evaluation metrics

	6 Evaluation
	6.1 RQ1. Attack coverage
	6.2 RQ2. Security monitor reduction
	6.3 RQ3. Specification reduction
	6.4 RQ4. Memory overhead
	6.5 RQ5. Performance overhead

	7 Discussion
	7.1 Threats to validity
	7.2 Generalizability

	8 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

